用户名: 密码: 验证码:
MFe_2O_4型催化剂与光电Fenton技术处理难降解有机污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电Fenton技术利用光、电、Fenton反应的协同作用,提高污染物的催化降解效果,此技术以其独特的优势已被广泛应用于难降解有机污染物废水处理研究。本论文以难降解有机污染物为对象,结合光电Fenton处理技术,开展以下两大部分研究:
     (1)研究发展了以MFe_2O_4(M=Zn,Cu,Co)作为光电类Fenton反应催化剂,用于降解苯并三氮唑(BTA)、4-硝基酚(PNP)、2,4-二氯酚(2,4-DCP)等难降解有机污染物。在此部分研究中,具有纳米颗粒结构的MFe_2O_4(M=Zn,Cu,Co)催化剂的制备均采用化学共沉淀法,并经TEM、XRF、XRD、比表面积(BET)等技术分析表征后,用于光电类Fenton降解反应中。首先研究了以ZnFe_2O_4作为催化剂利用光电类Fenton技术降解BTA过程。在加入0.067g·L~(-1)的ZnFe_2O_4催化剂时,最佳条件下,即0.15mmol·L~(-1)BTA,0.05mol·L~(-1)Na_2SO_4,外加电压-0.6V(vs. SCE,下同),初始pH为3.0,经紫外光照射降解180min后,BTA的去除率达到91.2%,COD去除率达到85.3%。其次研究了以CuFe_2O_4为催化剂的光电类Fenton技术降解PNP,在PNP初始浓度为0.1mmol·L~(-1),Na_2SO_40.05mol·L~(-1),pH为3.0,0.067g·L~(-1)CuFe_2O_4,外加电压为-0.6V以及紫外光照射的条件下,经非均相光电Fenton技术降解180min后,PNP的去除率可达到92.8%,相应COD的去除率为81.4%。同时研究了以CoFe_2O_4为催化剂,利用非均相光电类Fenton技术降解2,4-DCP,结果表明在0.2mmol·L~(-1)2,4-DCP,0.05mol·L~(-1)Na_2SO_4,外加电压-0.8V,pH为3.0,0.067g·L~(-1)CoFe_2O_4以及紫外光照射条件下,降解180min后,2,4-DCP的去除率可达到89.6%,COD去除率可达到84.2%。以上研究表明,MFe_2O_4(M=Zn,Cu,Co)可用作光电类Fenton反应的高效催化剂,基于此类催化剂的光电类Fenton技术是一项非常有用的有机污染物降解技术,对传统方法难降解的有机污染物均有较高的矿化效果。
     (2)研究了利用UV/Fenton技术及光电Fenton技术对污泥深度脱水液的处理。在研究UV/Fenton技术用于污泥脱水液处理时,利用表面响应法对最佳试验条件进行了优化,结果表明:在最佳试验条件下,即pH为3.0,H_2O_2投加量31.7mmol·L~(-1),初始Fe~(2+)浓度1.59mmol·L~(-1)(NH_2O_2:NFe~(2+)=20:1)条件下,经紫外光照射反应50min后,COD去除率可达到60%,并且获得较高的H_2O_2利用率。同时TOC、TN、NH_4~+-N、及TP去除率分别为46.4%、12.8%、65.6%和95%。
     (3)研究了光电Fenton技术用于污泥脱水液的处理,发现在优化条件下可获得比UV/Fenton技术更高的处理效率:在初始pH为3.0,H_2O_2投加量65.3mmol·L~(-1),FeSO4投加量6.53mmol·L~(-1)(NH_2O_2:NFe~(2+)=10:1),外加电压为7.5V时,经光电Fenton技术处理20min后污泥脱水液的COD去除率可达到59%;同时,原污泥脱水液的TOC去除率为50.6%;TN及NH_4~+-N的去除率分别为20.6%和73.6%;TP的去除率达到了96.5%。与传统的Fenton技术、UV/Fenton技术、电Fenton技术相比,光电Fenton技术可在短时间内获得一个较高COD去除率,而且TP的浓度也大幅度降低,不仅在污泥深度脱水液的快速处理方面具有很强的现实意义,也为光电Fenton技术在实际废水处理中的应用提供了实际的参考。
Photoelectro-Fenton technology (PE-Fenton) can improve treatment effect oforganic pollutants via the synergistic effect of light, electric and Fenton process. Thistechnology has been applied widely in treatment of refractory organic wastewater. In thispaper, some refractory organic compounds were used as the target pollutants degradedwith PE-Fenton process. The main results were as follows.
     (1) MFe_2O_4(M=Zn,Cu,Co) were used respectively as Fenton like catalyst in thedegradation of refractory organic pollutants, such as1H-Benzotriazole (BTA),p-Nitrophenol (PNP) and2,4-Dichlorophenol (2,4-DCP), with heterogeneous PE-Fentonlike process. MFe_2O_4(M=Zn, Cu, Co) nano-particles were prepared by aco-precipitation process and characterized respectively with transmission electronmicroscope (TEM), X-ray fluorescence analysis (XRF), X-ray diffraction analysis (XRD)and BET surface area. Then the catalysts were applied in PE-Fenton like process. First,the degradation of BTA with the heterogeneous PE-Fenton like process was studied using ZnFe_2O_4nanoparticles as catalyst. Under the optimum conditions, just as0.15mmol·L~(-1)BTA,0.05mol·L~(-1)Na_2SO_4, the electrical potentials of-0.6V (vs. SCE), pH3.0,0.067g·L~(-1) ZnFe_2O_4and UV irradiation, the180min BTA removal efficiency reached91.2%and the COD value was reduced by85.3%. Secondly, CuFe_2O_4as catalyst was employedto remove PNP by the heterogeneous PE-Fenton like process. For0.1mmol·L~(-1)PNP with0.05mol·L~(-1)Na_2SO_4and pH3.0, under the optimum conditions, namely the electricalpotentials of-0.6V (vs. SCE) and0.067g·L~(-1)CuFe_2O_4,92.8%of PNP was removed after180min treatment under UV irradiation and the corresponding COD removal efficiencywas81.4%. Moreover, CoFe_2O_4as catalyst was employed to remove2,4-DCP by theheterogeneous PE-Fenton like process. It was found that high2,4-DCP removal efficiencyof89.6%was obtained in the optimum condition of0.2mmol·L~(-1)2,4-DCP,0.05mol·L~(-1)Na_2SO_4, the electrical potential-0.8V (vs. SCE), pH3.0,0.067g·L~(-1)CoFe_2O_4and UVirradiation after180min treatment. At the same time, the COD removal efficiency reached84.2%. The results demonstrated that MFe_2O_4(M=Zn,Cu,Co)could be used as high efficiency catalyst and the heterogeneous PE-Fenton like process was a very effectivemothod in the degradation of organic pollutants. Compared with traditional treatmenttechnologies, a higher mineralization efficiency was obtained for the refractory organicpollutants.
     (2) UV/Fenton process and PE-Fenton process were respectively applied to treatthe sludge liquor, produced in deep dehydration of conditioned sludge. In the treatment ofthe sludge liquor with UV/Fenton process, response surface method was used to optimizethe operation parameters. The results showed that about60%COD removal efficiencywas obtained by the UV/Fenton process after50min treatment under the optimumcondition, namely pH3.0, H_2O_231.7mmol·L~(-1), FeSO41.59mmol·L~(-1)(NH_2O_2:NFe~(2+)=20:1)and UV irradiation. A higher H_2O_2utilization ratio was also obtained. At the same time,the TOC, TN, NH_4~+-N and TP removal efficiency could reach46.4%,12.8%,65.6%and95%, respectively.
     (3) Moreover, higher treatment efficiency was obtained in the treatment of sludgeliquor by the PE-Fenton process than UV/Fenton process. Under the optimum condition ofpH3.0, H_2O_2concentration of65.3mmol·L~(-1),FeSO4concentration of6.53mmol·L~(-1)(NH_2O_2:NFe~(2+)=10:1), the electrical potentials of7.5V and UV irradiation, only20min wasneeded for the COD removal efficiency to reach59%. The removal efficiency of TOC,TN, NH_4~+-N and TP could reach50.6%,20.6%,73.6%and96.5%, respectively.Compared with the traditional Fenton process, UV/Fenton process and electro-Fentonprocess, the higher COD removal efficiency was obtained and TP was also effectivelyremoved in a short time. Moreover, this study had realistic meanings and provided apractical reference for the application of PE-Fenton process in wastewater treatment.
引文
[1] Fenton H J H. Oxidation of tartaric acid in the presence of iron[J]. Journal of theChemical Society.1894,65:899-910
    [2]胡玲,高乃云. Fenton试剂降解内分泌干扰物双酚A的研究[J].中国给水排水,2011,27(7):80-82,86
    [3]汤优敏,官宝红,吴忠标. Fenton去除废水中甲基多巴的机制及动力学[J].环境科学,2008,29(5):1271-1276
    [4]蒋进元,李勇,王国威等. Fenton法处理腈纶聚合废水[J].环境科学研究,2011,23(7):897-901
    [5]覃芳慧,叶秀雅,吴彦瑜等. Fenton-双泥SBR工艺深度处理难降解反渗透浓缩液[J].环境工程学报,2011,5(4):721-725
    [6]高林霞,皮科武,万端极. Fenton试剂+SBR法处理纤维素废水的研究[J].环境科学与技术,2011,34(6):82-84,234
    [7]刘勃,庄会栋,季华东等. Fenton氧化-电解-水解酸化-固定化微生物工艺处理塑料助剂废水的工程应用[J].水处理技术,2011,37(4):133-135
    [8]冯斐. Fenton氧化耦合MBR工艺处理蒽醌染料废水的研究:[D].上海:华东理工大学图书馆,2010
    [9]郭方峥,涂勇,刘伟京等. IC-A/O-Fenton氧化处理废纸造纸废水的中试研究[J].环境科学与技术,2011,34(7):143-147,199
    [10]刘文辉,武奇,刘增超等.化学沉淀/Fenton法处理垃圾渗滤液的研究[J].工业安全与环保,2008,34(5):43-45
    [11]周文龙,汪晓军.两级A/O-Fenton-BAF工艺处理垃圾渗滤液[J].中国给水排水,2011,27(10):40-42,46
    [12]罗九鹏,韩菲,姜琦等. Fenton-絮凝法预处理化工综合废水的研究[J].工业用水与废水,2011,42(5):15-19
    [13]郑先强,尤特,唐运平. Fenton试剂预处理化工综合废水的研究[J].环境工程学报,2011,5(10):2226-2232
    [14]黄健盛,郭勇,唐奕等. Fenton氧化法预处理难降解高浓度化工废水[J].环境污染与防治,2011,33(8):36-39,45
    [15]李杰,程爱华,孙莉婷等.铁炭耦合Fenton试剂-混凝沉淀法预处理DMAC废水[J].环境科学研究中,2010,23(7):902-907
    [16]李军,王磊,彭锋等. Fenton法深度处理垃圾渗滤液的实验研究[J].北京工业大学学报,2008,34(3):304-309
    [17]王成军,黄瑞敏,卿海波等. Fenton试剂法深度处理皮革废水生化出水的研究[J].工业用水与废水.2008,39(2):49-51
    [18]李军,王磊,彭锋等. Fenton氧化/混凝法后续处理垃圾渗滤液研究[J].中国给水排水,2008,24(3):64-67
    [19]崔英杰,杨世迎,王萍等. Fenton原位化学氧化法修复有机污染土壤和地下水研究[J].化学进展,2008,20(7-8):1196-1201
    [20] Buyukkamaci N. Biological sludge conditioning by Fenton’s reagent[J]. ProcessBiochemistry,2004,39(11):1503-1506
    [21] Tony M A, Zhao Y Q, Fu J F, et al. Conditioning of aluminium-based watertreatment sludge with Fenton’s reagent: Effectiveness and optimising study toimprove dewaterability[J]. Chemosphere,2008,72(4):673-677
    [22] Liu H, Yang J, Shi Y, et al. Conditioning of sewage sludge by Fenton’s reagentcombined with skeleton builders[J]. Chemosphere,2012,88(2):235-239
    [23] Tony M A, Zhao Y Q, Tayeb A M. Exploitation of Fenton and Fenton-likereagents as alternative conditioners for alum sludge conditioning[J]. Journal ofEnvironmental Sciences,2009,21(1):101-105
    [24]陈英文,刘明庆,惠祖刚等. Fenton氧化破解剩余污泥的实验研究[J].环境工程学报,2011,5(2):409-413
    [25] Chu W, Kwan C Y, Chan K H, et al. A study of kinetic modelling and reactionpathway of2,4-dichlorophenol transformation by photo-Fenton-like oxidation[J].Journal of Hazardous Materials,2005,121(1):119-126
    [26] Zhao B, Mele G, Pio I, et al. Degradation of4-nitrophenol (4-NP) using Fe–TiO2as a heterogeneous photo-Fenton catalyst. Journal of Hazardous Materials[J].2010,176(1-3):569-574
    [27]陈芳艳,倪建玲,唐玉斌.光助Fenton氧化法降解水中六氯苯的研究[J].环境工程学报,2008,2(7):938-941
    [28]张亚平,韦朝海.光Fenton氧化降解染料阳离子红GTL[J].中南大学学报(自然科学版,2008,39(4):688-693
    [29]黄应平,刘德富,张水英,等.可见光/Fenton光催化降解有机染料[J].高等学校化学学报.2005,26(12):2273-2278
    [30]李琴,夏东升,曾庆福.紫外光-含Mn2+类Fenton试剂降解活性艳红X-3B[J].化工环保,2010,30(1):24-27
    [31]高航,马威,薛景娇等. UV/Fenton/柠檬酸体系光催化氧化孔雀石绿研究[J].化学世界,2010(10):580-582
    [32]高剑,吴棱,梁诗景等.铁钛双金属共柱撑膨润土光催化-Fenton降解苯酚[J].催化学报,2010,31(3):317-321
    [33]陈琳,雷乐成,杜瑛珣. UV/Fenton光催化氧化降解对氯苯酚废水反应动力学[J].环境科学学报,2004,24(2):225-230
    [34]钟萍,杨曦,赵贵来等.光助Fenton试剂法氧化处理煤油废水溶液[J].中国环境科学,2008,22(5):460-463
    [35]丁辉,李鑫钢,徐世民.光助Fenton氧化垃圾渗滤液中腐殖质研究[J].太阳能学报,2008,29(6):761-766
    [36]潘云霞,郑怀礼,潘云峰.太阳光Fenton法处理垃圾渗滤液中有机污染物[J].环境工程学报,2009,3(12):2159-2162
    [37]魏宏斌,赵杨,汪力等. UV/Fenton光催化氧化法处理液晶显示屏清洗废水[J].中国给水排水,2006,22(5):84-87
    [38]顾彦,罗勋,黄应平.制药废水的Fenton光催化降解[J].环境科学与技术,2008,31(10):101-103,107
    [39]张顺喜,王文清,张剑等.光助Fenton法治理中药浸膏药渣渗滤液研究[J].工业安全与环保,2010,36(8):8-10
    [40]田园,陈广春,王晔. UV-Fenton光催化氧化处理高浓度邻苯二甲酸二辛酯生产废水[J].环境工程学报,2007,1(7):71-74
    [41]刘琼玉,陈汉全,邹隐文等.太阳光Fenton氧化-混凝联合处理含酚废水[J].太阳能学报,2007,28(7):695-700
    [42]徐明芳,毛雪慧,曾乐等.光反应器中UV/Fenton光降解湖水中微囊藻毒素的研究[J].环境工程学报,2008,2(7):932-937
    [43] Emilio C A, Jardim W F, Litter M I, et al. EDTA destruction using the solarferrioxalate advanced oxidation technology (AOT)-Comparison with solarphoto-Fenton treatment[J]. Journal of Photochemistry and PhotobiologyA-Chemistry.2002,151(1-3):121-127
    [44] Lee Y, Jeong J, Lee C, et al. Influence of various reaction parameters on2,4-Dremoval in photo/ferrioxalate/H2O2process[J]. Chemosphere.2003,51(9):901-912
    [45] Safarzadehamiri A, Bolton J R, Cater S R. Ferrioxalate-mediated photodegradationof organic pollutants in contaminated water[J]. Water Research,1997,31(4):787-798
    [46] Weng C, Lin Y, Chang C, et al. Decolourization of direct blue15byFenton/ultrasonic process using a zero-valent iron aggregate catalyst[J].Ultrasonics Sonochemistry,2013,20(3):970-977
    [47] Sun J, Sun S, Sun J, et al. Degradation of azo dye Acid black1using lowconcentration iron of Fenton process facilitated by ultrasonic irradiation[J].Ultrasonics Sonochemistry,2007,14(6):761-766
    [48] Zhang H, Zhang J, Zhang C, et al. Degradation of C. I. Acid Orange7by theadvanced Fenton process in combination with ultrasonic irradiation[J]. UltrasonicsSonochemistry,2009,16(3):325-330
    [49] Li H, Lei H, Yu Q, et al. Effect of low frequency ultrasonic irradiation on thesonoelectro-Fenton degradation of cationic red X-GRL[J]. Chemical EngineeringJournal,2010,160(2):417-422
    [50] Neppolian B, Park J, Choi H. Effect of Fenton-like oxidation on enhancedoxidative degradation of para-chlorobenzoic acid by ultrasonic irradiation[J].Ultrasonics Sonochemistry.2004,11(5):273-279
    [51] Eskelinen K, S rkk H, Kurniawan T A, et al. Removal of recalcitrantcontaminants from bleaching effuents in pulp and paper mills using ultrasonicirradiation and Fenton-like oxidation, electrochemical treatment, and/or chemicalprecipitation: A comparative study[J]. Desalination.2010,255:179-187
    [52]任百祥.超声-Fenton高级氧化降解染料工业废水的研究[J].环境工程学报,2010,4(4):809-812
    [53]潘云霞,郑怀礼,李丹丹等.超声/Fenton联用技术处理垃圾渗滤液中的有机物[J].环境工程学报.2008,2(4):445-449
    [54]任百祥,杨春维.超声-Fenton氧化法处理中药废水的试验研究[J].工业水处理,2012,32(8):59-62
    [55]许海燕,刘亚菲,唐文伟等.超声电解与Fenton试剂处理焦化废水的试验研究[J].工业水处理,2004,24(2):43-45
    [56]丁湛,关卫省,刘建等.微波强化Fenton氧化处理垃圾渗滤液的研究[J].中国给水排水,2010,26(3):90-92
    [57]周健,李宝霞,龙腾锐等.微波强化Fenton氧化法处理垃圾渗滤液试验研究[J].中国给水排水,2009,25(17):97-99
    [58]占昌朝,曹小华,严平等.微波-膨胀石墨-Fenton试剂协同催化氧化甲基橙废水[J].水处理技术,2012,38(6):22-25
    [59]张会琴,郑怀礼,廖宏兴等.微波促进类Fenton反应催化氧化降解染料吖啶橙[J].工业水处理,2010,30(8):54-57
    [60]李再兴,剧盼盼,左剑恶等.微波强化Fenton氧化法深度处理抗生素废水研究[J].工业水处理,2012,32(6):52-55
    [61]李亚峰,春艳,张晓宁等.微波-Fenton-活性炭法降解有机磷农药混合废水试验研究[J].工业水处理,2012,32(3):45-47,51
    [62]朱凌峰,罗琳,蒋宏国等. Fenton试剂在微波条件下处理稻壳热解发电含酚废水的试验[J].水资源保护,2010,26(3):53-56
    [63]陈芳艳,肖洁,唐玉斌.微波-改性活性炭-Fenton试剂氧化法降解水中2,4-二氯酚[J].化工环保,2008,28(2):106-110
    [64]赵西往,张永刚,陈立群等.微波辅助Fenton处理含酚炼油废水的试验研究[J].工业水处理,2012,32(9):62-65
    [65]关晓彤,杨旭鹏,张之明等.微波辐射Fenton试剂处理TNT废水的研究[J].工业水处理,2010,30(4):42-45
    [66]张丽,朱晓东,张燕峰等.微波强化Fenton氧化处理邻氨基苯甲酸废水[J].环境科学研究,2009,22(5):516-520
    [67]陈芳艳,施琦,唐玉斌.微波强化Fenton氧化法降解水中阴离子表面活性剂的研究[J].水处理技术,2011,37(6):23-26
    [68] Chu Y Y, Qian Y, Wang W J, et al. A dual-cathode electro-Fenton oxidationcoupled with anodic oxidation system used for4-nitrophenol degradation[J].Journal of Hazardous Materials,2012,199–200:179-185
    [69] Dhaouadi A, Monser L, Adhoum N. Anodic oxidation and electro-Fentontreatment of rotenone[J]. Electrochimica Acta,2009,54(19):4473-4480
    [70] Martínez S S, Bahena C L. Chlorbromuron urea herbicide removal byelectro-Fenton reaction in aqueous effluents[J]. Water Research.2009,43(1):33-40
    [71] Song-Hu Y, Xiao-Hua L. Comparison treatment of various chlorophenols byelectro-Fenton method: relationship between chlorine content and degradation[J].Journal of Hazardous Materials,2005,118(1-3):85-92
    [72] Elaoud S C, Panizza M, Cerisola G, et al. Coumaric acid degradation byelectro-Fenton process[J]. Journal of Electroanalytical Chemistry,2012,667:19-23
    [73] Rosales E, Iglesias O, Pazos M, et al. Decolourisation of dyes under electro-Fentonprocess using Fe alginate gel beads[J]. Journal of Hazardous Materials,2012,213-214:369-377
    [74] Chen W, Liang J. Decomposition of nitrotoluenes from trinitrotoluenemanufacturing process by Electro-Fenton oxidation[J]. Chemosphere,2008,72(4):601-607
    [75] Zhou M, Tan Q, Wang Q, et al. Degradation of organics in reverse osmosisconcentrate by electro-Fenton process[J]. Journal of Hazardous Materials,2012,215-216:287-293
    [76] zcan A, ahin Y, Koparal A S, et al. Degradation of picloram by theelectro-Fenton process[J]. Journal of Hazardous Materials,2008,153(1-2):718-727
    [77] Chen W, Lin S. Destruction of nitrotoluenes in wastewater by Electro-Fentonoxidation[J]. Journal of Hazardous Materials,2009,168(2-3):1562-1568
    [78] Sánchez-Sánchez C M, Expósito E, Casado J, et al. Goethite as a more effectiveiron dosage source for mineralization of organic pollutants by electro-Fentonprocess[J]. Electrochemistry Communications,2007,9(1):19-24
    [79] Wang A, Qu J, Ru J, et al. Mineralization of an azo dye Acid Red14byelectro-Fenton's reagent using an activated carbon fiber cathode[J]. Dyes andPigments,2005,65(3):227-233
    [80] Ghosh P, Samanta A N, Ray S. Reduction of COD and removal of Zn2+from rayonindustry wastewater by combined electro-Fenton treatment and chemicalprecipitation[J]. Desalination,2011,266(1-3):213-217
    [81] Zhao X, Zhang B, Liu H, et al. Transformation characteristics of refractorypollutants in plugboard wastewater by an optimal electrocoagulation andelectro-Fenton process[J]. Chemosphere,2012,87(6):631-636
    [82] Yuan S, Tian M, Cui Y, et al. Treatment of nitrophenols by cathode reduction andelectro-Fenton methods[J]. Journal of Hazardous Materials,2006,137(1):573-580
    [83] Sirés I, Garrido J A, Rodríguez R M, et al. Catalytic behavior of the Fe3+/Fe2+system in the electro-Fenton degradation of the antimicrobial chlorophene[J].Applied Catalysis B: Environmental,2007,72(3-4):382-394
    [84] Babuponnusami A, Muthukumar K. Advanced oxidation of phenol A comparisonbetween Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fentonprocesses[J]. Chemical Engineering Journal,2012,183:1-9
    [85] Irmak S, Yavuz H I, Erbatur O. Degradation of4-chloro-2-methylphenol inaqueous solution by electro-Fenton and photoelectro-Fenton processes[J]. AppliedCatalysis B: Environmental,2006,63(3-4):243-248
    [86] Sirés I, Arias C, Cabot P L, et al. Degradation of clofibric acid in acidic aqueousmedium by electro-Fenton and photoelectro-Fenton[J]. Chemosphere,2007,66(9):1660-1669
    [87] Brillas E, Ba os M á, Skoumal M, et al. Degradation of the herbicide2,4-DP byanodic oxidation, electro-Fenton and photoelectro-Fenton using platinum andboron-doped diamond anodes[J]. Chemosphere,2007,68(2):199-209
    [88] Brillas E, Ba os M á, Garrido J A. Mineralization of herbicide3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation,electro-Fenton and photoelectro-Fenton[J]. Electrochimica Acta,2003,48(12):1697-1705
    [89] Ting W, Lu M, Huang Y. The reactor design and comparison of Fenton,electro-Fenton and photoelectro-Fenton processes for mineralization of benzenesulfonic acid (BSA)[J]. Journal of Hazardous Materials,2008,156(1-3):421-427
    [90] Exposito E, Sanchez-Sanchez C M, Montiel V. Mineral iron oxides as iron sourcein electro-Fenton and photoelectro-fenton mineralization processes[J]. Journal ofthe Electrochemical Society,2007,154(8): E116-E122
    [91] Matta R, Hanna K, Chiron S. Fenton-like oxidation of2,4,6-trinitrotoluene usingdifferent iron minerals[J]. Science of The Total Environment,2007,385(1-3):242-251
    [92] Guo L, Chen F, Fan X, et al. S-doped α-Fe2O3as a highly active heterogeneousFenton-like catalyst towards the degradation of acid orange7and phenol[J].Applied Catalysis B: Environmental,2010,96(1-2):162-168
    [93] Zhang Y Y, Deng J H, He C, et al. Application of Fe2V4O13as a new multi-metalheterogeneous Fenton-like catalyst for the degradation of organic pollutants[J].Environmental Technology,2010,31(2):145-154
    [94] Deng J, Jiang J, Zhang Y, et al. FeVO4as a highly active heterogeneousFenton-like catalyst towards the degradation of Orange II[J]. Applied Catalysis B:Environmental,2008,84(3-4):468-473
    [95] Guimaraes I R, Giroto A, Oliveira L C A, et al. Synthesis and thermal treatment ofcu-doped goethite: Oxidation of quinoline through heterogeneous fenton process[J].Applied Catalysis B: Environmental,2009,91(3-4):581-586
    [96] Heckert E G, Seal S, Self W T. Fenton-Like Reaction Catalyzed by the Rare EarthInner Transition Metal Cerium[J]. Environmental Science&Technology,2008,42(13):5014-5019
    [97] Oliveira L C A, Gon alves M, Guerreiro M C, et al. A new catalyst material basedon niobia/iron oxide composite on the oxidation of organic contaminants in watervia heterogeneous Fenton mechanisms[J]. Applied Catalysis A: General,2007,316(1):117-124
    [98] Pham A L, Lee C, Doyle F M, et al. A Silica-Supported Iron Oxide CatalystCapable of Activating Hydrogen Peroxide at Neutral pH Values[J]. EnvironmentalScience&Technology,2009,43(23):8930-8935
    [99] Fernandez J, Bandara J, Lopez A, et al. Efficient photo-assisted Fenton catalysismediated by Fe irons on Nafion membranes active in the abatement ofnon-biodegradable azo-dye[J]. Chemical Communications,1998,14:1493-1494
    [100] Kasiri M B, Aleboyeh H, Aleboyeh A. Mineralization of CI Acid Red14azo dyeby UV/Fe-ZSM5/H2O2process[J]. Environmental Technology,2010,31(2):165-173
    [101] Centi G, Perathoner S, Torre T, et al. Catalytic wet oxidation with H2O2ofcarboxylic acids on homogeneous and heterogeneous Fenton-type catalysts[J].Catalysis Today,2000,55(1-2):61-69
    [102] Guélou E, Barrault J, Fournier J, et al. Active iron species in the catalytic wetperoxide oxidation of phenol over pillared clays containing iron[J]. AppliedCatalysis B: Environmental,2003,44(1):1-8
    [103] Catrinescu C, Teodosiu C, Macoveanu M, et al. Catalytic wet peroxide oxidationof phenol over Fe-exchanged pillared beidellite[J]. Water Research,2003,37(5):1154-1160
    [104]李燕,徐海燕,徐玲等. ZnS/镍锌铁氧体磁性光催化剂的制备与光催化活性[J].人工晶体学报,2011(4):995-999
    [105]陈亮,迟燕华,尚丽平.固相法合成锌铁氧体及其光催化性能[J].西南科技大学学报,2009(3):16-22
    [106]储金宇,于琦,吴春笃等. TiO2负载锶铁氧体磁性材料光催化性能及表征[J].无机材料学报,2008(4):652-656
    [107] Chen C, Zhang P, Zeng G, et al. Sewage sludge conditioning with coal fly ashmodified by sulfuric acid[J]. Chemical Engineering Journal.2010,158(3):616-622
    [108]杨家宽,杨晓,李亚林等.基于骨架构建体污泥脱水及其固化土工性能研究[J].武汉科技大学学报:自然科学版,2012,35(2):133-136
    [109]刘欢,李亚林,时亚飞等.无机复合调理剂对污泥脱水性能的影响[J].环境化学,2011,30(11):1877-1882
    [110]柯明勇.集美污水处理厂污泥深度脱水技术探讨[J].给水排水,2011,37(5):40-43
    [111]杨国友,石林,柴妮.生石灰与微波协同作用对污泥脱水的影响[J].环境化学,2011,30(3):698-702
    [112] Amuda O S, Amoo I A. Coagulation/flocculation process and sludge conditioningin beverage industrial wastewater treatment[J]. Journal of Hazardous Materials.2007,141(3):778-783
    [113]刘欢,杨家宽,时亚飞等.不同调理方案下污泥脱水性能评价指标的相关性研究[J].环境科学,2011,32(11):3394-3399
    [114]李定龙,张志祥,申晶晶等.超声波联合无机混凝剂对污泥脱水性能的影响[J].环境科学与技术,2011,34(7):20-22,86
    [115]刘秉涛,娄渊知,徐菲.聚合氯化铝/壳聚糖复合絮凝剂在活性污泥中的调理作用[J].环境化学,2007,26(1):42-45
    [116]宋宪强,雷恒毅,余光伟等.新型复合混凝剂改善污泥脱水性能的研究[J].中国给水排水,2007,23(13):87-90
    [117]冯晶,王毅力,杨梦龙.絮凝调理对消化污泥的脱水性能及絮体理化特性的影响研究[J].环境科学学报,2011,31(7):1421-1430
    [118] Al-Mutairi N Z, Hamoda M F, Al-Ghusain I. Coagulant selection and sludgeconditioning in a slaughterhouse wastewater treatment plant[J]. BioresourceTechnology,2004,95(2):115-119
    [119] Zhao Y Q. Correlations between floc physical properties and optimum polymerdosage in alum sludge conditioning and dewatering[J]. Chemical EngineeringJournal.2003,92(1-3):227-235
    [120]李欣,蔡伟民.污泥调理剂与有机高分子絮凝剂联合作用对污泥脱水性能影响的研究[J].净水技术.2009,28(3):40-44
    [121]郝秋霞.阳离子聚丙烯酰胺用于污泥脱水的研究[J].科技情报开发与经济,2010,20(23):175-177
    [122]孔乐,范军,钱培金等.阳离子聚丙烯酰胺在板框脱水机上应用的研究[J].能源环境保护,2009,23(5):27-30
    [123] Chen Y, Chen Y, Gu G. Influence of pretreating activated sludge with acid andsurfactant prior to conventional conditioning on filtration dewatering[J]. ChemicalEngineering Journal,2004,99(2):137-143
    [124] Yuan H, Zhu N, Song F. Dewaterability characteristics of sludge conditioned withsurfactants pretreatment by electrolysis[J]. Bioresource Technology,2011,102(3):2308-2315
    [125]李恺,叶志平,李焕文等.表面活性剂CTAC对活性污泥的脱水性能及其机理研究[J].华南师范大学学报(自然科学版),2010(2):76-81
    [126]石常省,赵跃民,俞和胜.表面活性剂对污泥沉降及压滤脱水性能的影响[J].江苏环境科技,2006,19(3):4-5,9
    [127]郑怀礼,唐雪,沈烈翔等.阳离子P(AM-DAC)污泥脱水剂的合成表征与应用[J].重庆大学学报,2010,33(7):115-122
    [128]鹿雯,张登峰,胡开林等.阳离子表面活性剂对污泥脱水性能的影响和作用机理[J].环境化学,2008,27(4):444-448
    [129]蒋波,傅佳骏,蔡伟民.阳离子表面活性剂改善污泥脱水性能的机理研究[J].中国给水排水,2006,22(23):59-62,66
    [130]袁园,杨海真.表面活性剂及酸处理对污泥脱水性能影响的研究[J].四川环境.2003,22(5):1-8
    [131]李清林,韩卿,阎宽水.表面活性剂在造纸污泥脱水中的应用[J].纸和造纸.2011,30(7):59-62
    [132]甄广印,周海燕,宋玉等.十二烷基苯磺酸钠(SDBS)-氢氧化钠耦合污泥脱水技术研究[J].环境化学,2010,29(6):1106-1110
    [133]柳海波,张惠灵,范凉娟等.投加调理剂与表面活性剂对污泥脱水性能的影响[J].中国给水排水,2012,28(003):10-14
    [134]鹿雯.阳离子表面活性剂对污泥脱水性能的改善和作用机理研究[D].昆明理工大学图书馆,2007
    [135]李欣.阳离子调理剂与阳离子聚电解质联合作用于活性污泥脱水及其机理研究[D].上海:上海交通大学图书馆,2009
    [136] Fux C, Velten S, Carozzi V, et al. Efficient and stable nitritation and denitritationof ammonium-rich sludge dewatering liquor using an SBR with continuousloading[J]. Water Research,2006,40(14):2765-2775
    [137] Peng Y, Zhang L, Zhang S, et al. Enhanced nitrogen removal from sludgedewatering liquor by simultaneous primary sludge fermentation and nitratereduction in batch and continuous reactors[J]. Bioresource Technology,2012,104:144-149
    [138]张树军,马富国,曹相生等.低C/N高氨氮消化污泥脱水液部分亚硝化研究[J].环境科学,2009,30(6):1695-1700
    [139] Thornton A, Pearce P, Parsons S A. Ammonium removal from digested sludgeliquors using ion exchange[J]. Water Research,2007,41(2):433-439
    [140]于宗赫,孟范平,刘浩等.投加海水化学沉淀法去除污泥脱水液中的磷酸盐[J].中国海洋大学学报,2006,36(1):156-160
    [141]国家环境保护总局.水和废水监测分析方法(第四版)[S].中国,2002
    [142] Giger W, Schaffner C, Kohler H E. Benzotriazole and Tolyltriazole as AquaticContaminants.1. Input and Occurrence in Rivers and Lakes[J]. EnvironmentalScience&Technology,2006,40(23):7186-7192
    [143] Weiss S, Jakobs J, Reemtsma T. Discharge of Three Benzotriazole CorrosionInhibitors with Municipal Wastewater and Improvements by MembraneBioreactor Treatment and Ozonation[J]. Environmental Science&Technology,2006,40(23):7193-7199
    [144]王鑫华,陈建林,程莹莹等.氧化塘工艺处理苯并三氮唑生产废水[J].工业用水与废水,2005,36(2):40-42
    [145] Ding Y B, Yang C Z, Zhu L H, et al. Photoelectrochemical activity of liquidphase deposited TiO2film for degradation of benzotriazole[J]. Journal ofHazardous Materials,2010,175(1-3):96-103
    [146] Xu B, Wu F, Zhao X, et al. Benzotriazole removal from water by Zn–Al–Obinary metal oxide adsorbent: Behavior, kinetics and mechanism[J]. Journal ofHazardous Materials,2010,184(1-3):147-155
    [147] Li X, Hou Y, Zhao Q, et al. A general, one-step and template-free synthesis ofsphere-like zinc ferrite nanostructures with enhanced photocatalytic activity fordye degradation[J]. Journal of Colloid and Interface Science.2011,358(1):102-108
    [148] Jia Z, Ren D, Liang Y, et al. A new strategy for the preparation of porous zincferrite nanorods with subsequently light-driven photocatalytic activity[J].Materials Letters,2011,65(19-20):3116-3119
    [149] Cheng P, Li W, Zhou T, et al. Physical and photocatalytic properties of zincferrite doped titania under visible light irradiation[J]. Journal of Photochemistryand Photobiology A: Chemistry,2004,168(1-2):97-101
    [150] Dom R, Subasri R, Radha K, et al. Synthesis of solar active nanocrystallineferrite, MFe2O4(M: Ca, Zn, Mg) photocatalyst by microwave irradiation[J].Solid State Communications,2011,151(6):470-473
    [151] Cao S, Zhu Y, Cheng G, et al. ZnFe2O4nanoparticles: microwave-hydrothermalionic liquid synthesis and photocatalytic property over phenol[J]. Journal ofHazardous Materials,2009,171(1-3):431-435
    [152] Guin D, Baruwati B, Manorama S V. A simple chemical synthesis ofnanocrystalline AFe2O4(A=Fe, Ni, Zn): An efficient catalyst for selectiveoxidation of styrene[J]. Journal of Molecular Catalysis A: Chemical,2005,242(1-2):26-31
    [153] Liu L, Zhang G, Wang L, et al. Highly Active S-Modified ZnFe2O4Heterogeneous Catalyst and Its Photo-Fenton Behavior under UV–VisibleIrradiation[J]. Industrial&Engineering Chemistry Research,2011,50(12):7219-7227
    [154] Oturan M A, Pimentel M, Oturan N, et al. Reaction sequence for themineralization of the short-chain carboxylic acids usually formed upon cleavageof aromatics during electrochemical Fenton treatment[J]. Electrochimica Acta,2008,54(2):173-182
    [155] Daneshvar N, Aber S, Vatanpour V, et al. Electro-Fenton treatment of dyesolution containing Orange II: Influence of operational parameters[J]. Journal ofElectroanalytical Chemistry,2008,615(2):165-174
    [156] Wang H, Burda C, Persy G, et al. Photochemistry of1H-Benzotriazole inAqueous Solution: A Photolatent Base[J]. Journal of the American ChemicalSociety,2000,122(24):5849-5855
    [157] Kiszka M, Dunkin I R, Gebicki J, et al. The photochemical transformation andtautomeric composition of matrix isolated benzotriazole[J]. Journal of theChemical Society, Perkin Transactions,2000,2(12):2420-2426
    [158] Shizuka H, Hiratsuka H, Jinguji M, et al. Photolysis of benzotriazole in alcoholicglass at77K[J]. Journal of Physical Chemistry,1987,91(7):1793-1797
    [159] Uspublichealthservice. Toxicological profile for nitrophenols2-nitrophenol4-nitrophenol[M]. Agency for Toxic Substances and Disease Registry (ATSDR),1992
    [160] Yi S, Zhuang W Q, Wu B, et al. Biodegradation of p-nitrophenol by aerobicgranules in a sequencing batch reactor[J]. Environmental Science&Technology,2006,40(7):2396-2401
    [161] Chang M W, Chen T S, Chern J M. Initial degradation rate of p-nitrophenol inaqueous solution by Fenton reaction[J]. Industrial&Engineering ChemistryResearch,2008,47(22):8533-8541
    [162] Hui Zhang, Chengzhi Fei, Daobin Zhang, et al. Degradation of4-nitrophenol inaqueousmedium by electro-Fenton method[J]. Journal of Hazardous Materials,2007,145(1-2):227-232
    [163] Khatamian M, Divband B, Jodaei A. Degradation of4-nitrophenol (4-NP) usingZnO nanoparticles supported on zeolites and modeling of experimental results byartificial neural networks[J]. Materials Chemistry and Physics,2012,134(1):31-37
    [164] Khatamian M, Khandar A A, Divband B, et al. Heterogeneous photocatalyticdegradation of4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+or Sm3+)doped ZnO nanoparticles[J]. Journal of Molecular Catalysis A: Chemical,2012,365:120-127
    [165] San N, Hatipo lu A, Ko türk G, et al. Photocatalytic degradation of4-nitrophenol in aqueous TiO2suspensions: Theoretical prediction of theintermediates[J]. Journal of Photochemistry and Photobiology A: Chemistry.2002,146(3):189-197
    [166] Kang S, Yang Y, Bu W, et al. TiO2nanoparticles incorporated with CuInS2clusters: preparation and photocatalytic activity for degradation of4-nitrophenol[J]. Journal of Solid State Chemistry,2009,182(11):2972-2976
    [167] Yang H, Yan J, Lu Z, et al. Photocatalytic activity evaluation of tetragonalCuFe2O4nanoparticles for the H2evolution under visible light irradiation[J].Journal of Alloys and Compounds,2009,476(1-2):715-719
    [168] Faungnawakij K, Shimoda N, Fukunaga T, et al. Cu-based spinel catalystsCuB2O4(B=Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming of dimethylether[J]. Applied Catalysis A: General,2008,341(1-2):139-145
    [169] Farghali A A, Khedr M H, Abdel Khalek A A. Catalytic decomposition ofcarbondioxide over freshly reduced activated CuFe2O4nano-crystals[J]. Journalof Materials Processing Technology,2007,181(1-3):81-87
    [170] Singh R N, Singh J P, Lal B, et al. Preparation and characterization ofCuFe2-xCrxO4(0<=x <=1.0) nano spinels for electrocatalysis of oxygenevolution in alkaline solutions[J]. International Journal of Hydrogen Energy,2007,32(1):11-16
    [171] Flox C, Ammar S, Arias C, et al. Electro-Fenton and photoelectro-Fentondegradation of indigo carmine in acidic aqueous medium[J]. Applied Catalysis B:Environmental,2006,67(1-2):93-104
    [172] Lu M. Oxidation of chlorophenols with hydrogenperoxide in the presence ofgoethite[J]. Chemosphere,2000,40(125-130):125-130
    [173] Lin S S, Gurol M D. Catalytic decomposition of hydrogen peroxide on iron oxide:kinetics, mechanism, and implications[J]. Environmental science&technology,1998,32(10):1417-1423
    [174] Lu M C, Chen J N, Huang H H. Role of goethite dissolution in the oxidation of2-chlorophenol with hydrogen peroxide[J]. Chemosphere,2002,46(1):131-136
    [175] Yang S, Wu R S S, Kong R Y C. Biodegradation and enzymatic responses in themarine diatom Skeletonema costatum upon exposure to2,4-dichlorophenol[J].Aquatic Toxicology,2002,59(3-4):191-200
    [176] Quan X, Shi H, Zhang Y, et al. Biodegradation of2,4-dichlorophenol and phenolin an airlift inner-loop bioreactor immobilized with Achromobacter sp[J].Separation and Purification Technology,2004,34(1-3):97-103
    [177] Wang S, Liu X, Zhang H, et al. Aerobic granulation for2,4-dichlorophenolbiodegradation in a sequencing batch reactor. Chemosphere[J].2007,69(5):769-775
    [178] Sponza D T, Uluk y A. Kinetic of carbonaceous substrate in an upflow anaerobicsludge sludge blanket (UASB) reactor treating2,4dichlorophenol (2,4DCP)[J].Journal of Environmental Management,2008,86(1):121-131
    [179] Xiangchun Q, Hanchang S, Yongming Z, et al. Biodegradation of2,4-dichlorophenol in an air-lift honeycomb-like ceramic reactor[J]. ProcessBiochemistry,2003,38(11):1545-1551
    [180] Quan X, Shi H, Liu H, et al. Removal of2,4-dichlorophenol in a conventionalactivated sludge system through bioaugmentation[J]. Process Biochemistry,2004,39(11):1701-1707
    [181] Quan X, Shi H, Liu H, et al. Enhancement of2,4-dichlorophenol degradation inconventional activated sludge systems bioaugmented with mixed specialculture[J]. Water Research,2004,38(1):245-253
    [182] Yang Q, Choi H, Chen Y, et al. Heterogeneous activation of peroxymonosulfateby supported cobalt catalysts for the degradation of2,4-dichlorophenol in water:The effect of support, cobalt precursor, and UV radiation[J]. Applied Catalysis B:Environmental,2008,77(3-4):300-307
    [183] Wu L, Li A, Gao G, et al. Efficient photodegradation of2,4-dichlorophenol inaqueous solution catalyzed by polydivinylbenzene-supported zincphthalocyanine[J]. Journal of Molecular Catalysis A: Chemical,2007,269(1-2):183-189
    [184] Liu L, Chen F, Yang F, et al. Photocatalytic degradation of2,4-dichlorophenolusing nanoscale Fe/TiO2[J]. Chemical Engineering Journal,2012,181-182:189-195
    [185] Liu L, Chen F, Yang F. Stable photocatalytic activity of immobilizedFe0/TiO2/ACF on composite membrane in degradation of2,4-dichlorophenol[J].Separation and Purification Technology,2009,70(2):173-178
    [186] Liu H, Xia T, Shon H K, et al. Preparation of titania-containing photocatalystsfrom metallurgical slag waste and photodegradation of2,4-dichlorophenol[J].Journal of Industrial and Engineering Chemistry,2011,17(3):461-467
    [187] Jia J, Zhang S, Wang P, et al. Degradation of high concentration2,4-dichlorophenol by simultaneous photocatalytic–enzymatic process usingTiO2/UV and laccase[J]. Journal of Hazardous Materials,2012,205-206:150-155
    [188] Gu L, Chen Z, Sun C, et al. Photocatalytic degradation of2,4-dichlorophenolusing granular activated carbon supported TiO2[J]. Desalination,2010,263(1-3):107-112
    [189] Chang M, Hsieh Y, Cheng T, et al. Photocatalytic degradation of2,4-dichlorophenol wastewater using porphyrin/TiO2complexes activated byvisible light[J]. Thin Solid Films,2009,517(14):3888-3891
    [190] Bayarri B, Giménez J, Curcó D, et al. Photocatalytic degradation of2,4-dichlorophenol by TiO2/UV: Kinetics, actinometries and models[J]. CatalysisToday,2005,101(3-4):227-236
    [191] Pupo Nogueira R F, Trovó A G, Modé D F. Solar photodegradation ofdichloroacetic acid and2,4-dichlorophenol using an enhanced photo-Fentonprocess[J]. Chemosphere,2002,48(4):385-391
    [192] Karci A, Arslan-Alaton I, Olmez-Hanci T, et al. Transformation of2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: Oxidationproducts and toxicity evolution[J]. Journal of Photochemistry and PhotobiologyA: Chemistry,2012,230(1):65-73
    [193] Chaliha S, Bhattacharyya K G. Catalytic wet oxidation of2-chlorophenol,2,4-dichlorophenol and2,4,6-trichlorophenol in water with Mn(II)-MCM41[J].Chemical Engineering Journal,2008,139(3):575-588
    [194] Chaliha S, Bhattacharyya K G. Fe(III)-, Co(II)-and Ni(II)-impregnated MCM41for wet oxidative destruction of2,4-dichlorophenol in water[J]. Catalysis Today,2009,141(1-2):225-233
    [195] Xu L, Wang J. Fenton-like degradation of2,4-dichlorophenol using Fe3O4magnetic nanoparticles[J]. Applied Catalysis B: Environmental,2012,123-124:117-126
    [196] Chu Y, Wang W, Wang M. Anodic oxidation process for the degradation of2,4-dichlorophenol in aqueous solution and the enhancement of biodegradability[J].Journal of Hazardous Materials,2010,180(1-3):247-252
    [197] Chen J, Wang J, Wu C, et al. Electrocatalytic degradation of2,4-dichlorophenolby granular graphite electrodes[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2011,379(1-3):163-168
    [198] Primo O, Rivero M J, Ortiz I. Photo-Fenton process as an efficient alternative tothe treatment of landfill leachates[J]. Journal of Hazardous Materials,2008,153(1-2):834-842

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700