用户名: 密码: 验证码:
循环流化床锅炉双喷动床式冷渣器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床(CFB)锅炉技术凭借其燃料适应性广、燃烧效率高、污染物排放量少等优点在世界范围内取得了迅猛发展。作为CFB锅炉的重要辅机,冷渣器(BAC)的运行性能直接关系到CFB锅炉的连续、安全、经济运行。相较于国内CFB锅炉朝着大容量、高参数方向的快速发展,冷渣器的发展相对滞后,现有的冷渣器已经无法满足CFB锅炉的连续、安全、经济运行需求。在国内CFB锅炉燃煤现状无法改善的情况下,如何有效解决现有冷渣器存在的运行故障,高效回收底渣热量以及提高冷渣器的运行性能现已成为目前在国内CFB锅炉技术的发展道路上亟待解决的关键问题之一。
     为了克服现有冷渣器技术的不足,本文结合冷渣器的发展需求,提出了一种适用于处理国内CFB锅炉底渣的双喷动床式冷渣器专利技术。通过试验研究、理论计算和数值模拟等方法对构成双喷动床式冷渣器的基本结构单元即准矩形喷动床的流化特性、颗粒混合特性以及水冷换热管束的灰侧传热特性等在双喷动床式冷渣器的研发设计过程中需要掌握的关键问题进行了系统深入的研究。除此之外,考虑到锅炉排渣控制设备的运行性能直接关系到CFB锅炉及流化床式冷渣器的安全、稳定运行,本文还以国内某CFB电站锅炉底渣处理系统中实际配用的L型灰控阀为原型,试验研究了L型灰控阀的底渣输送特性。本文主要研究内容包括:
     ①准矩形喷动床流化特性的研究:
     在自行设计、搭建的准矩形喷动床小尺寸试验系统上,对准矩形喷动床的冷态流化特性进行了系统的试验研究,详细考察了静止床层高度、锥顶角、床料粒径和气体入口段宽度对流化特性的影响。并在此基础之上,建立了适用于描述和预测入口表观气速与床层压降对应变化关系的理论计算模型和经验关联式。除此之外,还以商业软件Barracuda为计算平台,对准矩形喷动床内的气固两相流动进行了数值模拟,并通过与试验结果的对比验证了数值模拟结果的正确性。
     ②准矩形喷动床颗粒混合特性的研究:
     针对双喷动床式冷渣器对底渣粒度的适应能力,试验研究了准矩形喷动床内二元粒径颗粒混合物的轴向混合特性和横向混合特性。系统考察了静止床层高度、床料粒径、入口表观气速和气体入口段宽度对床内示踪颗粒的轴向混合指数和横向扩散系数的影响。除此之外,还对比分析了具有相同上部截面的鼓泡床和准矩形喷动床内二元粒径颗粒混合物的轴向混合特性和横向混合特性。
     ③准矩形喷动床自由空域中水平管束的传热特性:
     为了认识并掌握双喷动床式冷渣器内水冷换热管束的灰侧传热特性,在搭建的准矩形喷动床大尺寸试验系统上对准矩形喷动床自由空域内水平管束的灰侧传热特性进行了详细的试验研究。系统考察了静止床层高度、床料粒径、入口表观气速和水平管稀相高度对水平管束各水平管在自由空域不同区域内的局部传热系数和平均传热系数的影响。
     ④L型灰控阀灰渣输送特性的试验研究:
     为了提供能够保证L型灰控阀运行性能所必需的理论基础和运行指导依据,在一套L型灰控阀的半工业冷模试验系统上,试验研究了充气量、充气管插入比例和灰渣平均粒径对L型灰控阀的灰渣流量控制特性以及输出灰渣在后续设备内分布规律的影响。
Circulating fluidized bed (CFB) boiler technology has got a tremendousdevelopment worldwide because of its unique advantages, such as excellent fueladaptability, high combustion efficiency and low pollutants emission. As a key auxiliarydevice for CFB boilers, the operation performance of the bottom ash cooler (BAC)directly affect the operational stablility, security and economicalefficiency of CFBboilers. Compared with the rapid development of domestic CFB boilers towards largercapacity and higher parameters, the development of BACs has fallen behind relatively,and the existing BACs cannot guarantee the operational stablility, security andeconomical efficiency of CFB boilers already. Under the circumstance thatthe coal typeand quality supplied to CFB boilers cannot be improved effectively, how to prevent theoperational failures of the existing BACs, to recover heat from ash efficiently, and toimprove the operational performance of BACs have become critical problems needed tobe solved imminently for the development of the domestic CFB boilers.
     In order to overcome these problems, a novel BAC called Bi-spouted-bed bottomash cooler has been proposed in this work based on the requirements of BAC.It isappropriate to treat the bottom ash of domestic CFB boilers and has obtained aninvention patent in China.Besides, the hydrodynamic characteristics, particle mixingcharacteristics, and heat transfer characteristics on the ash-side of the water-cooled tubebank of quasi-rectangular spouted bed, which is the basic component of Bi-spouted-bedbottom ash cooler, were systematically studied by experimental measurement,theoretical calculation, and numerical simulation in the present work.Considering thatthe operational performances of ash discharge device directly affect the operationalstablility and security of CFB boilers and BACs, the bottom ash conveyingcharacteristicsof the L-valve for ash conveying, which is applied in the bottom ashtreatment system of a domestic CFB boiler, has also been studied.The main contents ofthis paper are listed as follows:
     ①Study on the hydrodynamic characteristics of quasi-rectangular spouted bed:
     A small cold model of quasi-rectangular spouted bed was designed and built. Thehydrodynamic characteristics of the quasi-rectangular spouted bed, and the effects ofstatic bed height, taper angle, particle size of bed material and air inlet section width onthe hydrodynamic characteristics were experimentally studied. Based on the results, theoretical models and empirical correlations have been proposed to predict therelationship between the superficial gas velocity and bed pressure drop.Additionally, anumerical simulation for the hydrodynamics of the gas-solid two-phase flow in thequasi-rectangular spouted bed was also conducted using the software Barracuda. Thesimulation results were validated by comparison with the experimental results.
     ②Study on particle mixing characteristics in quasi-rectangular spouted bed:
     Experimental study on vertical and lateral mixings of a binary mixture of differentsizes was conducted to investigate the adaptability of Bi-spouted-bed ash cooler to thebottom ash granularity. The effects of static bed height, particle size of bed material,superficial gas velocity,and air inlet section width on the vertical mixing index andlateral dispersion coefficient of tracers were investigated.Furthermore, a comparison ofthe vertical and lateral mixing characteristics betweenthe quasi-rectangular spouted bedand a bubbling fluidized bed with the same upper cross-section was also conducted.
     ③Heat transfer characteristics of the water-cooled tube bank in the freeboard regionof the quasi-rectangular spouted bed:
     To reveal and master the heat transfer characteristics on the ash-side of thewater-cooled tube bank in the Bi-spouted-bed bottom ash cooler, an experimental studyon heat transfer characteristics on the ash-side of the water-cooled tube bank in thefreeboard of quasi-rectangular spouted bed was conducted on a big model of the bed.And the effects of static bed height, particle size of bed material, superficial gas velocity,and elevation of tube in the freeboard on the local and average heat transfer coefficientsof each tube in different regions of the freeboard were systematically studied.
     ④Experimental study on the bottom ash conveying characteristics of the L-valve forash conveying:
     In order to provide theoretical basis and operation guidance for guaranteeing theoperational performance of the L-valve for ash conveying, a semi-industrial cold modelwas built. The effects of air flowrate, air tube insert ratio, and the mean ash size on theflux control characteristics of the L-valve for ash conveying, as well as these effects onthe distribution of ash in the following equipment, were studied.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2]岑可法,倪明江,骆仲泱,严建华等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版设,1998.
    [3]华人民共和国国家统计局.2013年国民经济和社会发展统计公报[EB/OL].http://www.stats.gov.cn/tjsj/zxfb/201402/t20140224_514970.html,2014-2-24.
    [4]孙孝仁,孙怡玲.2020年世界能源前景[J].科技情报开发与经济,2000,10(2):15-19.
    [5]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2001-2010.
    [6]李瑞忠,郗凤云,杨宁,等.2010年世界能源供需分析——《BP世界能源统计2011》解读[J].当代石油化工,2011(7):30-37.
    [7]中华人民共和国国务院.国家中长期科学与技术发展规划纲要
    [EB/OL].http://www.gov.cn/jrzg/2006-02/09/content_183787.htm,2006-02-09.
    [8] Enerdata. Global Energy Statistical Year book2011-Coal and lignite domesticconsumption[EB/OL]. http://yearbook.enerdata.net/2010-energy-consumption-data.html#/coal-and-lignite-world-consumption-in-2010.html.
    [9]胡昌华,卢啸风等.600MW超临界循环流化床锅炉设备与运行[M].北京:中国电力出版社,2012.
    [10]国际能源署(IEA).中国洁净煤战略(中文版)[M].法国巴黎:国际能源署图书,2009.
    [11]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社,2003.
    [12]卢啸风.大型循环流化床锅炉设备与运行[M].北京:中国电力出版社,2006.
    [13]吕俊复,张建胜,岳光溪.循环流化床锅炉运行与检修[M].北京:中国水利水电出版社,2004.
    [14] Chen L., Dick W.A., Nelson S.. Flue gas desulfurization by-products additions to acid soil:alfalfa productivity and environmental quality[J]. Environmental Pollution,2001,114(2):161-168.
    [15]孙献斌,黄中.大型循环流化床锅炉技术与工程应用[M].北京:中国电力出版社,2009.
    [16]岳光溪.循环流化床燃煤技术在我国的发展与前景[J].电力设备,2008,9(5):104-106.
    [17] Steve G.. Integration of the Benson Vertical Out technology and the compact CFB boiler[J].PowerGen International, Orlando, Florida,2000.
    [18] Basu P., Fraser S.A.. Circulating Fluidized Bed Boiler-Design and Operations[M]. USA:Butterwoths-Heinemann-Reed Publishing,1991.
    [19] Wen-Ching Y.. Fluidization, Solids handing, and Processing-Industrial Applications[M]. USA:Noyes Publications,1998.
    [20]行业报告:世界火电设备发展态势分析[EB/OL].http://ccn.mofcom.gov.cn/spbg/show.php?id=4742&ids=%BB%FA%D0%B5%B5%E7%D7%D3,2006-11-02.
    [21] Lienhard H.,刘国海,徐振刚.鲁奇循环流化床燃烧与气化[J].煤炭转化,1987,2:000.
    [22] Hotta A..Foster Wheeler’s Solutions for large scale CFB Boiler Technology Features andOperational Performance of agiza460MW CFB Boiler[C].Proceedings of the20thInternational Conference on Fluidized Bed Combustion,China:Xi’an,2009.
    [23]骆仲泱,何宏舟,王勤辉,等.循环流化床锅炉技术的现状及发展前景[J].动力工程,2004,24(6):761-767.
    [24] Koornneef J., Junginger M., Faaij A.. Development of fluidized bed combustion—Anoverview of trends, performance and cost[J]. Progress in energy and combustion science,2007,33(1):19-55.
    [25] Johnsson F.,Leckner B..Vertical distribution of solids in a CFB-furnace[C].Proceedings of the13th International Conference on Fluidized Bed Combustion,USA:Orlando,1995.
    [26] Belin F..Update of operating experience of B&W IR-CFB coal-fired boilers[C].Proceedingsof the15th International Conference on Fluidized Bed Combustion,New York: ASME,1999.
    [27] Nowak W..Design and operation experience of230MWe CFB boiler at Turow Power Plant inPoland[C]. Proceedings of the15th International Conference on Fluidized Bed Combustion,New York: ASME,1999.
    [28] Belin F., Maryamchik M., Walker D. J., et al. The Babcock and Wilcox CFB boilers-designand experience[C]. Proceedings of the16th International Conference on Fluidized BedCombustion, New York: ASME,2001.
    [29] Kandassamy K., Natarajan E., Renganarayanan S.. Producer Gas CleaningTechniques[C].Proceedings of the17th International Conference on Fluidized BedCombustion,USA:Florida,2003.
    [30] Huenchen H., Pahcmayer L., Malerius O.. Design and commissioning of the largest and thesmallest fluidized bed incinerator ever built by Lurgi[C].Proceedings of the17th InternationalConference on Fluidized Bed Combustion,USA:Florida,2003.
    [31] Thierry L.G.. Fuel flexibility and petroleum coke combustion at Provence250MWeCFB[C].Proceedings of the17th International Conference on Fluidized Bed Combustion,USA:Florida,2003.
    [32] Glen J., Greg L., Nsakala ya N., et al.An Alstom vision of future CFB technology basedpower plant concepts[C].Proceedings of the18th International Conference on Fluidized BedCombustion,Canada:Toronto,2005.
    [33] Goidich S.J., Hyppanen T., Kauppinen K.. CFB boiler design and operation using theINTREXTM heat exchanger[C].Proceedings of the6th International Conference onCirculating Fluidized Beds,Germay:Wurzburg,1999.
    [34] Nowak W.. Clean coal fluidized-bed technology in Poland[J]. Applied Energy,2003,74(3):405-413.
    [35] Werther J.. Fluid dynamics, temperature and concentration fields in large-scale CFBcombustors[C].Proceedings of the8th International Conference on Circulating FluidizedBeds,China:Hangzhou,2005.
    [36] Ven l ìnen I.,Psik R..460MWe supercritical CFB boiler design for Lagisza power plant[C].Presented at PowerGen Europe Cologen,Vienna,Austria,2006.
    [37] Jantti T., Sundqvist K., Psik R.. Lagisza460MWe superctitical CFB-design, start-up andinitial operation experience[C].Presented at PowerGen Europe Cologen,Germany,2009.
    [38] Gauvillé P., Semedard J.-C, Darling S.. Experience from the300MWe CFB demonstrationplant in China[C].Proceedings of the20th International Conference on Fluidized BedCombustion,China:Xi’an,2009.
    [39] James Utt,Arto Hotta,Stephen Goidich.Utility CFB goes “Supercritical”-Foster Wheeler’sLagisza460MWe operating experience and600-800MWe Designs[C].Proceedings of theCoal-Gen Conference&Exhibition,North Carolina,USA,2009.Or:http://www.fwci.com/publications/tech_papers/files/TP_CFB_09_12.pdf,2009-8-19.
    [40] Yue G.X., Yang H.R., Lu J.F., et al. Latest development of CFB boilers inChina[C].Proceedings of the20th International Conference on Fluidized BedCombustion,China:Xi’an,2009.
    [41]《四川白马300MW循环流化床示范工程总结》编委会.四川白马300MW循环流化床示范工程总结[M].北京:中国电力出版社,2007.
    [42]蒋敏华,肖平.大型循环流化床锅炉技术[M].北京:中国电力出版社,2009.
    [43]曾兵.循环流化床锅炉选择性排渣冷却系统研究[D].重庆:重庆大学博士学位论文,2012.
    [44]李金晶,杨石,杨海瑞,等.流化风速对二元粒径颗粒混合物分层特性影响的实验研究[J].锅炉技术,2010,(006):28-31.
    [45]程真何,刘义成,李桂.负压式超强钢带冷渣器在循环流化床锅炉中的应用[J].电力设备,2005,6(2):43-47.
    [46]孙即涛,张勇,王京波,等.大型CFB锅炉采用滚筒冷渣机的运行效果分析[J].电站系统工程,2006,22(1):56-58.
    [47]刘远超,尹洪超,刘建平.循环流化床锅炉滚筒式冷渣器冷态及热态特性试验研究[J].电站系统工程,2006,22(5):35-38.
    [48] Wang Wei, Si Xiaodong, Yang Hairui,et al.Heat-transfer model of the rotary ash cooler usedin circulating fluidized-bed boilers[J].Energy Fuels,2010,24(4):2570-2575.
    [49]李金晶,王巍,杨石,等.滚筒冷渣器传热特性的试验研究[J].电站系统工程,2009,25(1):11-13.
    [50]司小东.滚筒冷渣器传热模型研究[D].北京:清华大学硕士学位论文,2011.
    [51]贺晓阳.循环流化床锅炉滚筒式冷渣器传热模型及数值模拟[D].武汉:华中科技大学硕士学位论文,2007.
    [52]肖峰.循环流化床底渣冷却方法[P].中国,ZL200910054142.5,2009-12-9.
    [53]肖峰,王冬福,李炳顺,等.上锅循环流化床锅炉业绩和技术特点[C].循环流化床锅炉技术2010年会论文集,长沙,2010:167-175.
    [54]张强.大型CFB锅炉热力计算技术与移动床式冷渣器研究[D].上海:上海发电设备成套设备研究院硕士学位论文,2011.
    [55]郭涛.410t/h CFB锅炉选择性流化床冷渣器气固流动特性冷态试验研究与数值模拟[D].重庆:重庆大学硕士学位论文,2006.
    [56] Li X., Luo Z., Ni M., et al. Development of new ash cooling method for atmospheric fluidizedbeds[C]. The13th International Conference on Fluidized Bed Combustion. Part1(of2),Orlando, FL, USA,1995:181-184.
    [57] Goidich S.J., Hyppanen T.. Foster Wheeler compact CFB boilers for utility scale[C].16thInternational Conference on Fluidized Bed Combustion.2001:2001.
    [58] Chelian P.K., Hyvarinen K.. Operating experience of pyroflow boilers in a250MWe unit[C].Proceedings of13th International Conference on Fluidized Bed Combustion. KJ. Heinschel,ed. ASME, New York.1995:1095-1103.
    [59]蔡新春,叶宁.流化床选择性冷渣器运行技术探讨[J].锅炉制造,2002(1):4-6.
    [60] Nowak W.. Design and Operation Experience of230MWe CFB Boilers at Turow Power Plantin Poland[C]. Proceedings of the15th International Conference on Fluidized Bed Combustion.ASME, New York,1999.
    [61] Lu X.F., Ryo S.A.. Feasible Experimental Study on the Utilization of a300MW CFBDesulfuration Bottom Ash for Construction Applications[C].5th International Symposium onHigh Temperature Air Combustion and Gasification.2002.
    [62]张缦,别如山.风水联合冷渣器运行问题及改进措施.电站系统工程.2006,22(3):29-30.
    [63] Zhang Man, Bie Rushan, Xue Qinggui. Fluidized bed ash cooler used in a circulatingfluidized bed boiler: An experimental study and application[J]. Powder Technology,2010,201(2):114-122.
    [64]李文孝,蔡祯跃,陈军,等.气槽式冷渣机在内江发电总厂高坝电厂410t/h循环流化床锅炉上的应用[C].中国科协2005年学术年会11分会场暨中国电机工程学会2005年学术年会论文集,乌鲁木齐,2005:1-4.
    [65]肖平,郭涛,徐正泉,等.大容量流化床式冷渣器的开发与运行性能研究[J].中国电机工程学报,2009,29(S):113-117.
    [66]李永茂.37t/h风水联合冷渣器在300MW CFB锅炉的应用[J].热力发电,2011,40(6):85-88.
    [67] Bing Zeng, Xiaofeng Lu,Lu Gan,et al.Development of a novel fluidized bed ash cooler forcirculating fluidized bed boilers: Experimental study and application[J].PowderTechnology,2011,212(1):151-160.
    [68] Bing Zeng,Xiaofeng Lu,Hanzhou Liu.Industrial Application Study on New-type Mixed-flowFluidized Bed Bottom Ash Cooler[C].Proceedings of the20th International Conference onFluidized Bed Combustion,Xi’an,China,2009.
    [69]曾兵,卢啸风,赵鹏,等.复合式流化床冷渣器的试验研究及工业应用[J].中国电机工程学报,2011,31(29):27-34.
    [70]卢啸风,曾兵,舒茂龙,等.复合式冷渣装置[P].中国,ZL200710092413.7,2010-1-20.
    [71] Butler J.J., Mohn N.C., Semedard J.C., et al.CFB technology:can the original clean coaltechnology continue to compete[C].Power Gen International Conference,Nevada:USA,2005.
    [72]施正伦,王勤辉,程乐鸣,等.兼具冷却和细灰分选功能的冷渣器设计及应用[J].电站系统工程,2000,16(6):326-329.
    [73]程乐鸣,王勤辉,骆仲泱,等.流化移动叠置式冷渣器的发展与运行经验[J].动力工程,2000,20(6):974-979.
    [74]叶科.流化床冷渣器流化特性的研究[D].北京:清华大学硕士学位论文,2006.
    [75]张森.大型循环流化床锅炉冷渣器研发[D].北京:华北电力大学硕士学位论文,2009.
    [76]邓学志,黄长军.筛选式流化床冷渣器[P].中国,ZL200520098802.7,2005-11-17.
    [77]阮奕绍.一种组合式流化床冷渣器[P].中国,ZL200910105021.9,2009-1-13.
    [78]周一工,邱智威,居慧敏.流化床风水联合冷渣器[P].中国,ZL200420036974.7,2004-6-30.
    [79]司小东,吕俊复,杨海瑞,等.一种循环流化床锅炉底渣冷却系统[P].中国,ZL201010287485.9,2010-9-19.
    [80] Mathur K.B., Gishler P.E.. A technique for contacting gases with coarse solid particles[J].AIChE Journal,1955,1(2):157-164.
    [81] Mathur K.B., Epstein N.. Spouted beds[M]. New York: Academic Press,1974.
    [82] Epstein N., Grace J.R.. Spouting of particulate solids[M]. Handbook of powder science&technology. Springer US,1997:532-567.
    [83]祝京旭,洪江.喷动床发展与现状[J].化学反应工程与工艺,1997,13(2):207-222.
    [84]金涌,祝京旭,汪展文,等.流态化工程原理[M].北京:清华大学出版社,2001.
    [85] Pallai E., Szentmarjay T., Mujumdar A.S.. Spouted bed drying[J]. Handbook of industrialdrying,1995,1:453-488.
    [86] Kucharski J., Kmie A.. Kinetics of granulation process during coating of tablets in a spoutedbed[J]. Chemical engineering science,1989,44(8):1627-1636.
    [87] Choi M., Meisen A.. Sulfur coating of urea in shallow spouted beds[J]. Chemical engineeringscience,1997,52(7):1073-1086.
    [88] Jono K., Ichikawa H., Miyamoto M., et al. A review of particulate design for pharmaceuticalpowders and their production by spouted bed coating[J]. Powder Technology,2000,113(3):269-277.
    [89] Robinson T., Waldie B.. Dependency of growth on granule size in a spouted bed granulator[J].Trans. Inst. Chem. Eng,1979,57:121.
    [90] Sutanto W., Epstein N., Grace J.R.. Hydrodynamics of spout-fluid beds[J]. Powder technology,1985,44(3):205-212.
    [91] Lim C.J., Watkinson A.P., Khoe G.K., et al. Spouted, fluidized and spout-fluid bedcombustion of bituminous coals[J]. Fuel,1988,67(9):1211-1217.
    [92] Foong S.K., Lim C.J., Watkinson A.P.. Coal gasification in a spouted bed[J]. The CanadianJournal of Chemical Engineering,1980,58(1):84-91.
    [93] Lucas J.P., Lim C.J., Watkinson A.P.. A nonisothermal model of a spouted bed gasifier[J]. Fuel,1998,77(7):683-694.
    [94] Konduri R.K, Altwicker E.R., Morgan III M.H.. Design and scale-up of a spouted-bedcombustor[J]. Chemical Engineering Science,1999,54(2):185-204.
    [95]朱润孺.矩形喷动床干、湿颗粒混合特性的DEM方法研究[D].哈尔滨:哈尔滨工程大学,2011.
    [96]王宝群.颗粒粒径及粒度组成对狭缝式矩形喷动床流动特性的影响[D].北京:中国科学院化工冶金研究所,2000.
    [97] Dogan O.M., Freitas L.A.P., Lim C.J., et al. HYDRODYNAMICS AND STABILITYOFSLOT-RECTANGULAR SPOUTED BEDS. PART I: THIN BED[J]. Chemical EngineeringCommunications,2000,181(1):225-242.
    [98] Freitas L.A.P., Dogan O.M., Lim C.J., et al. Hydrodynamics and stability of slot-rectangularspouted beds part II: increasing bed thickness[J]. Chemical Engineering Communications,2000,181(1):243-258.
    [99] Freitas L.A.P., Mitsutani K., Lim C.J., et al. Voidage Profiles in a Slot‐Rectangular SpoutedBed[J]. The Canadian Journal of Chemical Engineering,2004,82(1):74-82.
    [100]王宝群,罗保林.狭缝式矩形喷动床中多粒度颗粒体系的最小喷动速度[J].过程工程学报,2001,1(2):113-116.
    [101]王宝群,罗保林,林尊锦.狭缝式矩形喷动床中多粒度颗粒体系的最大喷动压降[J].化学反应工程与工艺,2001,17(2):107-111.
    [102] Passos M.L., Mujumdar A.S., Raghavan V.G.S.. Spouted beds for drying: principles anddesign considerations[J]. Advances in Drying,1987,4:359-397.
    [103] Mujumdar A.S.. Spouted bed technology—A brief review[J]. Drying,1984,84:151-157.
    [104] Sau D.C., Mohanty S., Biswal K.C.. Critical fluidization velocities and maximum bedpressure drops of homogeneous binary mixture of irregular particles in gas–solid taperedfluidized beds[J]. Powder Technology,2008,186(3):241-246.
    [105] Kim H.G., Lee I.O, Chung U.C., et al. Fluidization characteristics of iron ore fines of widesize distribution in a cold tapered gas-solid fluidized bed[J]. ISIJ international,2000,40(1):16-22.
    [106] Khani M.H.. Models for prediction of hydrodynamic characteristics of gas–solid tapered andmini-tapered fluidized beds[J]. Powder Technology,2011,205(1):224-230.
    [107] S.H. Schaafsma, et al. Investigation of the particle flow pattern and segregation in taperedfluidized bed granulators[J]. Chemical Engineering Science,2006,61:4467-4475.
    [108] Toyohara H., Kawamura Y.. Core-type segregation in a tapered fluidized-bed of binaryparticle mixtures[J]. Kagaku Kogaku Ronbunshu,1991,17(1):172-178.
    [109] DOGAN.M., UYSAL B.Z., Grace J.R.. Hydrodynamic studies in a half slot-rectangularspouted bed column[J]. Chemical Engineering Communications,2004,191(4):566-579.
    [110] Freitas L.A.P., Dogan O.M., Lim C.J., et al. Identification of Flow Regimes in Slot‐Rectangular Spouted Beds using Pressure Fluctuations[J]. The Canadian Journal of ChemicalEngineering,2004,82(1):60-73.
    [111] Costa M.D.A., Taranto O.P.. Scale-up and Spouting of Two-Dimensional Beds[J]. TheCanadian Journal of Chemical Engineering,2003,81(2):264-267.
    [112] Zanoelo é F., Rocha S., Rezende D.F.. Influence of Operating Parameters on the AverageSpout Width in Two-Dimensional Spouted Beds[J]. The Canadian Journal of ChemicalEngineering,2004,82(1):89-93.
    [113] Liu G.Q., Li S.Q., Zhao X.L., et al. Experimental studies of particle flow dynamics in atwo-dimensional spouted bed[J]. Chemical Engineering Science,2008,63(4):1131-1141.
    [114] Zhao X.L., Li S.Q., Liu G.Q., et al. DEM simulation of the particle dynamics intwo-dimensional spouted beds[J]. Powder Technology,2008,184(2):205-213.
    [115] Rocha S.C.S., Taranto O.P., Ayub G.E.. Aerodynamics and heat transfer during coating oftablets in two-dimensional spouted bed[J]. The Canadian Journal of Chemical Engineering,1995,73(3):308-312.
    [116] Rasul M.G.. Spouted bed combustion of wood charcoal: performance comparison of threedifferent designs[J]. Fuel,2001,80(15):2189-2191.
    [117] Cunha R.L., Maialle K.G., Menegalli F.C.. Evaluation of the drying process in spouted bedand spout fluidized bed of xanthan gum: focus on product quality[J]. Powder technology,2000,107(3):234-242.
    [118] Sau D.C., Mohanty S., Biswal K.C.. Minimum fluidization velocity at elevated temperature intapered fluidized bed[J]. Chemical Engineering and Processing: Process Intensification,2008,47(12):2391-2394.
    [119] Biswal K.C., Bhowmik T., Roy G.K.. Prediction of pressure drop for a conical fixed bed ofspherical particles in gas-solid systems[J]. The Chemical Engineering Journal,1984,29(1):47-50.
    [120] Biswal K.C., Bhowmik T., Roy G.K.. Prediction of minimum fluidization velocity forgas-solid fluidization of regular particles in conical vessels[J]. The Chemical EngineeringJournal,1985,30(1):57-62.
    [121] Singh R.K., Suryanarayana A., Roy G.K.. Prediction of minimum velocity and minimum bedpressure drop for gas-solid fluidization in conical conduits[J]. The Canadian Journal ofChemical Engineering,1992,70(1):185-189.
    [122] Sau D.C., Mohanty S., Biswal K.C.. Minimum fluidization velocities and maximum bedpressure drops for gas–solid tapered fluidized beds[J]. Chemical Engineering Journal,2007,132(1):151-157.
    [123] Jing S., Hu Q., Wang J., et al. Fluidization of coarse particles in gas–solid conical beds[J].Chemical Engineering and Processing: Process Intensification,2000,39(4):379-387.
    [124] Kaewklum R., Kuprianov V.I.. Theoretical and experimental study on hydrodynamiccharacteristics of fluidization in air–sand conical beds[J]. Chemical Engineering Science,2008,63(6):1471-1479.
    [125] Deiva Venkatesh R., Chaouki J., Klvana D.. Fluidization of cryogels in a conical column[J].Powder technology,1996,89(3):179-186.
    [126] Shan J., Guobin C., Fan M., et al. Fluidization of fine particles in conical beds[J]. Powdertechnology,2001,118(3):271-274.
    [127] Peng Y., Fan L.T.. Hydrodynamic characteristics of fluidization in liquid-solid tapered beds[J].Chemical Engineering Science,1997,52(14):2277-2290.
    [128] Ergun S.. Fluid flow through packed columns[J]. Chem. Eng. Prog.,1952,48.
    [129]胡庆元,景山,王金福,等.粗颗粒在锥型床中的流化特性[J].高校化学工程学报,2000,14(1):12-18.
    [130] S. Aravinth, T. Murugesan. A general correlation for the minimum spouting velocity[J].Bioprocess Engineering,1997,16:289-293.
    [131] H. T. Bi, A. Macchi, et al. Minimum spouting velocity of conical spouted beds[J]. TheCanadian Journal of Chemical Engineering,1997,75:460-465.
    [132] Zhao P, Sinder D, Williams K.. Computational particle-fluid dynamics simulations of acommercial-scale turbulent fluidized bed reactor[C]. AIChE Annual meeting, San Francisco,2006.
    [133] Sinder D., Guenther C., Dalton J., et al. CPFD eulerian-lagrangian numerical scheme appliedto the NETL bench-top chemical looping experiment[C].1st International Conference onChemical looping, Lyon,2010.
    [134] Parker J.. Validation of CFD Model for polysilicon deposition and production of silicon finesin a silane deposition FBR[J]. International Journal of Chemical Reactor Engineering,2011,9(1): A40.
    [135] Andrews M., O’Rourke P.. The multiphase particle-in-cell method (MP-PIC) method fordense particle flow[J]. International Journal of Multiphase Flow,1996,22(2):379-402.
    [136] Sinder D.. An incompressible three-dimensional multiphase particle-in-cell model for denseparticle flow[J]. Journal of Computational Physics,2011,170(2):523-549.
    [137]张瑞卿,杨海瑞,吕俊复.应用于循环流化床锅炉气固流动和燃烧的CPFD数值模拟[J].中国电机工程学报,2013,33(23):75-83.
    [138] Wen C.Y., Yu Y.H.. Mechanics of fluidization[J]. Chemical Engineering Progress SymposiumSeries,1966,62(1):100-111.
    [139] Daw C.S., Frazier G.C.. A quantitative analysis of binary solids segregation in large-particlegas-fluidized beds[J]. Powder technology,1988,56(3):165-177.
    [140] Geldart D., Baeyens J., Pope D.J., et al. Segregation in beds of large particles at highvelocities[J]. Powder Technology,1981,30(2):195-205.
    [141] Rowe P.N, Nienow A.W.. Particle mixing and segregation in gas fluidised beds. A review[J].Powder Technology,1976,15(2):141-147.
    [142] Gibilaro L.G., Rowe P.N.. A model for a segregating gas fluidised bed[J]. ChemicalEngineering Science,1974,29(6):1403-1412.
    [143]赵永志,郑津洋.宽粒径分布流化床的微观尺度模拟与分析[J].中国典籍工程学报,2007,27(35):55-61.
    [144] D. Kunii, Octave L.Fluidization Engineering, Second edition[M]. Boston:Butterworth-Heinemann,1991.
    [145] Chiba S., Nienow A.W., Chiba T., et al. Fluidised binary mixtures in which the densercomponent may be flotsam[J]. Powder Technology,1980,26(1):1-10.
    [146]朱建新.基于图像法的流化床内颗粒测试系统及管式流化床内颗粒混合研究[D].浙江:浙江大学博士学位论文,2004.
    [147]廖磊,杨石,张攀,等.多尺度颗粒系统的分层特性研究[C].中国工程热物理学术会议,2008.
    [148]陈炯,洪燕华,张学宏,等.沸腾床内固体颗粒的分层[J].浙江大学学报,1985,4(19):42-52.
    [149]彭辉,张济宇.流化床二组分混合物的适宜分离气速[J].化学反应工程与工业,1996,12(3):271-280.
    [150]姚宣,王涛,司小东,等.流化床内颗粒混合和分离特性[C].中国工程热物理学术会议.
    [151]沈来宏,章名耀.流化床内颗粒混合研究[J].化学工程,1996,24(2):36-41.
    [152]田凤国,张明川,齐永锋,等.流化床轴径向混合特性的数值研究[J].中国电机工程学报,2006,26(21):119-124.
    [153]朱瑞润,朱卫兵,邢力超,等.矩形喷动床混合特性的三维数值研究[J].中国电机工程学报,2010,30(17):12-16.
    [154] Zhu R.R., Zhu W.B., Xing L.C., et al. DEM simulation on particle mixing in dry and wetparticles spouted bed[J]. Powder Technology,2011,210(1):73-81.
    [155] Zhang Y., Jin B., Zhong W.. Experiment on particle mixing in flat-bottom spout–fluid bed[J].Chemical Engineering and Processing: Process Intensification,2009,48(1):126-134.
    [156]张勇,金保升,钟文琪.喷动气固流化床颗粒混合规律的试验研究[J].中国电机工程学报,2008,28(20):8-14.
    [157]项黔,黄国权,倪明江,等.煤粒及煤泥在工业沸腾炉内横向扩散的研究[J].浙江大学学报,1987,21(6):64-72.
    [158] Shi Y.F., Fan L.T.. Lateral mixing of solids in batch gas-solids fluidized beds[J]. Industrial&Engineering Chemistry Process Design and Development,1984,23(2):337-341.
    [159] Liu D., Chen X.. Experimental profiles of lateral mixing of feed particles in athree-dimensional fluidized bed[J]. AIChE Journal,2011,57(6):1459-1469.
    [160]国井大藏,列文斯比尔.流态化工程[M].北京:石油化学工业出版社,1977.
    [161] Niklasson F., Thunman H., Johnsson F., et al. Estimation of solids mixing in a fluidized-bedcombustor[J]. Industrial&engineering chemistry research,2002,41(18):4663-4673.
    [162] Cooper S., Coronella C.J.. CFD simulations of particle mixing in a binary fluidized bed[J].Powder Technology,2005,151(1):27-36.
    [163]徐旭,池涌,李斌,等.内旋流流化床床内颗粒运动特性的试验研究[J].中国电机工程学报,2001,21(11):9-13.
    [164] Liu D.Y., Chen X.P., Liang C., et al. Solids mixing in the bottom zone of fluidized beds[C].Proceedings of the20th International Conference on Fluidized Bed Combustion. SpringerBerlin Heidelberg,2010:459-463.
    [165] George S.E., Grace J.R.. Heat transfer to horizontal tubes in the freedboard region of a gasfluidized bed[J]. AIChE Journal,1982,28(5):759-765.
    [166] Wood R.T., Kuwata M., Staub F.W.. Heat transfer to horizontal tube banks in the splash zoneof a fluidized bed of large particles[M]//Fluidization. Springer US,1980:235-242.
    [167] Biyikli S., Tuzla K., Chen J.C.. Heat transfer around a horizontal tube in freeboard region offluidized beds[J]. AIChE journal,1983,29(5):712-716.
    [168] Biyikli S., Tuzla K., Chen J.C.. A phenomenological model for heat transfer in freeboard offluidized beds[J]. The Canadian Journal of Chemical Engineering,1989,67(2):230-236.
    [169]施明恒.水平埋管在流化床稀相中的传热研究[J].化工学报,1986,2:212-219.
    [170]施明恒.流化床稀相中水平管束的传热特性[J].南京工学院学报,1987,17(2):95-101.
    [171] Dyrness A., Glicksman L.R., Yule T.. Heat transfer in the splash zone of a bubbling fluidizedbed[J]. International journal of heat and mass transfer,1992,35(4):847-860.
    [172] Pidwerbecki D., Welty J.R.. Heat transfer to a horizontal tube in the splash zone of a bubblingfluidized bed, an experimental study of particle size effects[J]. Experimental thermal and fluidscience,1995,10(3):307-317.
    [173] Hafez A.H., El-Mahallawy F.M., Sharobeem S.G., et al. Heat transfer to a horizontal tubebundle located in the freeboard of a bubbling fluidized bed combustor[J]. International journalof energy research,1997,21(15):1351-1361.
    [174] Murray D.B., O'Connor P., Gilroy P.. Cross-flow heat transfer in the freeboard region of afluidized bed[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,1996,210(3):245-253.
    [175]程乐鸣,骆仲泱,倪明江,等.循环流化床传热综述(数学模型)[J].动力工程,1998,18(1):24-33.
    [176]程乐鸣,骆仲泱,倪明江,等.循环流化床传热综述(试验部分)[J].动力工程,1998,18(2):20-34.
    [177]白丁荣,金涌.循环流化床床层与垂直表面间的传热特性及其强化[J].化工机械,1993,1:11-15.
    [178]李金晶,李燕,吕军复,等.循环流化床锅炉炉内传热的影响因素[J].清华大学学报(自然科学版),2007,47(11):2026-2030.
    [179] Basu P., Nag P.K.. Heat transfer to walls of a circulating fluidized-bed furnace[J]. ChemicalEngineering Science,1996,51(1):1-26.
    [180] Ebert T.A., Glicksman L.R., Lints M.. Determination of particle and gas convective heattransfer components in a circulating fluidized bed[J]. Chemical engineering science,1993,48(12):2179-2188.
    [181] Nirmal Vijay G., Reddy B.V.. Effect of dilute and dense phase operating conditions onbed-to-wall heat transfer mechanism in a circulating fluidized bed combustor[J]. Internationaljournal of heat and mass transfer,2005,48(16):3276-3283.
    [182] Kim S.W., Ahn J.Y., Kim S.D., et al. Heat transfer and bubble characteristics in a fluidizedbed with immersed horizontal tube bundle[J]. International Journal of Heat and Mass Transfer,2003,46(3):399-409.
    [183]朱学军,叶世超,杨冰释.振动流化床中大颗粒与水平管局部传热特性[J].化学工程,2009,6:16-19.
    [184]李新民.回料和排渣锥形阀常见问题分析[J].华电技术.2008,30(8):30-32.
    [185]蒋敏华,江建忠,肖平,等.一种分流式旋转排渣控制阀[P].中国,ZL200510124229.7,2005-11-29.
    [186]王振华,王海涛.大型CFB锅炉底渣设备系统优化[J].工业锅炉,2011,6:34-36.
    [187]刘景源,还博文,魏星.L阀对固体流率调节特性关联式的进一步改善[J].上海交通大学学报,1994,28(2):130-133.
    [188]胡庆元,景山.L阀在气力输送中的应用[J].化学反应工程与工艺,2001,17(3):244-248.
    [189]荣德刚,沈湘林,章名耀.PFBC气控L阀排渣机构的运行特性[J].热能动力工程,1995,10(1):19-24.
    [190]荣德刚,杨亚平.PFBC高温炉渣连续排放与冷却系统的冷态试验研究[J].热能动力工程,1996,1:15-19.
    [191]兰建辉,郭荣刚.浅谈风水联合冷渣器及L阀的使用与改进[J].广西电力,2005,4:30-33.
    [192]毛鸿禧.CFBC锅炉安全经济运行中的三大顽症的治理之二、三——炉膛和受热面磨损的治理及炉底排渣与冷却[J].沈阳工程学院学报(自然科学版),2007,3(1):13-20.
    [193]康达,陆慧琳.循环流化床锅炉L阀排渣特性试验研究[J].锅炉制造,2006,4:24-26.
    [194]毛鸿禧.气动排渣阀[P].中国,ZL200620050977.5,2007-5-16.
    [195]陈祥荣,张坚平.L阀控制飞灰循环特性的研究[J].东南大学学报,1992,22:102-106.
    [196]楼波,梁平.循环床中的L阀返料特性及结构完善的研究[J].华北电力学院学报,1991,92-96.
    [197]防倚天,吴晋沪,王鸿瑜.带水平吹气管L阀的特性及公式[J].化学反应工程与工艺,1999,15(4):424-427.
    [198]刘景源,还博文.多控特性L阀控制特性的研究[J].上海交通大学学报,1996,30(1):135-138.
    [199] Yazdanpanah M.M., Forret A., Gauthier T., et al. An experimental investigation of L-valveoperation in an interconnected circulating fluidized bed system[J]. Powder Technology,2012,221:236-244.
    [200] Chovichien N., Pipatmanomai S., Chungpaibulpatana S.. Estimate of solids circulation ratethrough an L-valve in a CFB operating at elevated temperature[J]. Powder Technology,2013,235:886-900.
    [201] Arena U., Langeli C.B., Cammarota A.. L-valve behaviour with solids of different size anddensity[J]. Powder technology,1998,98(3):231-240.
    [202] Smolders K., Baeyens J.. The operation of L-valves to control standpipe flow[J]. AdvancedPowder Technology,1995,6(3):163-176.
    [203] Geldart D., Jones P.. The behaviour of L-valves with granular powders[J]. Powder technology,1991,67(2):163-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700