用户名: 密码: 验证码:
煤层气排采过程中产能与物性变化动态耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充分运用吸附势理论、流体压力变化、广义胡克定律、达西定律等知识,研究了煤体吸附量、孔隙半径、储层压力三者之间的耦合关系,建立了不同排采阶段压力与空隙半径、吸附半径、吸附量之间的变化模型。根据气、水两相流动阶段煤基质的正效应和煤裂隙系统的负效应、煤层气吸附-解吸特征结合压裂后渗透率预测模型,建立了两相流压力平稳传递阶段、两相流压力仅在某些方向传递过程中渗透率等的变化模型。基于达西定律,考虑煤基质的正效应和排采过程中的负效应,结合历史排采资料,根据历史数据,应用归一化思想和历史拟合法分别建立了潘庄、樊庄和吴堡区块低产水井、中产水井、高产水井产水量预测模型。根据达西定律结合煤层气井产气特点,分别建立了产水量、产气量预测模型。
Applying full use of adsorption potential theory, fluid pressure changes, generalized Hooke's law, Darcy's law and other knowledge to study the coupling relationship between the three including coal adsorption capacity, pore radius, reservoir pressure, establishing change models between different stages of discharge pressure and gap radius, the radius of adsorption, adsorption capacity. According to gas, water two-phase stage of coal matrix's positive effects and coal fracture system's negative effects, coal bed methane adsorption-desorption, with permeability prediction model after fracturing establishing a stable two-phase flow pressure passing phase and penetration change model when two-phase flow pressure only pass in some other direction. Based on Darcy's law, consider the positive effects of the coal matrix and the row of the negative effects of mining process, combined with the historical mining discharge data, based on historical data, applying normalization ideology and history to establish each Panzhuang,Fanzhuang and wubu's Water production prediction model under low-yielding wells,middle-yield water wells and high-yield water wells. According to Darcy's law combined with gas production characteristics of coalbed methane wells both water production and gas production forecast model were established.
引文
[1]Aziz, K. and Settari, A著,袁士义,王家禄译.油藏数值模拟.北京:石油工业出版社,2004
    [2]Ertekin, T. and King, G. R. Development of coal gas production simulators and mathematical models for well test strategies. Topical report under GRI contract number 5081-321-0457, July,1983
    [2]Boyer, C.M., Morrison, H.L., Pavone, A.M. and Schwerer, F. Methane modeling predicting the inflow of methane gas into coal mines.Final Report under DOE Contract Number DE-AC22-80PC30123, Feb,16,1982
    [3]McLennan, J.D., Schafer, P.S., Pratt, T.J. A guide to determining coalbed gas content. GasResearch Institute Report No. GR1-94/0396, Chicago, Illinois,1995
    [4]Airey, E.M. Gas emission from broken coal:an experimental and theoretical investigation. International Journal of Rock Mechanics and Mining sciences,1968,5:475-494
    [5]Price, H.S., McCulloch, R.C., Edwards, J.C. and Kissell, F.N. A computer model study of methane migration in coal beds. The Canadian Mining and Metallurgical Bulletin,1973,66(737):103-112
    [6]Pavone, A.M. and Schwerer, F.C. Development of coal gas production simulators and mathematical models for well test strategies. Final Report under GRI Contract Number 5081-321-0457, April,1984
    [7]King, G.R and Ertekin, T.M. Asurvey of mathematical models related to methane production from coal seams, Part I:Non-equilibrium sorption models. Proceedings of the 1989 Coalbed Methane Symposium, the University of Alabama/Tuscaloosa, April 17-20,1989:139-153
    [8]Paul, G.W., Sawyer, W.K., Dean, R.H. Validation of 3D coalbed simulators. Paper SPE 20733, presented at the 65th SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept.23-26,1990:203-210
    [9]Advanced Resources International, Inc. COMETPC 3-D user's guide. January,1994
    [10]S.A. Holditch & Associates, Inc. User's guide for SABRETM and COALGASTM petroleum reservoir simulators. Oct,1993
    [11]地矿部华北石油地质局,清华大学.煤层气数值棋拟软件系统研究.“八五”国家重点科技攻关项目研究成果报告(85-102-11-03-02),1994
    [12]骆祖江.煤层甲烷运移动力学模型研究[J].煤炭科学研究总院西安分院博士学位论文,1997
    [13]刘建军.煤储层流固辐合诊流的数学模型[J].焦作工业学院学报,1999,18(6):397~401
    [14]岳晓燕.煤层气数值模拟的地质模型与数学模型[J].天然气工业,1998,18(4):28~31
    [15]李斌.煤层气非平衡吸附的数学模型和数值模型[J].石油学报,1996,17(4):42~49
    [16]冯文光.煤层气藏三维数值模型[J].矿物岩石,1999,17(4):42~49
    [17]骆祖江.煤层甲烷气藏数值模拟[J].煤田地质与勘探,1997,2:28-30
    [18]郎兆新.零维煤层气模拟软件的研制[J].石油大学学报,1997,21(5):30~34
    [19]张群.煤层气储层数值模拟模型及应用的研究.[J]煤炭科学研究总院西安分院博士论文,2003
    [20]Seidle, J.P. and Huitt, L.G,1995:"Experimental Measurement of Coal Matrix Shrinkage Due to Gas Desorption and Implications for Cleat Permeability Increases," paper SPE 30010, Proceedings of the Implicational Meeting on Petroleum Engineering, Beijing, China,P.575
    [21]Moffat, D.H. and Weale, K.E.:"Sorption by Coal of Methane at High Pressure," FUEL,34,449(1955)
    [22]傅学海,秦勇,李贵中.储层渗透率研究的新进展[J].辽宁工程技术大学学报(自然科学版),2001,20(6):739~743
    [23]孙立东,赵永军,蔡东梅.煤储层渗透率模拟-以泌水盆地为例[J].断块油气田,2007,14(1):8-9
    [24]傅学海,秦勇,姜波等.山西泌水盆地中-南部煤储层渗透率物理模拟与数值模拟[J].地质科学,2003,38(2):221~229
    [25]储昭宏,马永生,林畅松.碳酸盐岩储层渗透率预测[J].地质科学情报,2003,25(4):27~32
    [26]焦翠华,徐朝晖.基于流动单元指数的渗透率预测方法[J].测井技术,2006,30(4):317~319
    [27]黄乔松,赵文杰,杨济泉等.核磁共振渗透率模型研究与应用[J].青岛大学学报(自然科学版),2004,17(4):37~40
    [28]冯敏,刘延元.试井估测受损地层渗透率的新方法[J].能源科学进展,2006,2(1):33~37
    [29]Levine J R. Model study of the influence of matri shrinkage on absolute Permeability of coal bed reservoir[J]. Geological Society Publication,1996(199):197-212
    [30]傅学海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].高校地质学报,2003,9(3):373~377
    [31]李树刚,钱鸣高,石平五.煤样全应力应变过程中的渗透系数-应变方程[J].煤田地质与勘探,2001,29(1):
    [32]姜德义,张广洋,胡耀华等.有效应力对煤层气渗透影响研究[J].重庆大学学报(自然科学版),1997,20(5):23~26
    [33]周元田.岩石渗透率与其应力的关系及应用[J].矿物岩石,1999,19(1):33~38
    [34]贺玉龙,杨立中.温度和有效应力对砂岩渗透率影响的试验研究[J].煤田地质与勘探,2004,32(2):36~38
    [35]徐志斌,王继尧,云武等.晋中南现代构造应力场的数值模拟研究[J].中国矿业大学学报,1998,27(1)
    [36]张泓,王绳祖,郑玉柱等.古构造应力场与低渗煤储层的相对高渗区预测[J].煤炭学报,2004,29(6)708~711
    [37]员争荣.构造应力场对煤储层渗透率的控制机理研究[J].煤田地质与勘探,2004,32(4):23-27
    [38]秦勇,张德民,傅学海等.山西泌水盆地中、南部现代构造应力场与煤储层物性关系之探讨[J].地质评论,1999,45(6):576~583
    [39]张建博,秦勇,王红岩等.高渗透率煤储层分布的构造预测[J].高校地质学报,2003,9(3):359-365
    [40]付玉,郭肖,贾英等.煤基质收缩对裂隙渗透率影响的新数学模型[J].天然气工业,2005,25(2):143-145
    [41]傅学海,李大华,秦勇等.煤基质收缩对渗透率影响的实验研究[J].中国矿业大学学报,2002,31(2)129-131
    [42]钱凯,赵庆波.煤层甲烷勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996:171-175
    [43]Shi J Q, Durncan S, Daltaban T S刘贻军,赵韩娣译.煤层甲烷裸眼洞穴完井的数值模拟[J].煤层气,1998,18-19(3-4):29~36
    [44]秦勇,叶建平,林大扬等.煤储层厚度与其渗透率及含水性关系初步探讨[J].煤田地质与勘探,2000,28(1):24~27
    [45]晋香兰,张泓.基于多元回归分析的煤储层高渗区预测-以泌水盆地为例[J].煤田地质与勘探,2006,34(2):22~25
    [46]董敏涛,张新民,郑玉柱等.煤层渗透率统计预测方法[J].煤田地质与勘探,2005,33(6):23~30
    [47]张有生,秦勇,陈家良.煤储层渗透率的非均质性模型[J].中国矿业大学学报,1998,27(3):43-46
    [48]金大伟,赵永军.煤储层渗透率复合因素数学模型研究[J].西安科技大学学报,2006,26(4):460~464
    [49]苏现波,陈江峰,孙俊民等.煤层气地质学与勘探开发[M].北京科学出版社,2001:20~21
    [50]Warrenh J E, Root P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal,1963:245-255
    [51]King C R, Ertekin T M. A Survey of Mathematical Models Related to Methane Production from Coal Seams [J],Part I:Empirical & Equilibrium Sorption Models. Proceedings of the 1989 Coalbed Methane Symposium, 1989:125~138.
    [52]韩月旺,苏现波.煤层气储层几何模型及其应用[J].焦作工学院学报(自然科学版),2004,23(4):251~254
    [53]傅雪海,秦勇,张万红等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报增刊(Ⅰ),2005(10):51~55
    [54]赵爱红,廖毅,唐修义.煤的孔隙结构定量分析研究[J].煤炭学报,1998,23(4):339~342
    [55]King C R, Ertekin T M Mo. A Survey of Mathematical Models Related to Methane Production from Coal Seams[J],Part Ⅱ:Non_Equilibrium Sorption dels. Proceedings of the 1989 Coalbed Methane Symposium, 1989:139-155.
    [56]张遂安,叶建平,唐书恒等.煤对甲烷气体吸附—解吸机理的可逆性实验研究[J].天然气工业,2005(1):44~48
    [57]Yang R T, Saunders J T. Adsorption of gases on coals and heated-treated coals at elevated temperature and pressure[J]. Fuel,1985,64:616-620
    [58]张力,何学秋,王恩元等.煤吸附特性的研究[J].太原理工大学学报,2001(4):449~451
    [59]桑树勋,朱炎铭,张井等.煤吸附气体的固气作用机理(Ⅱ)——煤吸附气体的物理过程与理论模型[J].天然气工业,2005(1):16~20
    [60]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].煤炭工业出版社,1998:10~11
    [61]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003:9-10
    [62]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000(5):14~17
    [63]梁冰,孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006:50-53
    [64]吴焕领,魏赛男,崔淑玲.吸附等温线的介绍及应用[J].染整技术,2006(10):12-14
    [65]吴世跃,赵文.自然降压开采和注气开采煤层气的效果评价[J].中国矿业,2004(10):76-78
    [66]吴世跃,郭勇义.注气开采煤层气增产机制的研究[Jl.煤炭学报,2001.26(2):199~203
    [67]林瑞泰.多孔介质传热传质理论[M].北京:科学出版社,1995.18~22
    [68]司胜利.影响煤层气解吸扩散运移的地质因素[J].云南地质,2004.23(2):212~216
    [69]倪小明,王延斌,接铭训等.不同构造部位地应力对压裂裂缝形态的控制[J].煤炭学报,2008(5):505~508
    [70]付玉,郭肖等.煤层气储层压裂水平井产能计算[J].西南石油学院学报,2003,25(3):44~46
    [71]地矿部华北石油地质局.煤层气译文集[M].郑州:河南科学技术出版社,1990
    [72]黄运飞,孙广忠,成彬芳.煤-瓦斯介质力学[M].北京:煤炭工业出版社,1993:80~81
    [73]葛家理.现代油藏渗流力学原理[M].北京:石油工业出版社,2003:81-93
    [74]Yang R T, Saunders J T. Adsorption of gases on coals and heated-treated coals at elevated temperature and pressure ad-sorption from hydrogen and methane as single gases. Fuel,1985,64:616-620
    [75]桑树勋等.煤吸附气体的固、气作用机理.天然气工业,2005,25(1):1
    [76]张小东等.煤体结构差异的吸附响应及其控制机理.地球科学,2009,34(5):853
    [77]钟玲文等.煤的比表面积、孔体积及其对煤吸附能力的影响.煤田地质与勘探,2002,30(3)26
    [78]胡容泽.粉末颗粒和孔隙的测量[M].北京:冶金工业出版社,1982.
    [79]巨文军等.氮气吸附法和压汞法测定A1203载体孔结构.广东化工,2009,36(196):214
    [80]张小东,卢耀东,王利丽.古汉山井田煤层气赋存特征[J].河南理工大学学报(自然科学版),2007:1
    [81]李宏伟,米利华.河南伊川中生代盆地控油构造及石油勘探前景分析[J].河南理工大学学报(自然科学版),2009:4
    [82]张晓莉,李洪波,刘磊,胡晓东,解保磊.和顺城南矿区15煤层瓦斯地质研究[J].能源技术与管理,2008:2
    [83]宋岩,赵孟军,柳少波,王红岩,陈振宏.构造演化对煤层气富集程度的影响[J].科学通报,2005:S1
    [84]王怀勐,朱炎铭,李伍,张建胜,罗跃.煤层气赋存的两大地质控制因素[J].煤炭学报,2011:7
    [85]宋岩,秦胜飞,赵孟军.中国煤层气成藏的两大关键地质因素[J].天然气地球科学,2007:4
    [86]宋岩,柳少波,赵孟军,苏现波,李贵中,洪峰,秦胜飞.煤层气藏边界类型、成藏主控因素及富集区预测[J].天然气工业,2009:10
    [87]杨永田.河东煤田三交区块水文地质条件与控气特征[J].中国煤田地质,2007:3
    [88]王国玲,秦勇.煤储层含气性特征及其地质动力学控制因素[J].中国煤炭地质,2009:2
    [89]Clarkson CR, Bustin RM. Binary gas adsorption/desorption isotherms:effect of moisture and coalcomposition upon carbon dioxide selectivity over methane. International Journal of Coal Geology,2000.42 (4):241-271
    [90]孙鹏霞.美国煤层气产业成功发展的借鉴[J].气体分离,2009:3
    [91]夏天.煤层气的开采方式[J].江汉石油科技,2011:1
    [92]黄兴,张有乾,马彬.煤层气资源现状及开发利用技术[J].煤,2011:2
    [93]李嘉川,王小峰,石兆彬,等.中国煤层气开发现状与建议[J].科技创新导报,2011:8
    [94]孙凤娇,高博.中国煤层气产业发展面临的问题和前景展望[J].煤炭技术,2011:4
    [95]张茂鸣.黔西北煤层气开发利用研究[J].乌蒙论坛,2010:3
    [96]房超,陈贵峰.中国煤层气开发模式分析及开发技术研究[J].中国煤炭,2011:3
    [97]申宝宏,刘见中,赵路正.煤矿区煤层气产业化发展现状与前景[J].煤炭科学技术,2011:1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700