用户名: 密码: 验证码:
离子液体吸收式制冷工质对基础物性与循环特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源短缺与全球变暖等环境问题的日益严峻,吸收式制冷循环作为一种高效、安全的中、低品味能回收利用技术而备受世界各国能源工作者的关注。传统的吸收式制冷系统自身存在的低温结晶、高温腐蚀,压力偏高、精馏降效等缺陷,使其在实际工业应用的过程中受到了较大的限制。离子液体是室温下为液态的盐,具有独特物化性质,无可测量蒸气压、无腐蚀性,具备作为吸收剂的潜能,可以完美克服现存机组的一系列缺陷。近年来,离子液体型制冷工质对的研发已近成为一个国际性的研究热点。
     在国家高技术研究发展计划资助项目(863, No.2007AA05Z259)《离子液体型吸收式冷水机组研发》的资助下,前期工作中已经筛选出了具有商业应用潜质的吸收式制冷工质对[mmim]DMP/CH3OH,并研究了该工质对的气液相平衡性质。在此基础上,本人又展开了深入的研究:
     1.基于[mmim]DMP/CH3OH溶液的气液相平衡数据,建立了能够在整个浓度范围预测[mmim]DMP/CH3OH溶液蒸气压参数的UNIFAC模型和预测过量焓参数的Wilson模型。并对[mmim]DMP/CH3OH吸收式制冷单效循环热力特性进行了仿真分析。
     2.在常温下测量了不同摩尔浓度的[mmim]DMP/CH3OH(?)[mmim]DMP/H2O溶液热导率,关联了预测溶液热导率的Random Mixing模型。
     3.基于[mmim]DMP/CH3OH溶液的气液相平衡性质以及热导率参数,对双效串联、并联[mmim]DMP/CH3OH吸收式制冷系统进行了动态建模与仿真模拟,并将仿真结果与文献实验结果进行了对比。
     研究结果表明:[mmim]DMP/CH3OH单效制冷循环COP略低于LiBr/H2O系统,但在整体上要高于NH3/H2O系统。离子液体的加入显著地提高的甲醇的导热性能,这有利于系统热力性能的提高和系统参数的优化设计。通过对比表明,双效吸收式制冷的动态模型可以较好的描述双效制冷系统的稳态和瞬态特性,并能满足系统优化和实时控制设计的应用需求。
     常规的离子液体对制冷剂的吸收能力有限,极大的限制了工质对循环效率的提高。为了更进一步提高制冷剂在离子液体中的吸收量,我们提出了一种以NH3为制冷剂,离子液体[bmim]Zn2Cl5为吸收剂的物理吸收和化学吸附复合机制的新型离子液体制冷工质对,并且得到了国家自然科学基金(No.51276180)《吸收与络合吸附复合作用的离子液体型化学热泵工质对研究》的资助,相关研究内容如下:
     1.搭建了[bmim]Zn2Cl5/NH3饱和气压测量装置,应用静态法测量了其在323.15~563.15K温度范围内的饱和气压,并用UNIFAC模型进行了关联拟合,根据关联模型绘制了二元溶液的P-T-x图。
     2.对[bmim]Zn2Cl5进行了TG-DSC扫描,验证离子液体的热稳定性并得到其比热容参数。测量了[bmim]Zn2Cl5/NH3在288.15~333.15K温度范围内的过量焓参数,并用NRTL模型进行了关联拟合。
     3.基于[bmim]Zn2Cl5的比热容参数、[bmim]Zn2Cl5/NH3的蒸气压和过量焓参数,对[bmim]Zn2Cl5/NH3吸收式制冷单效循环热力特性进行了仿真分析,并与NaSCN/NH3吸收式系统进行了对比。
     结果表明:NH3在[bmim]Zn2Cl5中的溶解度要远远高于在其他常规离子液体中的溶解度,且[bmim]Zn2Cl5的比热容较低,[bmim]Zn2Cl5/NH3溶液的过量焓适中,这都有利于[bmim]Zn2Cl5/NH3吸收式系统热力性能的提升。通过理论循环分析发现:[bmim]Zn2Cl5/NH3吸收式系统的热力性能要优于NaSCN/NH3吸收式系统,且该系统在制冷温度较低的制冷工况和吸收温度、冷凝温度较高的热泵工况下均具有良好的热力性能和可接受的的循环倍率。总之,[bmim]Zn2Cl5/NH3工质对具有很大的工业应用潜质和良好的商业开发前景。
With the energy shortage, environmental problems and globe warming becoming increasingly serious, absorption refrigeration technologies have attracted more and more attention from the energy researchers all over the world because of their advantages of environmental friendly and utilizing the low grade energy. The most widely-used working pairs are H2O/LiBr and NH3/H2O. Because of the inherent defects of crystallization, corrosion and toxicity, applications of traditional working pairs, H2O/LiBr and NH3/H2O, are largely limited. Ionic liquids possess distinctive properties of negligible vapor pressure, good thermal stability, no corrosion, no crystallization and favorable solvating properties, which make ionic liquids to be excellent alternatives for the traditional absorbent.
     Supported by the National High Technology Research and Development Program of China (863, No.51276180), ionic liquid working pairs of [mmim]DMP/CH3OH with great potential for commercial applications have been screened out and the vapor-liquid equilibrium of [mmim]DMP/CH30H has been investigated. On the basis of preliminary research results, further researches have been conducted.
     1. Based on the vapor pressure data of [mmim]DMP/CH30H, the UNIFAC model and the Wilson model, which are used to predict the vapor pressures and excess enthalpies of [mmim]DMP/CH3OH, respectively, were correlated. The investigation on the thermodynamic performances of [mmim]DMP/CH3OH absorption refrigeration were conducted.
     2. Thermal conductivities of [mmim]DMP/CH30H and [mmim]DMP/H20with different mole fractions of [mmimJDMP were measured by3ω method. The experimental data were correlated by the Random Mixing model.
     3. The dynamic modeling and simulation based on components for parallel type and series type double effect absorption refrigeration using [mmim]DMP/CH30H were conducted. The simulation results were compared with the experimental results in literature.
     From the above mentioned work, some conclusions were obtained. The COP of [mmim]DMP/CH30H cycle is lower than that of LiBr/H2O cycle, but generally higher than that of NH3/H2O cycle. The adding of [mmim]DMP into CH3OH can remarkably enhance its heat transfer performance, which is conducive to improve the thermal performances of [mmim]DMP/CH30H cycle. Through the comparison to the experimental results in literature, it is indicated that the dynamic model well describes the characteristics of the systems and can be used to the further parameter optimization and control designment.
     Generally speaking, the solubilities of refrigerant in the common ionic liquid are not very high, which is an obstacle to improvement of thermal performances. In order to improve the solubilities of refrigerant in ionic liquid, the working pairs with NH3as refrigerant and [bmim]Zn2Cl5as absorbent were proposed, which involve both physical adsorption and chemical absorption mechanisms. The research has been supported by the National Natural Science Foundation of China (No.51276180), and the related researches are listed as follows:
     1. The device of vapor pressure measurement for [bmim]Zn2Cl5/NH3was built, and pressures of [bmim]Zn2Cl5/NH3for T=(323.15-563.15) K were measured by a static method. The experimental data were correlated by a modified UNIFAC model.
     2. TG scan and DSC scan for [bmim]Zn2Cl5were conducted and heat capacity data were obtained. Mole excess enthalpy data of the binary systems [bmim]Zn2Cl5/NH3for T=(288.15-333.15) K were measured, which were correlated by the NRTL model.
     3. Based on the heat capacity of [bmim]Zn2Cl5, vapor pressure and excess enthalpy for [bmim]Zn2Cl5/NH3, the investigation and analysis on the thermodynamic performances of [bmim]Zn2Cl5/NH3absorption refrigeration were conducted, which were compared with that of NaSCN/NH3system.
     From the above mentioned work, we got some conclusions. The solubilities of ammonia in [bmim]Zn2Cl5are higher than that in other ionic liquids, the specific heat capacity of [bmim]Zn2Cl5is small, and the excess enthalpy data of [bmim]Zn2Cl5/NH3are also not very high. All the three parameters are conducive to the improvement of the thermodynamic performances. Through the investigation on the thermodynamic performances of [bmim]Zn2Cl5/NH3system, it is indicated that thermal performances of [bmim]Zn2Cl5/NH3system are better than that of NaSCN/NH3system. Even when the evaporating temperature is low or the condensing temperature and absorption temperature are high, the thermal performances of [bmim]Zn2Cl5/NH3system are still good and the circulation ratios of system are still acceptable. In a word, the working pairs of [bmim]Zn2Cl5/NH3possess great potential for industrial applications and good prospects for commercial development.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2]林汝谋,金红光,蔡睿贤.燃气轮机总能系统及其能的梯级利用原理[J].燃气轮机技术,2008,21(1):1-12.
    [3]姜云涛,付林,胡鹏,李岩.电厂及工业废热利用新途径[J].石油石化节能减排,2011,1(3-4):29-33.
    [4]张丽英,翟辉,代彦军,王如竹.一种地热与太阳能联合发电系统研究[J].太阳能学报,2008,29(9):1086-1091.
    [5]陈曦,韩志群,孔繁华,胡徐腾.生物质能源的开发与利用[J].化学进展,2007,19(7-8):1091-1097.
    [6]陆维德.太阳能利用技术发展趋势评述[J].世界科技研究与发展,2007,29(1):95-99.
    [7]郭进军,何雅玲,陶文铨.空气源制冷/热泵系统的可用能分析[J].制冷与空调,2002,2(5):17-22.
    [8]辛长平.溴化锂吸收式制冷机[D].北京:北京电子工业出版社,2004.
    [9]郑贤德.制冷原理与装置[D].北京:机械工业出版社,2004.
    [10]姚普明,陈秋芳.吸收式循环工质的研究及其发展[J].制冷,1996,3(1):30-35.
    [11]Jawahar C P, Saravanan R. Experimental studies on air-cooled NH3-H2O based modified gax absorption cooling system [J]. International journal of refrigeration,2011, 34(1):658-666.
    [12]王丽伟,王如竹,吴静恰,王凯.氯化钙-氨的吸附特性研究及在制冷中的应用[J].技术科学,2004 34(3):268-279.
    [13]Shiflett M B, Yokozeki A. Absorption cycle using ionic liquids as working fluids [P]. USA,44 US2006/0197053 Al,2006
    [14]陈砺,方利国,谭盈科,麦志谦,邓峰云.CaCl2-NH3化学吸附式制冷工质对吸附特性的研究[J].流体机械,2000,28(7):50-53.
    [15]陈砺,余舜辉,谭盈科.氨吸附制冷特性的实验研究[J].制冷学报,2000,4(1):18-22.
    [16]陈砺,方利国,谭盈科.氯化锶-氨吸附制冷性能的实验研究[J].Acta Energiea Solaris Sinic,2002,23(4):422-426.
    [17]谢迎春,梅宁.氯化钙-氨吸附制冷单元管性能实验分析[J.].Thermal Science and Technology,2004,3 (2):181-184.
    [18]袁晓军,欧阳新萍,刘妮,邬志敏,熊高朋,喇海忠.氯化钙-氨吸附式制冷的实验研究[J].上海理工大学学报,2004,26(5):409-417.
    [19]陆紫生,王如竹.采用复合吸附剂-氨的多功效热管型高效吸附制冷机[J].科学通报,2005,50(19):2180-2182.
    [20]Wang R Z, Wang L W. Adsorption refrigeration-green cooling driven by low grade thermal energy [J]. Chinese Science Bulletin,2005,50(3):193-204.
    [21]Wang K. Performance and application of CaCl2/expanded graphite adsorbent for double heat pipes type refrigeration [D].2007, Shanghai:Shanghai Jiao Tong University.
    [22]李廷贤,王如竹,王丽伟.低品位热能驱动的高效热化学吸附式制冷研究[J].科学通报,2008,52(24):2978-2993.
    [23]张锁江,刘晓敏,姚晓倩,董海峰,张香平.离子液体的前沿、进展及应用[J].中国科学B辑:化学,2009,39(10):1134-1144.
    [24]尉志苹,王少君,曲丰作.离子液体催化反应精馏合成乙酸乙酯[J].精细化工中间体,2007,37(6):39-.41.
    [25]李广伟,鲁俊民,秦东振,詹自力,郭雪原.离子液体在电流型电化学气体传感器中的应用[J].化工进展,2013,32(10):2409-2415.
    [26]吴芹,陈和,韩明汉,王金福,金涌.B酸离子液体催化棉籽油酯交换制备生物柴油[J].石油化工,2006,35(6):583-586.
    [27]Sergey P V, Javid S, Eckard B, Hassel E, Andreas H. Thermodynamic properties of mixtures containing ionic liquids vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butylimidazolium bis(trifluorome-thylsulfonyl)imide [J]. Fluid Phase Equilibria,2005,236(1-2):222-228.
    [28]Michael D, Jurgen G Measurement and prediction of vapor-liquid equilibria of ternary systems containing ionic liquids [J]. Fluid Phase Equilibria,2005,227(2):255-266.
    [29]Shiflett M B, Harmer M A, Junk C P, Yokozeki A. Solubility and diffusivity of 1,1,1,2-tetrafluoroethane in room-temperature ionic liquids [J]. Fluid Phase Equilibria,2006, 242(2):220-232.
    [30]Yokozeki A, Shiflett M B. Vapor-liquid equilibria of ammonia+ionic liquid mixtures [J]. Applied Energy,2007,84(12):1258-1273.
    [31]Astrid M S, Raeissi S. Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [J]. Fluid Phase Equilibria,2007,260(1):19-22.
    [32]Jiang X C, Wang J F, Li C X, Wang L M, Wang Z H. Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate [J]. Chemical Thermodynamics,2007, 39(6):841-846.
    [33]Shiflett M B, Kasprzak D J, Junk C P, Yokozeki A. Phase behavior of {carbon dioxide+ [bmim][Ac]} mixtures [J]. Chemical Thermodynamics,2008,40(1):25-31.
    [34]Ren W, Scurto A M. Phase equilibria of imidazolium ionic liquids and the refrigerant gas 1,1,1,2-tetrafluoroethane [J]. Fluid Phase Equilibria,2009,286(1):1-7.
    [35]Li G H, Zhou Q, Zhang X P, Wang L, Zhang S J, Li J W. Solubilities of ammonia in basic imidazolium ionic liquids [J]. Fluid Phase Equilibria,2010,27(1):34-39.
    [36]Raeissi S, Florusse L, Peters C J. Scott-van Konynenburg phase diagram of carbon dioxide+alkylimidazolium-based ionic liquids [J]. Supercritical Fluids,2010,55(2): 825-832.
    [37]赵杰,梁世强.离子液体[mmim]DMP-甲醇浓溶液气液平衡[J].化学工程,2010,38(3):52-56.
    [38]He Z B, Zhao Z C, Zhang X D, Feng H. Thermodynamic properties of new heat pump working pairs:1,3-Dimethylimidazolium dimethylphosphate and water, ethanol and methanol [J]. Fluid Phase Equilibria,2010,298 (1):83-91.
    [39]Jose P, Maria G M, Bedia J, Francisco R, Rodrigue J J. Task-specific ionic liquids for efficient ammonia absorption [J]. Separation and Purification Technology,2011,82 (1): 43-52.
    [40]Shiflett M B, Elliott B A, Yokozeki A. Phase Behavior of Vinyl Fluoride in Room-Temperature Ionic Liquids [emim][Tf2N], [bmim][N(CN)2], [bmpy][BF4], [bmim][HFPS] and [omim][TFES] [J]. Fluid Phase Equilibria,2011,132 (1):84-99.
    [41]Ismael D, Ioannis T, Panayiotou C. Predictions of high pressure phase equilibria of CO2-containing mixtures with the NRCOSMO model [J]. Fluid Phase Equilibria,2012, 313(1):203-210.
    [42]Fredlake C P, Crosthwaite J M, Hert D G, Aki S N V K, Brennecke J F. Thermophysical properties of imidazolium-based ionic liquids [J]. Journal of Chemical Engineering Data,2004,49(4):954-964.
    [43]Anja D, Gmehling J. Measurement of heat capacities of ionic liquids by differential scanning calorimetry [J]. Fluid Phase Equilibria,2006,244(1):68-77.
    [44]Waliszewski D, Stepniak I, Piekarski H et al. Heat capacities of ionic liquids and their heats of solution in molecular liquids [J]. Thermochimica Acta,2005,433(1-2): 149-152.
    [45]Zhang Z H, Tan Z C, Sun L X. Thermodynamic investigation of room temperature ionic liquid:The heat capacity and standard enthalpy of formation of EMIES [J]. Thermochimica Acta,2006,447(2):141-146.
    [46]Jacobo T, Cerdeirin C A, Sanmamed Y A. Thermodynamic properties of imidazolium-based ionic liquids:densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2] [J]. Journal of Chemical Engineering Data,2006,51(5):1856-1859.
    [47]杨许召,王军,孙新科.双阳离子型离子液体[C4(MIM)2][PF6]2的比热容测定及其模型化[J].北京化工大学学报,2011,38(2):27-31.
    [48]Calvar N, Gomez E, Macedo E A, angeles D, Thermal analysis and heat capacities of pyridinium and imidazolium ionic liquids [J]. Thermochimica Acta,2013,565(10): 178-182.
    [49]Soriano A N, Agapito A M, Lagumbay L I, Caparanga A R, Li M H. A simple approach to predict molar heat capacity of ionic liquids using group-additivity method [J], Journal of the Taiwan Institute of Chemical Engineers,2010,41(3):307-314.
    [50]田涛,郑丹星,武向红.室温离子液体[Emim]BF4及其水溶液体系的比热容测定[J].北京化工大学学报,2008,35(3):27-30.
    [51]魏治.H20-[Mmim]Cl体系的量热及其吸收循环应用分析[D].2009,北京:北京化工大学.
    [52]Rebelo L P N, Najdanvic-Visakm V, Visak Z P et al. A detail thermodynamic analysis of [bmim]BF4+water as a case study to model ionic liquid aqueous solutions[J]. Green Chemical,2004,6(1):369-381.
    [53]左桂兰.离子液体型热泵新工质的性质研究[D].2006,大连:大连理工大学.
    [54]晏双华.离子液体型新工质-[EMIM][DEP]的性质研究[D].2009,大连:大连理工大学.
    [55]赵杰,梁世强.离子液体[mmim]DMP-甲醇浓溶液气液平衡[J].化学工程,2010,38(3):52-56.
    [56]Lin P Y, Soriano A N, Leron R B, Li M H. Measurements and correlations of electrolytic conductivity and molar heat capacity for the aqueous ionic liquid systems containing [Emim][EtSO4] or [Emim][CF3SO3] [J]. Experimental Thermal and Fluid Science,2011,35(6):1107-1112.
    [57]Hu H C, Soriano A N, Leron R B, Li M H. Molar heat capacity of four aqueous ionic liquid mixtures [J]. Thermochimica Acta,2011,519(1-2):44-49.
    [58]Lashkarbolooki M, Hezave A Z, Ayatollahi S. Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids [J]. Fluid Phase Equilibria,2012 324(25):102-107.
    [59]Fouad Z, Pando C, Cabanas A, Renuncio R. Measurements and modeling of high-pressure excess molar enthalpies and isothermal vapor-liquid equilibria of the carbon dioxide+ N,N-dimethylformamide system [J]. Supercritical Fluids,2010,55(2): 566-572.
    [60]Kato R, Michael K, Gmehling J. Measurement and correlation of vapor-liquid equilibria and excess enthalpies of binary systems containing ionic liquids and hydrocarbons [J]. Fluid Phase Equilibria,2004,224(1):47-54.
    [61]闫卫东.醇+(酮、离子液体)二元体系的过量焓测定、关联和COSMO-type模型的应用[D].2008,杭州:浙江大学.
    [62]Gonzalo G, Troncoso J, Luis R. Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids+water [J]. Journal of Chemical Thermodynamics,2009,41(2):161-166.
    [63]Silvia P, Marongiu B, Schirru M, Falconieri D, Piras A. Excess enthalpy and excess volume for binary systems of two ionic liquids + water [J]. Thermal Analysis and Calorimetry,2011,103(1):29-33.
    [64]He Z B, Zhao Z C, Zhang X D. Thermodynamic properties of new heat pump working pairs:1,3-Dimethylimidazolium dimethylphosphate and water, ethanol and methanol [J]. Fluid Phase Equilibria,2010,298(1):83-91.
    [65]Deng Y, Husson P, Jacquemin J, Youngs T, Hardacr2e C, Gomes M F C. Volumetric properties and enthalpies of solution of alcohols CkH2k+1OH (k= 1,2,6) in 1-methyl-3-alkylimidazolium bis(trifluoro-methylsulfonyl)imide{[C1CnIm][NTf2] n= 2,4,6,8,10} ionic liquids [J].Journal of Chemical Thermodynamics,2011,43(11): 1708-1718.
    [66]Gonzalo G M, Jacobo T, Luis R. Excess properties for binary systems ionic liquid+ ethanol:Experimental results and theoretical description using the ERAS model [J]. Fluid Phase Equilibria,2008 274(1):59-67.
    [67]Gonzalo G M, Jacobo T, Luis R. Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids+water [J]. Journal of Chemical Thermldynamics,2009 41(1):161-166.
    [68]Krolikowska M, Paduszynskia K, Hofinan T, Antonowicz J. Heat capacities and excess enthalpies of the (N-hexylisoquinolinium thiocyanate ionic liquid+water) binary systems [J]. Journal of Chemical Thermldynamics,2012 55(1):144-150.
    [69]Nebig S, Rainer B, Gmehling J. Measurement of vapor-liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and prediction of these properties and γ∞ using modified UNIFAC (Dortmund) [J]. Fluid Phase Equilibria,2007,258(2):168-178.
    [70]Nebig S, Liebert V, Gmehling J. Measurement and prediction of activity coefficients at infinite dilution (γ∞), vapor-liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1,1-dialkyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide using mod. UNIFAC (Dortmund) [J]. Fluid Phase Equilibria,2009,277(1):61-67.
    [71]Nebig S, Gmehling J. Prediction of phase equilibria and excess properties for systems with ionic liquids using modified UNIFAC:Typical results and present status of the modified UNIFAC matrix for ionic liquids, Fluid Phase Equilibria,2011,302(1-2): 220-225.
    [72]Shiflett M B, Yokozeki A. Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids [J]. AIChE,2006,52(3):1205-1219.
    [73]杨琴,黄宇,罗二仓,胡剑英.以跨临界C02-离子液体[bmim]PF6为工质对的吸收式制冷循环性能分析[J].低温工程,2009,169(3):5-10.
    [74]黄宇,杨琴,罗二仓,胡剑英.一种二氧化碳-离子液体吸收式制冷系统性能的分析研究[J].低温与超导,2009,37(6):47-52.
    [75]Cai W H, Sen M, Paolucci S. Dynamic modeling of an absorption refrigeration system using ionic liquids [A]. In:ASME International Mechanical Engineering Congress and Exposition [C], Washington, USA,2007.
    [76]Angel M, Maria D B. Thermodynamic analysis of absorption refrigeration cycles using ionic liquid+supercritical CO2 pairs [J]. Supercritical Fluids,2010,55(2):852-859.
    [77]王建召,郑丹星.以TFE-[BMIm][Br]为工质对的吸收式制冷循环性能分析[J].Journal of engineering thermodynamics,2008,29(11):1813-1816.
    [78]Zhang X D, Hu D P. Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair [J]. Applied Thermal Engineering,2010,31 (16):3316-3321.
    [79]梁世强,赵杰.离子液体[1nmim]DMP-甲醇浓溶液热物性实验研究[J].工程热物理学报,2011,32(3):441-444.
    [80]王建召.吸收式循环构型及含咪唑类离子液体工质对的研究[D].2009,北京:北京化工大学.
    [81]毛宝龙.船用烟气驱动单效TFE/TEGDME吸收式制冷的研究[D].2013,大连:大连海事大学.
    [82]粟航,郭开华,皇甫立霞,孙立.强吸水性离子液体-水工质对吸收式制冷循环性能分析[J].低温学报,2013,34(3):24-30.
    [83]Kim Y J, Kim S, Joshi Y K, Fedorov A G,Kohl P A. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid [J]. Energy,2012,44(1):1005-1016.
    [84]Dong L, Zheng D X, Nie N, Li Y. Performance prediction of absorption refrigeration cycle based on themeasurements of vapor pressure and heat capacity of H2O+ [DMIM]DMP system[J]. Applied Energy,2012,98(c):326-332.
    [85]Freire M G, Santos L. Evaluation of COSMO-RS for the prediction of LLE and VLE of alcohols+ionic liquids [J]. Fluid Phase Equilibria,2007,255(2):167-178.
    [86]赵杰,梁世强.离子液体[mmim]DMP-甲醇浓溶液气液平衡[J].化学工程,2010,38(3):52-56.
    [87]Zhao J, Jiang X C, Li C X. Vapor Pressure Measurement for Binary and Ternary Systems Containing a Phosphoric Ionic Liquid [J]. Fluid Phase Equilibria,2006,247 (1-2):190-198.
    [88]Wang D, Xuan A G. Study on gas-liquid equilibria with the UNIFAC model for the systems of synthesizing dimethyl carbonate [J]. Fluid Phase Equilibria,2011,302(1-2): 269-273.
    [89]Wang J F, Sun W, Li C X, Wang Z H. Correlation of infinite dilution activity coefficient of solute in ionic liquid using UNIFAC model [J]. Fluid Phase Equilibria,2008, 264(1-2):235-241.
    [90]Juan A G, Isaies G F. Thermodynamics of mixtures with strongly negative deviations from Raoult's Law Part 4. Application of the DISQUAC model to mixtures of 1-alkanols with primary or secondary linear amines. Comparison with Dortmund UNIFAC and ERAS results [J]. Fluid Phase Equilibria,2000,168(1):31-58.
    [91]王皓,陆康,彭璇.基于Wilson、UNIQUAC和NRTL活度系数模型的离子液体体系的相平衡比较[J].低温学报,2013,40(1):10-15.
    [92]李胜迎.醇+(酮、离子液体)二元体系的过量焓测定、关联和COSMO-type模型应用[D].2008,杭州:浙江大学.
    [93]Chen N H. Generalized correlation for latent heat of vaporization [J]. Jounal of Chemical Engineering Data,1965,10(1):207-210.
    [94]房鼎业,应卫勇,朱炳辰.加压下含甲醇混合气体定压热容、粘度与导热系数[J].化肥设计,1989,6(1):31-38.
    [95]Kim K S, Shin B K, Lee H. Refractive Index and Heat Capacity of 1-Butyl-3-Methy-limidazolium Bromide and 1-Butyl-3-Methylimidazolium Tetrafluoroborate and Vapor Pressure of Binary Systems for 1-Butyl-3-Methylimidzolium Bromide+Trifluroethanol and 1-Butyl-3-Methylimidazolium Tetrafluoroborate+Trifluoroethanol [J]. Fluid Phase Equilibria,2004,218(2):215-220.
    [96]Chen W, Liang S Q, Yongxian Guo Y X, Cheng K Y, Gui X H, Tang D W. Thermodynamic performances of [mmim]DMP/methanol absorption refrigeration [J]. Journal of Thermal Science,2012,21(6):557-563.
    [97]苏国萍.基于谐波法的热功能材料热导率的实验研究[D].2012,北京:中国科学院工程热物理研究所.
    [98]徐宜发.非稳态发与准稳态发测量热系数[J].推进技术,1994,1(1):81-86.
    [99]Corbino O M. Thermal oscillations in lamps of thin fibers with alternating current flowing through them and the resulting effect on the rectifier as a result of the presence of even-numbered harmonics [J]. Physikalische Zeitschrift,1910,11(1):413-417.
    [100]Corbino O M. Periodic resistance changes of fine metal threads which are brought together by alternating streams as well as deduction of their thermo characteristics at high temperatures [J]. Physikalische Zeitschrift,1911,12(1):292-295.
    [101]王建立,朱建军,宋辰兴,张兴.3ω法测量纳米流体热导率[J].化工学报,2011,62(S1):81-86.
    [102]邱琳,郑兴华,李谦,唐大伟,钱杨保,张伟刚.陶瓷热障涂层的热导率和热扩散率测量[J].功能材料,2010,41(S2):264-267.
    [103]王照亮,唐大伟,郑兴华,周乐平,刘石.利用 3ω法同时测量纳米流体热导率和热扩散系数[J].化工学报,2007,58(10):2462-2468.
    [104]陈艳婕,张鹏,王如竹.低温下用 3ω法测量热导率的研究[J].低温技术,2009,37(9):16-21.
    [105]顾明,王建立,张兴.用改良 3ω方法测量聚合物的热导率[J].工程热物理学报,2009,30(3):449-452.
    [106]Zheng X H, Qiu L, Su G P, Tang D W, Liao Y C, Chen Y F. Thermal conductivity and thermal diffusivity of SiO2 nanopowder [J]. Journal of Nanoparticle Research,2011, 13(12):6887-6893.
    [107]Wang H, Sen M. Analysis of the 3-omega method for thermal conductivity measurement [J]. International Journal of Heat and Mass Transfer,2009 52(7-8): 2102-2109.
    [108]邱琳,郑兴华,苏国萍,唐大伟.具有独立探头的 3ω术测量固体热导率[J].工程热物理学报,2011,32(4):621-624.
    [109]Qiu L, Zheng X H, Zhu J, Tang D W. Non-destructive measurement of thermal effusivity of a solid and liquid using a freestanding serpentine sensor-based 3ω technique [J]. Review of Scientific Instruments,2011,82(8):086110.
    [110]Qiu L, Tang D W, Zheng X H, Su G P. The freestanding sensor-based 3ω technique for measuring thermal conductivity of solids:Principle and examination [J]. Review of Scientific Instruments,2011,82(4):045106.
    [111]Dames C, Chen G. 1ω,2ω, and 3ω methods for measurements of thermal properties [J]. Review of Scientific Instruments,2005,76(12):124902.
    [112]Qiu L, Zheng X H, Su G P, Tang D W. Design and application of a freestanding sensor based on 3ω technique for thermal conductivity measurement of solids, liquids and nanopowders [J]. International Journal of Thermophysics,2011,34(12):2261-2275.
    [113]Naziev M Y, Bashirov M M, Abdulagatovb I M. High-temperature and high-pressure experimental thermal conductivity for the pure methanol and binary systems methanol +n-propanol, methanol+n-octanol, and methanol+n-undecanol [J]. Fluid Phase Equilibria,2004,226(2):221-235.
    [114]Assael M J, Charitidou E, Wakeham W A. Absolute Measurements of the Thermal Conductivity of Mixtures of Alcohols with Water [J]. International Journal of Thermophysics,1989,10(4):793-803.
    [115]Chandrasekar M, Suresh S, Chandra A. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid [J]. Experimental Thermal and Fluid Science,2010,34(2):210-216.
    [116]Mintsa H A, Roy G, Nguyen C T, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids [J]. International Journal of Thermal Sciences,2009,48(2):363-371.
    [117]Mayer J E. Statistical mechanics of condensing systems. V. Two-component Systems [J]. Journal of Physical Chemistry,1939,43(1):71-95.
    [118]Yokozeki A. Solubility of refrigerants in various lubricants [J]. International Journal of Thermophysics,2001,22(4):1057-1071.
    [119]Bittanti S, Marco A D, Giannatempo M, Prandoni V. A dynamic model of an absorption chiller for air conditioning [A]. In:International Conference on Renewable Energies and Power Quality [C], Spain,2010.
    [120]Fu D G, Poncia G, Lu Z. Implementation of an object-oriented dynamic modeling library for absorption refrigeration systems [J]. Applied Thermal Engineer,2006, 26(2-3):217-225.
    [121]Chen W, Qiu L, Liang S Q, Zheng X H, Tang D W. Measurement of thermal conductivities of [mmim]DMP/CH30H and [mmim]DMP/H20 by freestanding sensor-based 3ω technique [J]. Thermochimica Acta,2013,560(1):1-6.
    [122]邵莉.R134a在卧式螺旋管内的两相流动与传热特性研究[D].济南:山东大学,2009.
    [123]李小平,陆震,范林,黄兴华.溶液热交换器的分布参数模拟[J].制冷技术,2000,2(1):10-12.
    [124]Palomar J, Miquel M G, Bedia J, Rodriguez F, J.J. Rodriguez. Task-specific ionic liquids for efficient ammonia absorption [J]. Separation and Purification Technology, 2011,82(1):43-52.
    [125]魏颖,张庆国.锌基离子液体BMIZn2Cl5的性质研究[J].化学学报,2008,66(16):1879-1883.
    [126]Islam A W, Rahman M H. A review of Barker's activity coefficient method and VLE data reduction [J]. Journal of Chemical Thermodynamics,2012,44(1):31-37.
    [127]Li S, Cheng Z L, Ma Y Q, Yang W M. The new concise equation of state for ammonia [J]. Journal of Engineer Thermophysics,2000,21(1):17-19.
    [128]Santiago R S, Santos G R, Aznar M. Liquid-liquid equilibrium in ternary ionic liquid systems by UNIFAC:new volume, surface area and interaction parameters [J]. Fluid Phase Equilibria,2010,295(1):93-97.
    [129]Lemos L, Patricio P, Rodrigues G, Carvalho R, Silva M, Silva L. Liquid-liquid equilibrium of aqueous two-phase systems composed of poly(ethylene oxide) 1500 and different electrolytes ((NH4)SO4, ZnSO4 and K2HPO4):Experimental and correlation [J]. Fluid Phase Equilibria,2011,305 (1):19-24.
    [130]Chen W, Liang S Q, Guo Y X, Gui X H, Tang D W. Investigation on vapor-iquid equilibria for binary systems of metal ion-containing ionic liquid [bmim]Zn2Cl5/NH3 by experiment and modified UNIFAC model[J]. Fluid Phase Equilibria,2013,360(1):1-6.
    [131]Zhang Y, Que H L, Chen C C. Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model [J]. Fluid Phase Equilib,2011.311(1): 67-75.
    [132]Rayer A V, Henni A, Tontiwachwuthikul P. High-pressure solubility of methane (CH4) and ethane (C2H6) in mixed polyethylene glycol dimethyl ethers (Genosorb 1753) and its selectivity in natural gas sweetening operations [J]. Journal of Chemical Engineering Data,2012,57(3):764-775.
    [133]Que H L, Chen C C, Thermodynamic modeling of the NH3-CO2-H2O system with electrolyte NRTL model [J]. Industry Engineering Chemical Research,2011,50(19): 11406-11421.
    [134]Reading M, Hourston D J. Modulated temperature differential scanning calorimetry [M]. Netherlands:Springer,2006.
    [135]Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures, AIChE Journal,1986,14(1) 135-144.
    [136]Venegas M, Arzoz D, Rodriguez P. Heat and mass transfer in LiNO3-NH3 spray absorption refrigeration system [J]. International Communacation of Heat and Mass Transfer,2003,30(6):805-815.
    [137]Farshi L G, Ferreira C A I, Mahmoudi S M S, Rosen M A, First and second law analysis of ammonia/salt absorption refrigeration systems [J]. Refrigeration,2014,40(1): 111-121.
    [138]Wang W, Qu T F, Wang R Z. Influence of degree of mass recovery and heat regeneration on adsorption refrigeration cycles [J]. Energy Conversion and Management,2002, 43(5):733-741.
    [139]Zhu L H, Gu J J. Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system [J]. Renewable Energy,2010,35(9):1940-1946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700