用户名: 密码: 验证码:
吉林省绿豆品种遗传多样性与光合生产性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿豆(Vigna radiate)是豇豆属(Vigna)亚洲豇豆亚属(Ceratotropis)的主要栽培豆种,在我国具有悠久的栽培历史,也是我国传统的出口农产品,在农业生产和人民生活中具有独特的作用。绿豆富含蛋白质、维生素、矿质元素等营养物质,且具有药用价值,是广受欢迎的医食两用作物。
     吉林省是我国绿豆主产省份之一,以白城市(洮南、通榆、镇赉)和松原市(前郭、乾安、长岭)等干旱盐碱地区种植面积最大。近年来,随着国家对绿豆等食用豆类科研资助力度的不断加强,吉林省绿豆育种单位选育了一批优良品种,并在生产中发挥着积极作用。为进一步明确吉林省绿豆育种新目标,研究了吉林省绿豆品种农艺性状遗传多样性,开展了吉林省近年来育成绿豆品种重要农艺性状的变化研究,以大面积推广的“吉绿3号”为研究对象开展了绿豆不同种植密度效应研究,分析了盛花期、结荚盛期及鼓粒盛期高、中、低产绿豆品种各器官干物质积累及部分光合性能的变化,为吉林省绿豆高产育种和指导栽培实践提供了理论依据。同时,开展了绿豆抗旱性早期鉴定方法研究,为开展绿豆抗旱育种奠定了基础。主要研究结果和结论如下:
     1、对吉林省21个绿豆品种的16个形态性状进行了分析,结果表明所有绿豆品种的生长习性、荚色、粒色无多样性,生长习性均为半蔓生,荚色均为褐色,粒色均为绿色。单株产量的多样性指数最高为1.520,荚形的多样性指数最低为0.736。应适当选育直立生长习性的绿豆品种,以满足机械化收获的需要。仅有2个绿豆品种的百粒重超过6.8g,因此还应加大对大粒型绿豆品种的选育。吉林省绿豆品种亲缘关系较近,从目前吉林省育成绿豆品种的亲本来看,以大鹦哥绿系列为主,群体遗传基础狭窄,应拓展亲本来源,改善群体结构。
     2、依据吸水后24h的发芽率对25个绿豆种质材料进行抗旱性分级,继而在萌发期、营养生长期和生殖生长期进行盆栽控水试验,根据抗旱等级验证绿豆植株的抗旱性。结果表明,绿豆品种间抗旱性存在显著差异。种子吸水量与抗旱性无关,幼苗侧根数、幼苗主根长度与抗旱性达到极显著正相关,根干重与抗旱性达到显著正相关。对萌发后幼苗供水24h后,随即停水24h,反复干旱处理,抗旱品种存活率显著高于普通品种。在营养生长期对盆栽植株进行暂时萎蔫(土壤含水量为9%-11%)的水分胁迫处理,发现停水后普通品种叶片首先发生萎蔫,且株高、茎直径及叶面积下降的程度均高于抗旱品种。水分胁迫下,抗旱品种株高、茎直径和叶片面积均显著高于普通品种,其中茎直径和叶片面积达到极显著差异水平。在结荚期暂时萎蔫的水分胁迫下,抗旱品种根的生物量和分枝的生物量显著高于普通品种。鼓粒期普通品种发生永久萎蔫、植株死亡,而抗旱品种仍能保持生长能力。因此,绿豆种子24h发芽率可作为绿豆品种抗旱性的鉴定和筛选方法,鼓粒期绿豆对水分胁迫最敏感。
     3、以吉林省1986年至2011年育成的23个绿豆品种为试验材料,研究了绿豆产量及与产量相关农艺性状的变化。结果表明,吉林省绿豆产量从1986年到2011年间的品种改良过程中提高了22.99%,单株荚数、单荚粒数和单株产量都显著增加,说明随着育成年代的推进,新育成绿豆品种的库容在扩大。单株荚数、单荚粒数、单株产量、荚长与产量呈显著正相关,其中单株荚数与产量呈极显著正相关,表明单株荚数是决定产量的主要因素,因此吉林省绿豆品种改良过程中库容的扩大是产量增加的主要原因。叶片长与叶片宽随育成年代的推移变化不显著,但叶片宽与产量呈显著正相关。株高、主茎节数和分枝数随育成年代的推移而显著降低,其中主茎节数呈极显著相关,且株高和主茎节数与产量呈显著负相关,分枝数与产量呈不显著正相关。上述结果表明,吉林省绿豆品种在遗传改良过程中,叶片长和叶片宽没有发生明显的变化,但叶片宽度的增加有利于产量的提高,即吉林省绿豆品种的“源”没有明显变化。因此,吉林省绿豆高产育种目标应放在增“源”扩“库”上,在适当增加百粒重的基础上,选择荚多、荚长的新品种,同时注重株型的改善。
     4、为明确种植密度对绿豆产量等性状的影响,于2007年和2008年分别设置5个密度水平(10.5万株/公顷、11.8万株/公顷、13.8万株/公顷、16.7万株/公顷、20万株/公顷),在吉林省农业科学院作物育种研究所试验田进行田间试验。结果表明,株高、主茎节数、产量性状在两年内不同密度条件下均无显著性差异,百粒重在2007年不同密度条件下达到了极显著差异,但在2008年差异不显著。分枝数、单株荚数和单株产量在两年内都达到了显著或极显著差异。2007年在16.7万株/公顷密度条件下产量达到最大值,2008年在13.8万株/公顷密度条件下产量达到最大值,说明吉绿3号在中、高密度条件下产量较高。通径分析表明,在不同密度条件下,对产量影响较大的直接作用因子不同,应根据绿豆品种自身性状特点选取合适种植密度范围,达到绿豆高产目标。
     5、探讨了高产、中产及低产绿豆品种在开花盛期、结荚盛期、鼓粒盛期部分光合性能及各器官干物质的变化及与产量的关系。结果表明,(1)高、中产绿豆品种光合速率在结荚盛期有所下降,在鼓粒盛期有所上升,而低产品种在鼓粒盛期有所下降,降幅为6.93%。在盛花期、结荚盛期高、中、低产品种光合速率的差异不明显,而鼓粒盛期高、中产品种的光合速率分别极显著、显著高于低产品种。因此,绿豆品种间光合速率的差异主要存在于生育后期,说明高产绿豆品种在生育后期仍能保持较高的光合速率。盛花期、鼓粒盛期光合速率与产量分别呈极显著、显著正相关,而在结荚盛期光合速率与产量呈不显著正相关。在生产上应选育叶片衰老较慢、光合速率较高的绿豆品种,并采用外源物质,结合水肥管理等有效调控措施延缓叶片衰老和维持高光合性能,以提高籽粒产量。(2)不同产量绿豆品种总干物质的积累在3个生育时期均呈现先升高后略有下降的变化趋势。结荚盛期,根干重大幅度降低(降幅范围为50%-54%),茎干重大幅度增加(增幅范围为75%-107%),叶片干重有所增加(增幅范围为18%-30%)。鼓粒盛期,茎干重与叶片干重有较大幅度的降低(降幅分别为31%-41%,4%-28%),荚干重有较大幅度的增加(增幅为36%-47%)。上述结果表明,绿豆植株干物质在各器官的分配比例是随生长中心的转变而变化的。鼓粒盛期,高产品种荚干重增加46.92%,中、低产品种分别增加36.48%、38.35%,说明高产品种在籽粒生产部位光合产物的积累速率远大于中、低产品种;(3)相关分析与通径分析表明,在盛花期,茎干重对绿豆产量有着密切的直接和间接正向效应(直接通径系数P=0.61781,相关系数r=0.734),叶柄干重对产量的直接和间接负效应较大(直接通径系数P=-0.35515)。在结荚盛期,叶片干重对绿豆产量有着直接和间接正向效应(直接通径系数P=0.41421,相关系数r=0.371),茎干重对产量的直接和间接负效应较大(直接通径系数P=-0.15817)。在鼓粒盛期,荚干重对绿豆产量有着密切的直接和间接正向效应(直接通径系数P=0.31494,相关系数r=0.518),叶柄干重对产量的直接负效应较大(直接通径系数P=-0.12406)。因此,绿豆籽粒产量的形成过程实际上是植株干物质积累与分配的过程,在一定时间内分配到生殖器官籽粒中的干物质越多,产量就越高。绿豆开花期、结荚期、鼓粒期是籽粒产量形成的关键时期,但由于茎、叶、叶柄、花荚之间存在着激烈的竞争,因此协调好源库关系,促进干物质向库器官分配是提高产量的关键。
Mungbean(Vigna radiate) is one of the main cultigen among subgenus Ceratotropis genus Vigna, and play a particular role in people's lives. Mungbean cultivated long time ago is tranditional export agricultural product in China, and it is a popular crop with both nutrient including rich portein, vitamin, and mineral elements and medicinal value.
     Mungbean is planted widely in Jilin province, especially in Baicheng city(Taonan county-level city, Tongyu city, and Zhenlai county) and Songyuan city(Qianguo county, Qianan county, and Changling county). Nowadays, mungbean breeding units in Jilin province have bred a few varieties with good traits which played an import role in production. In order to confirm the new breeding goal, we researched the change of main agoromic characters of mungbean varieties released in recent years, the change of organs dry matter and partial photosynthetic performance of high, intermediate, and low yield varieties at R2stage, R4stage, and R6stage, and the diversity based on agoromic characters of mungbean varieties released in Jilin province, we also researched the influence of plant density with Jilu3. Moreover, we researched the early identification method of drought-tolerance of mungbean cultivars. The main results are as follows:
     1、16morphological traits of21mungbean varieties released in Jilin province were analysed, the results showed that the growth habit, pod color, and seed color were monomorphic. The Shannon-Weaver's information index of yield per plant and pod shape was the highest and lowest, respectively. All mungbean varieties were clustered into6groups. The relationship among all mungbean varieties was closer, so the diversity of parents should be increased in order to improve the population structure of mungbean varieties.
     2、A method for identifying drought-tolerance of mungbean varieties was discussed in order to provide a theoretical basis for drought-tolerance breeding of mungbean. A simple method of germination rate at24h-after-water-absorption was used and verified to investigate mungbean drought-tolerance. The drought-tolerance of25mungbean germplasms were graded according to seed germination rate at the germination stage, and then in pot water-control trails at vegetative growth stage and reproductive growth stage. It indicated that there were significant differences in drought-tolerance among mungbean materials. Water absorption made no difference to drought-tolerance. However, seedling branch root number and main root length had significant positive correlation with drought-tolerance, and root dry weight had positive correlation with drought-tolerance. Under repeated stress of supplying water for24h after germination and then no water for24h, the survival rate of drought-tolerant cultivars was higher than those of ordinary ones. At the vegetative growth stage, temporary wilting(under soil moisture of9%to11%)treatment led to leaf wilting of ordinary cultivars, with reduced plant height, stem diameter and leaf area. Among the traits, the changes of stem diameter and leaf area were highly significant. During the reproductive growth stage, temporary wilting led to significantly lower root biomass and branch biomass in ordinary cultivars. When moved to the seed filling stage, ordinary cultivars wilted without recovery. On the contrary, the drought-tolerant cultivars still maintained ability to grow. These results indicated that24h-germination-rate of mungbean seeds could be used as a method in drought resistance identification and screening. They also showed that mungbean plants at seed filling stage were most sensitive to water stress.
     3、We researched the change of yield and other main agronomic characters with23mungbean varieties released from1986to2011in Jilin province. The yield increased22.99%from1986to2011during the mungbean variety improvement in Jilin province. Number of pods per plant, number of seeds per pod, and yield per plant increased significantly, which indicated the storage capacity of new varieties had enlarged as the released year went. There was a positive correlation between yield and number of pods per plant, number of seeds per pod, yield per plant, and pod length. Especially, there was an extremely significant positive correlation between yield and number of pods per plant, which indicated number of pods per plant was the main factor influencing mungbean yield. Both leaf blade length and leaf blade width did not change significantly, but there was a significant positive correlation between leaf blade width and yield. Plant height, node number of main stem, and number of branches decreased significantly, ang there was a significant negative correlation between yield and plant height and node number of main stem. The results showed that the source of mungbean variety did not change significantly during the variety improvement. So the key of high yield breeding goal was to increase source and enlarge storage capacity, we should select the new variety with more pods, long pod and large seed. Meanwhile, we should pay attention to improve the plant type.
     4、In order to confirm the influence of plant density to yield and other characters, the field experiment was carried out under five levels of plant density(10.5×104 plants/hm2,11.8×104plants/hm2,13.8×104plants/hm2,16.7×104plants/hm2,20×104plants/hm2) in both2007and2008. Plant height, node number of main stem, and yield were not significantly different under different plant densities in both year,100-seed weight had extremely significant diffenrence and significant diffenrence in2007and2008, expectively. Number of branches, number of pods per plant, and yield had extremely significant diffenrence or significant diffenrence in both years. The yield was the highest at16.7×104plants/hm2in2007, and13.8×104plants/hm2in2008, which showed Jilu3could get high yield at middle-high plant density. Path analysis showed that the direct factors which had great influence to yield were different at different plant density, so we should choose a right plant density based on variety's characters to improve mungbean yield.
     5、We researched the change of partial photosynthetic performance and organs dry matter, also discussed the relationship between yiled and partial photosynthetic performance and organs dry matter of high, intermediate, and low yield varieties at R2stage, R4stage, and R6stage.(1)The photosynthetic rate of high, intermediate yield varieties decreased at R4stage, increased at R6stage. The photosynthetic rate of low yield varieties decreased by6.93%at R6stage. There was no significant difference in photosynthetic rate of three kinds of yield varieties at R2, R4stage, but photosynthetic rate of high yield varieties were extremely significant higher than low yield varieties, and photosynthetic rate of intermediate yield varieties were significant higher than low yield varieties at R6stage. There were extremely significant positive correlation and significant positive correlation between yield and photosynthetic rate at R2, R6expectively.However, there was no significant positive correlation at R4stage.(2)The trend of total dry matter change of different yield varieties was all higher first, lower second at three growth stage. At R4stage, root dry matter decreased greatly by50-54%, stem dry matter increased greatly by75%-107%, leaf dry matter increased by18%-30%. At R6stage, both stem dry matter and leaf dry matter decreased greatly by31%-41%,4%-28%, expectively. And pod dry matter increased greatly by36%-47%. The pod dry matter of high yield varieties increased by46.92%, and the pod dry matter of intermediate, low yield varieties increased by36.48%,38.35%, expectively.(3)At R2stage, stem dry matter had closely positive direct and indirect influence on mungbean yield(P=0.61781, r=0.734), and petiole dry matter had negtive direct and indirec influence on yield(P=-0.35515). At R4stage, leaf dry matter had closely positive direct and indirect influence on mungbean yield(P=0.41421, r=0.371), and stem dry matter had negtive direct and indirec influence on yield(P=-0.15817). At R6stage, pod dry matter had closely positive direct and indirect influence on mungbean yield(P=0.31494, r=0.518), and petiole dry matter had negtive direct influence on yield(P=-0.12406). Therefore, it was the accumulation and distribution of the dry matter to form grain yield of mungbean. The more the dry matter distributed to the grain, the higher the yield was.
引文
[1]郑卓杰.中国食用豆类品种资源目录(第一集).北京:中国农业科技出版社,1983
    [2]程须珍,曹尔辰.绿豆.北京:中国农业出版社,1996,5
    [3]郑殿升,方嘉禾.高品质小杂粮作物品种栽培技术.北京:中国农业出版社,2001,7
    [4]尹凤祥,李建波.大鹦哥绿系列绿豆品种的生物学特性与栽培技术.中国绿豆产业发展与科技应用.北京:中国农业科学技术出版社,2002,139-146
    [5]郑卓杰,王述民,宗绪晓等.中国食用豆类学.北京:中国农业出版社,1997
    [6]王金水,张长付.绿豆分离蛋白功能特性研究.中国粮油学报,1998,13(2):36-39
    [7]John MP, The Mungbean, Westview Press, Boulden, Sanfrancisco Oxford,1991
    [8]Mauricio PS, Isabel RG, Maria FG, et al. Do legume storage proteins play a role in defending seeds against bruchids? Plant Physiology,2000,124:515-522
    [9]Vavilov, N. I. Theoretical Basis of Plant Breeding,1935
    [10]林汝法,王景月,韩国彪.绿豆.科学技术出版社,1988,5
    [11]Tomooka N, Lairungreang C, Nakeeraks P, et al. Center of genetic diversity and dissemination pathways in mung bean deduced from seed protein electrophoresis. Theoretical and Applied Genetics.1991,83:289-293
    [12]程须珍,王素华.中国绿豆品种资源研究.作物品种资源,1998,4:9-11
    [13]林汝法,柴岩,廖琴等.中国小杂粮.北京:中国农业出版社,2002,192-209
    [14]AVRDC. AVRDC report 2001. AVRDC-The World Vegetable Center
    [15]Lakhanpaul S, Chadha S, Bhat K V. Random amplified polymorphic DNA (RAPD) analysis in Indian mungbean (Vigna radiata (L.) Wilczek) cultivars. Genetica,2000,109(3):227-234
    [16]Bisht I S, Mahajan R K, Patel D P. The use of characterisation data to establish the Indian mungbean core collection and assessment of genetic diversity. Genetic Resources and Crop Evolution,1998,45:127-133.
    [17]Shigehisa K,1982. Genetics and epidemiological modeling of breakdown of plant disease resistance. Annual Review of Phytopathology,20:507-528
    [18]Bonman J M, Khush G S, Nelson R J,1992. Breeding rice for resistance to pests. Anunual Review of Phytopothology,30:507-528
    [19]卢良恕.21世纪的农业和农业科学技术.科技导报,1996,12:1-8
    [20]戴小枫,郭予元,倪汉祥等.我国农作物病虫草鼠害成灾特点与对策分析.科技导报,1997,1:42-45
    [21]卢宝荣,朱有勇,王云月.农作物遗传多样性农家保护的现状及前景.生物多样性,2002,10(4):409-415
    [22]卢新雄,曹永生.作物种质资源保存现状与展望.中国农业科技导报,2001,3(3):43-47
    [23]SchaalBA, Leverich WJ, Rogstad SH. Comparison of methods for assessing genetic variation in plaant conservation biology. In:Falk, D.A. and K.E.Holsinger(eds.) Genetics and Conservation of Rare Plants. New York:Oxford University Press,1991,123-134
    [24]Dong YS, Zhao LM, Liu B, etal. The genetic diversity of cultivated soybean grown in China. Theor. Appl. Genet.,2002,108:931-936
    [25]刘长友,程须珍,王素华等.中国绿豆种质资源遗传多样性研究.植物遗传资源学报,2006,7(4):459-463
    [26]刘长友,王素华,王丽侠等.中国绿豆种质资源初选核心种质构建.作物学报,2008,34(4):700-705
    [27]朱军,遗传学.北京:中国农业出版社,1980,10-12
    [28]李竞雄,宋同明.植物细胞遗传学.北京:科学出版社,1993,32-72
    [29]沈浩,刘登义.遗传多样性概述.生物学杂志,2001,18(3):5-7
    [30]张维强,唐秀芝.同工酶与植物遗传育种.北京:北京农业大学出版社,1993,71-126
    [31]王述民,曹永生,胡加蓬.中国小豆种质资源核心种质的初步建立.华北农学报,2002,17(1):35-40
    [32]Quesada T, Lobo J, Espinoza AM. Isozyme diversity and analysis of the mating system of the wild rice Oryza latifolia Desv. In Costa Rica. Genet. Res. Crop Evol.,2002,49(6):633-643
    [33]王丽侠,程须珍,王素华等.小豆SSR引物在绿豆基因组中的通用性分析.作物学报,2009,35(5):816-82
    [34]刘长友,程须珍,王素华等.用于绿豆种质资源遗传多样性分析的SSR及STS引物的筛选.植物遗传资源学,2007,8(3):298-302
    [35]李舒凡.绿豆出苗阶段抗旱性鉴定.植物学通报,1986,4(1):103-105
    [36]王述民.绿豆抗旱鉴定方法和指标.作物品种资源,1989,2:27-28
    [37]任学良,李国柱,程文林等.绿豆突变体的抗旱性研究.核农学报,2004,18(2):100-103
    [38]王敏,杨万明,侯燕平等.不同类型大豆花荚期抗旱性形态指标及综合评价.核农学报,2010,24(1):154-159
    [39]申慧芳,李国柱.不同抗旱性绿豆突变体的抗旱生理特性.核农学报,2006,20(5):371-374
    [40]申慧芳,李国柱.不同抗旱性绿豆突变体水分胁迫下的生理响应.华北农学报,2007,22(6):98-102
    [41]张泽燕,张耀文.干旱胁迫下21份山西地方绿豆品种芽期抗旱性鉴定.植物遗传资源学报,2011,12(6):1010-1013
    [42]曹雄,张小虎,任小俊.灰色理论在绿豆抗旱育种中的应用.国外农学-杂粮作物,1999,19(3):19-21
    [43]Buttery B R, Buzzell R I, Findlay W I. Relationship among photosynthetic rate, bean yield and other characters in field-grown cultivars of soybean. Can J Plant Sci,1981,61:191-198
    [44]Morrison M J, Voldrng H D, Cober E R. Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron J,1999,91:685-689
    [45]郑洪兵,徐克章,赵洪祥等.吉林省不同年代大豆品种某些株型性状的演变.中国油料作物学报,2006,28(3):276-281
    [46]姜保功,孔繁玲,张群远等.建国以来我国黄淮棉区棉花品种的遗传改良.遗传学报,2000,27(9):810-816
    [47]邸玉婷,赵国臣,徐克章等.吉林省47年水稻品种遗传改良过程中植株各器官生物量的变化.中国水稻科学,2010,24(3):251-256
    [48]赵国臣,姜楠,徐克章等.吉林省1958-2005年间育成推广水稻品种部分叶片特征的变化.作物学报2011,37(6):1101-1108
    [49]吕丽华,陶洪斌,夏来坤等.不同种植密度下的夏玉米冠层结构及光合特性.作物学报,2008,34(3):447-455
    [50]马兴林,关义新,逢焕成等.种植密度对3个玉米杂交种产量及品质的影响.玉米科学,2005,13:84-86
    [51]刘霞,李宗新,王庆成等.种植密度对不同粒型玉米品种子粒灌浆进程、产量及品质的影响.玉米科学,2007,15(6):75-78
    [52]马冬云,郭天财,查菲娜等.种植密度对两种穗型冬小麦旗叶氮代谢酶活性及籽粒蛋白质含量的影响.作物学报,2007,33(3):514-517
    [53]杨国虎,李新,王承莲.种植密度影响玉米产量及部分产量相关性状的研究.西北农业学报,2006,15(5):57-60,64
    [54]张伟,张惠君,王海英等.株行距和种植密度对高油大豆农艺性状及产量的影响.大豆科学,2006,3:283-286
    [55]薛珠政,卢和顶,林建新等.种植密度对玉米单株和群体效应的影响.玉米科学,1999,7(2):52-54
    [56]阮长春,柴晶,王远征等.不同供水量对绿豆苗期生物产量的影响.灌溉排水学报,2008,27(5):113-115
    [57]高小丽,孙健敏,高金锋等.不同绿豆品种花后干物质积累与转运特性.作物学报,2009,35(9):1715-1721
    [58]楚奎锡.高产大豆叶面积消长规律和光合势、净同化率与产量相关模型的研究.大豆科学,1988,7(3):215-222
    [59]张建福,朱永生,蔡秋华等.再生稻净光合速率与产量及其构成因素的相关性分析. 中国水稻科学,2011,25(1):103-106
    [60]韩英鹏,滕卫丽,杜玉萍等.不同发育时期大豆籽粒干物质积累的QTL动态分析.中国农业科学,2010,43(7):1328-1338
    [61]钟旭华,彭少兵,John E S等.水稻群体成穗率与干物质积累动态关系的模拟研究.中国水稻科学,2001,15(2):107-112
    [62]宋慧,冯佰利,高小丽等.不同品种(系)小豆花后干物质积累与运转特性.西北农林科技大学学报,2011,39(9):1-7
    [63]李艳大,汤亮,陈青春等.水稻地上部干物质积累动态的定量模拟.应用生态学报,2010,21(6):1504-1510
    [64]程须珍,王素华.中国绿豆、小豆产业现状及发展对策.中国绿豆产业发展与科技应用论文集,2002,3-8
    [65]程须珍,王述民.中国食用豆类品种志.北京:中国农业科学技术出版社,2009:6
    [66]程须珍,王素华,王丽侠.绿豆种质资源描述规范和数据标准.北京:中国农业出版社,2006
    [67]徐宁,程须珍,王素华等.以地理来源分组和利用表型数据构建中国小豆核心种质.作物学报,2008,34(8):1366-1373
    [68]Rohlf F. NTSYS-pc numerical taxonomy system exeter publishing. NY:Setauket,2002.
    [69]Yeh F Y, Boyle R, Ye T, Mao Z. POPGENE, the user-friendly shareware for population genetic analysis, version 1.31. Molecular Biology and Biotechnology Centre, Alberta:University of Alberta,1997
    [70]Maughan P J, Saghai M A, Buss G R. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome,1999,38:715-723.
    [71]Hudak C M, Patterson R P. Vegetative growth analysis of a drought-resistant soybean plant introduction. Crop Science,1995,35:464-471
    [72]胡标林,余守武,万勇等.东乡普通野生稻全生育期抗旱性鉴定.作物学报,2007,33(3):425-432
    [73]张明生,谈锋,张启堂.快速鉴定甘薯品种抗旱性的生理指标及方法的筛选.中国农业科学,2001,34(3):260-265
    [74]揭雨成,黄丕生,李宗道.苎麻基因型抗旱性差异及其早期鉴定研究.作物学报,2000,26(6):942-946
    [75]张璞,田建华.抗旱性绿豆品种的选育.干旱地区农业研究,1999,17(4):41-44
    [76]孙彩霞,沈秀瑛.作物抗旱性鉴定指标及数量分析方法的研究进展.中国农学通报,2002,18(1):49-51
    [77]霍仕平,晏庆九,宋光英等.玉米抗旱鉴定的形态和生理生化指标研究进展.王旱区农业研究,1995,13(3):67-73
    [78]黎裕.作物抗旱鉴定方法和指标.干旱地区农业研究,1993,11(1):91-99
    [79]胡荣海.农作物抗旱鉴定方法和指标.作物品种资源,1986(4):36-39
    [80]李荫梅.苗期反复干旱法鉴定谷子抗旱性的可靠性与实用性.河北农业科学,1992(4):9-11
    [81]刘莹,王锁贵.大豆苗期耐旱种质鉴定和相关根系性状QTL定位.扬州大学学报,2006,27(2):16-21
    [82]梁成第.大豆抗旱性的鉴定方法.中国油料作物学报,1990,1:34-37
    [83]Mayaki W C, Teare I D, Stone L R. Top and root growth of irrigated and non-irrigated soybeans. Crop Science,1976.16:92-94
    [84]Sivakumar M V K, Taylor H M, Shaw R H. Top and root relations of field grown soybeans. Agronomy Journal,1977,69:470-473
    [85]孙振雷,刘海学,刘鹏等.不同绿豆品种苗期抗旱性的比较研究.内蒙古民族大学学报,2002,17(1),33-38
    [86]江龙.作物抗旱性的研究方法.贵州农业科学,1999,27(5):70-72
    [87]唐志华,马继凤.大豆种子活力研究进展.作物研究,2007,21(5):625-628
    [88]唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002
    [89]Brown L R, Halweil B. China's water shortage could shake world food security. World Watch,1998,7:3-4
    [90]罗利军,张启发.栽培稻抗旱性研究的现状与策略,中国水稻科学,2001,15(3):209-214.
    [91]腾胜,钱前,曾大力.水稻苗期耐旱性基因位点及其互作的分析.遗传学报,2002,29(3):235-240
    [92]Bruce W B, Edmeades G O, Barker T C. Molecular and physiological approaches to maize improvement for drought tolerance. JExp Bot,2002,53:13-25
    [93]Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mapping population:Associations among traits and genetic markers. Theor Appl Genet,2004,109: 1237-1246
    [94]王连铮,王金陵.大豆遗传育种学.北京:科学出版社.1992:36
    [95]Bouslama M, Schapaugh W T Jr. Stress tolerance in soybean,I. Evaluation of three screening techniques for heat and drought tolerance. Crop Science,1984,24(5):933-937
    [96]Stoffela P J. Root characteristics of black beans, Ⅱ:Relationship of root size to loding and seed ofield, Crop Science,1979,19(6):862-863
    [97]袁野,邴鑫,徐克章等.大豆品种抗旱性早期鉴定方法.中国油料作物学报,2010,32(4):518-524
    [98]胡荣海,昌小平.反复干旱法的生理基础及其应用.华北农学报,1996,11(3):55-56
    [99]Price A H, Tomos A D. Genetic dissection of root growth in rice(Oryza sativa L.) Ⅱ. Mapping quantitative trait loci using molecular markers. Theoretical and Applied Genetics, 1997,95:143-152
    [100]Ekanayake I J, O'Toole J C, Garrity D P. Inheritance of root characters and their relations to drought resistance in rice. Crop Science,1985,25:927-933
    [101]Fukai S, Cooper M. Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Research,1995,40:67-86
    [102]Caradus J R. Genetic control of phosphorus uptake and phosphorus status in plants. In: Genetic Manipulation of Crop Plants to Enhance Integrated Nutrient Management in Cropping System. Patancheru, India:ICRISAT Asia Centre,1995:55-74
    [103]赵秀琴,徐建龙,朱苓华等.利用高代回交导入系定位水、旱条件下影响水稻根系及产量的QTL.中国农业科学,2008,41(7):1887-1893
    [104]王敏,张从宇,马同富等.大豆品种苗期抗旱性研究.中国油料作物学报,2004,26(3):29-32
    [105]Peng S B, Khush G S, Virk P, et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Research,2008,108:32-38
    [106]Katsura K, Maeda S, Horie T, et al. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Res,2007,103:170-177
    [107]李研研,景希强,丰光等.我国不同时期玉米主要农艺性状与产量变化分析.玉米科学,18(3):37-42
    [108]谢振江,李明顺,李新海等.华北地区不同年代玉米杂交种农艺性状的改良进展.玉米科学,15(2):102-106
    [109]赵团结,盖钧镒,李海旺等.超高产大豆育种研究的进展与讨论.中国农业科学,2006,39(1):29-37
    [110]Ustun A, Fred L A, Burton C E. Genetic progress in soybean of the US Midsouth. Crop Sci, 2001,41:993-998
    [111]Karmakar P G, Bhatnagar P S. Genetic improvement of soybean varieties released in India from 1969 to 1993. Euphytica,1996,90:95-103
    [112]Donmez E, Sears R G, Shroyer J P, et al. Genetic gain in yield attributes of winter wheat in the g reat plains. Crop Sci,2001,41:1412-1419
    [113]Brancourt,Hulmel M, Doussinault G, et al. Genetic impr ovement of agr onomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci,2003,43:37-45
    [114]Voldeng H D, Morr ison M J, Cober E R. Physiologicalchanges from 58 y ears of g enetic improvement of short-season soybean cultivars in Canada. Agr on J,1999,91:685-689
    [115]Voldeng H D, Cober E R, H ume D J, et al. Fifty-eight years of genetic impr ovement of short-season soybean cultivars in Canada. Crop Sci,1997,37:428-431
    [116]Morrison M J, Voldeng H D, Cober E R. Agronomicchang es fr om 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron J,2000,92:780-784
    [117]武志海,徐克章,赵颖君等.吉林省47年来粳稻品种遗传改良过程中某些农艺性状的变化.中国水稻科学,2007,21(5):507-512
    [118]SAS Institute Inc. SAS/STAT Software:Changes and Enhancements through Release 6.12. Cary, North Carolina:SAS Institute Inc,1997
    [119]Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research,2002,75:161-169
    [120]Peng S B, Khush G S, Virk P, et al. Progress in Ideotype breeding to increase rice yield potential. Field Crops Research,2008,108:32-38
    [121]Us tun A, A llen F L, Engl ish B C. Genetic progress in soybean of U. S. M id south. Crop Scien ce,2001,41:993-998
    [122]刘长友,范保杰,曹志敏等.利用混合线性模型分析绿豆主要农艺性状的遗传及相关性.2012,38(4):624-631
    [123]杨春玲,王阔,关立等.绿豆主要农艺性状间的相关及通径分析.杂粮作物,2005,25(5):314-315
    [124]申慧芳,李国柱等.绿豆产量构成因素的相关与通径分析.山西农业大学学报,2005,25(2):164-167
    [125]刘德金,周以飞,刘灿洪等.绿豆地方品种数量性状的遗传力、遗传相关和通径分析遗传,1984,6(6):13-14
    [126]陈璋,邦克平.绿豆品种的遗传距离估测与聚类分析.遗传,1990,12(5):4-6
    [127]张耀文,林汝法.绿豆主要数量性状的遗传与相关.国外农学—杂粮作物,1996,1:9-11
    [128]韩粉霞,李桂英.绿豆主要农艺性状的相关分析.华北农学报,1998,4:67-70
    [129]刘峰,李建波.绿豆主要农艺性状的遗传参数分析.作物杂志,2010,2:81-82
    [130]Parameswarappa S G. Genetic variability, character association and path coefficient analysis in greengram. Karnataka J Agric Sci,2005,18:1090-1092
    [131]Makeen K, Abrahim G, Jan A, et al. Genetic variability and studies on yield and its components in mungbean [Vigna radiate (L.) Wilczek]. J Agron,2007,6:216-218
    [132]Rohman M M, Hussian A I, Arifin M S, et al. Genetic variability, correlation and path analysis in mungbean. Asian J Plant Sci,2003,2:1209-1211
    [133]Ajmal S U, Zubair M, Anwar M. Genetic implication of yield and its components in mungbean Vigna radiate (L.) Wilczek. Pakistan J Bot,2007,39:1229-1236
    [134]Khattak G S S, Haq M A, Ashraf M, et al. Inheritance of some important agronomic traits in mungbean [Vigna radiata (L.) Wilczek]. Breed Sci,2001,51(3):157-161
    [135]陈温福,徐正进,张龙步.北方粳型超级稻育种的理论与方法.沈阳农业大学学报,2005,36(2):3-8
    [136]马文波,马均,明东风等.不同穗重型水稻品种剑叶光合特性的研究.中国农业科学,2006,39(4):679-685
    [137]程式华,曹立勇,陈深广等.后期功能型超级杂交稻的概念及生物学意义.中国水稻科学,2005,19(3):280-284
    [138]何贤芳,赵莉,朱昭进等.小麦株型性状与产量性状及生物学产量关系的初步研究.园艺与种苗,2011,28(4):6-10
    [139]孙成明,伏广成,董桂春等.水稻抽穗期叶型特性及其与产量因子关系的研究,农艺科学,2005,21(10):132-136
    [140]周畅,吴钿.水稻株型与产量的相关性及灰色关联分析.江西农业学报,2004,16(3):9-13
    [141]杨守仁,张龙步,陈温福等.水稻超高产育种的理论和方法.中国水稻科学,1996,10(2):115-120
    [142]陈温福,徐正进,张龙步.不同株型粳稻品种的冠层特征和物质生产关系的研究.中国水稻科学,1991,5(2):67-71
    [143]张三元,李彻,石玉海等.吉林省水稻超高产育种研究:I.不同类型水稻品种产量构成与超高产育种目标.吉林农业科学,1999,24(1):4-7
    [144]Ngouajio M, Wang G Y, Hausbeck M K. Changes in pickling cucumber yield and economic value in response to planting density. Crop Science,2006,46:1570-1575
    [145]孙富年,黄元射,李明等.不同蔬菜型甘薯在不同种植密度下茎尖产量和品质.江苏农业学报,2008,24(3),312-315
    [146]Wade L J, Norris C P, Walsh P A. Effects of suboptimal plant density and non-uniformity in plant spacing on grain yield of raingrown sunflower. Australian Journal of Experimental Agriculture,1988,28:617-622
    [147]Lage K E, Smith C W, Cothren J T. Planting date and planting density effects on condensed tannin concentration of cotton. Crop Science,1993,33:320-324
    [148]Cusicanqui J A, Lauer J G. Plant density and hybrid influence on corn forage yield and quality. Agronomy Journal,1999,91:911-915
    [149]杨世民,廖尔华,袁继超等.玉米密度与产量及产量构成因素关系的研究.四川农业大学学报,2000,18(40):322-324
    [150]王程,刘兵,金剑等.密度对大豆农艺性状及产量构成因素空间分布特征的影响.大豆科学,2008,27(6):936-942
    [151]王竹,杨文钰.不同种植密度对套作大豆萃叶形态及产量的影响.安徽农业科学,2009,37(5):1957-1960
    [152]杨福,胡长城,王晓丽等.不同栽培密度对水稻“吉农大7号”生育及产量的影响.吉林农业大学学报,2000,22(4):18-22
    [153]潘圣刚,黄胜奇,江洋等.秧龄和栽插密度对水稻生物学特性的影响.华北农学报, 2011,26(3):134-138
    [154]Spinger T L, Dewald C L, Sims P L, et al. How does plant population density affect the forage yield of eastern gamagrass?. Crop Science,2003,43:2206-2211
    [155]Skalova H, Krahulec F. The response of three Festuca rubra clones to changes in light quality and plant density. Functional Ecology,1992,6:282-290
    [156]Burdon J J, Chilvers G A. Host density as a factor in plant diseased ecology. Annual Review of Phytopathology,1982,20:143-166
    [157]Tu J C. An integrated control of white mold (Sclerotinia sclerotiorum) of beans, with emphasis on recent advances in biological control. Botanical Bulletin of Academia Sinica,1997, 38:73-76
    [158]Copes W E, Scherm H. Plant spacing effects on microclimate and Rhizoctonia web blight development in containergrown Azalea. HortScience,2005,40:1408-1412
    [159]Legard D E, Xiao C L, Mertely J C, et al. Effects of plant spacing and cultivar on incidence of Botrytis fruit rot in annual strawberry. Plant Disease,2000,84:531-538
    [160]区靖祥,邱健德.多元数据的统计分析方法.北京:中国农业科学技术出版社,2002
    [161]丁希武,杜吉到,冯乃杰等.半干旱地区不同品种大豆密度对产量的影响.杂粮作物,2006,26(2):110-111
    [162]徐宁,王明海,王桂芳等.小豆(Vigna angularis)不同种植密度效应研究.作物杂志,2009.4:63-67
    [163]Hintz R W, Albrecht K A, Oplinger E S. Yield and quality of soybean forage as affected by cultivar and management practices. Agronomy Journal,1992,84:795-798
    [164]Jones M A, Wells R. Dry matter allocation and fruiting patterns of cotton grown at two divergent plant populations. Crop Science,1998,37:797-802
    [165]Bednarz C W, Bridges D C, Brown S M. Analysis of cotton yield stability across population densities. Agronomy Journal,2000,92:128-135
    [166]张贤泽.大豆群体光合速率测定方法及其与产量关系.大豆科学,1984,3(2):39-47
    [167]Heath O V, Gregory F G. The constancy of the mean net assimilation rate and its ecological importance. Ann Bot,1938,2:811-818
    [168]Watson D J. Comparative physiological studies on the growth of field crops. Ann Bot,1947, 11:375-407
    [169]李大勇,徐克章,张治安等.新老大豆品种叶片光合特性的比较.中国油料作物学报,2007,29(3):281-285
    [170]孔丽红,赵玉路,周福平.简述小麦干物质积累运转与高产的关系.山西农业科学,2007,35(8):6-8
    [171]吴文革,张洪程,钱银飞等.超级杂交中籼水稻物质生产特性分析.中国水稻科学,2007,21(3):287-293
    [172]Peng S, Laza R C, Visp eras R M, et al. Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci,2000,40:307-314
    [173]陈温福,徐正进.水稻超高产育种生理基础.沈阳:辽宁科学技术出版社,1995:23-93
    [174]肖凯,谷俊涛,张荣铣等.杂种小麦光合特性的初步研究.作物学报,1997,23(4):425-431
    [175]隋娜,李萌,田纪春等.超高产小麦品种(系)生育后期光合特性的研究.作物学报,2005,31(6):808-817
    [176]刘洪展,郑凤荣,赵世杰.不同衰老类型小麦品种在衰老过程中光合特性的变化.华北农学报,2006,21(3):13-15
    [177]王群,李潮海,栾丽敏等.不同质地土壤夏玉米生育后期光合特性比较研究.作物学报,2005,31(5):628-633
    [178]马国胜,薛吉全,路海东等.不同类型饲用玉米群体光合生理特性的研究.西北植物学报,2005,25(3):536-540
    [179]马文波,马均,明东风等.不同穗重型水稻品种剑叶光合特性的研究.作物学报,2003,29(2):236-240
    [180]李霞,焦德茂,刘友良.不同水稻品种各层叶片光合能力的比较.江苏农业学报,2004,20(4):213-219
    [181]欧志英,彭长连,林桂珠.田间条件下超高产水稻培矮64S/E32及其亲本旗叶的光合特性.作物学报,2005,31(2):209-214
    [182]徐冉,陈存来,邵历等.夏大豆叶片光合作用与光强的关系.作物学报,2005,31(8):1080-1085
    [183]苍晶,王学东,崔琳等.大豆豆荚与叶片的光合特性比较.中国农学通报,2005,21(2):85-87
    [184]刘万代,尹钧,朱高纪等.剪叶对不同穗型小麦品种干物质积累及籽粒产量的影响.中国农业科学,2007,39(7):1353-1360
    [185]张银锁,宇振荣,Driessen P M环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究.作物学报,2002,28(1):104-109
    [186]黄智鸿,王思远,包岩等.超高产玉米品种干物质积累与分配特点的研究.玉米科学,2007,15(3):95-98
    [187]李大恒,屠乃美.两系杂交稻干物质积累与运转特性研究.中国农学通报,2006,22(1):114-117
    [188]刘建丰,袁隆平,邓启云等.超高产杂交稻的光合特性研究.中国农业科学,2005,38(2): 258-264
    [189]汤亮,朱艳,孙小芳等.油菜光合作用与干物质积累的动态模拟模型.作物学报,2007,33(2):189-195
    [190]张立桢,曹卫星,张思平.棉花干物质分配和产量形成的动态模拟.中国农业科学,2004,37(11):1621-1627
    [191]赵明,李少昆,王树安等.我国常用玉米自交系光合特性的聚类分析.作物学报,1999,25(6):733-741
    [192]李潮海,刘奎.不同产量水平玉米杂交种生育后期光合效率比较分析.作物学报,2002,28(3):379-383
    [193]童淑媛,杜震宇,徐洪文等.不同株型玉米叶片净光合速率差异研究.东北农业大学学报,2011,42(4):42-47
    [194]张贤泽,马占峰,赵淑文等.大豆不同品种光合速率与产量关系的研究.作物学报,1986,12(1):43-48
    [195]Evans L T, Xiwson H M. Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat. Aust J Biol Sci,1972,23:345-254
    [196]董钻,宾郁全,孙连庆.大豆品种生产力的比较研究.沈阳农学院学报,1979,1:37-47
    [197]张显.小麦群体光合能力的N肥调控及其与产量形成关系的研究[D].南京农业大学博士学位论文,1990
    [198]董树亭.高产冬小麦群体光合能力与产量关系的研究.作物学报,1991,17(6):461-469
    [199]董树亭.高产麦田群体结构与光合作用的关系.山东农业大学学报,1992,23(1):27-30
    [200]胡昌浩,董树亭,岳寿松.高产夏玉米群体光合速率与产童关系的研究.作物学报,1993,19(1):63-69
    [201]许大全,沈允钢.光合作用与作物产量.作物高产光效生理研究进展.北京:科学出版社,1992
    [202]许大全.光合速率、光合效率与作物产量.生物学通报,1999,34(8):8-10
    [203]赵全志,黄丕生,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究.中国农业科学,2001,34(3):304-310
    [204]魏建军,刘建国,董志新等.源库调节对大豆光合速率及同化产物运转分配影响的研究.新疆农业科学,2004,41(2):65-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700