用户名: 密码: 验证码:
蚕丝的仿生纺丝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜘蛛和蚕都能在环保的条件下,即以水为溶剂,在常温、常压下,通过干法纺高效纺制出强韧的纤维。目前,对蜘蛛和蚕的仿生纺丝技术的研究,正成为众多领域尤其是高分子材料领域研究的热点之一。但是,鉴于蜘蛛丝蛋白尚无法大量获取,而蚕的成丝过程与蜘蛛的成丝过程比较相似,蚕丝丝素蛋白的主要氨基酸组份与蜘蛛丝蛋白也比较接近,且蚕丝来源丰富、便于提纯,在一定的成丝条件下,其机械性能甚至可与蜘蛛丝媲美,因此,以蚕丝丝素蛋白为模型来进行仿生纺丝研究越来越引起研究者的重视。
     在开展蚕丝的仿生纺丝过程中,有必要在了解蚕体内的纺丝系统和丝素蛋白(SF)水溶液结构与性质的基础上,模拟制备合适的纺丝液,探索采用干法纺丝和环保的工艺,开发出高性能的再生丝素蛋白纤维。鉴于迄今为止对蚕体内溶液流变性能及SF聚集体结构尺寸变化规律的研究鲜有报道,并且,人类对蚕的成丝机理也尚未达成共识,因此,本论文在开展蚕丝的仿生纺丝研究之际,将先对蚕体内各部位纺丝液的结构与性质进行分析研究,并进一步模拟蚕体内纺丝液的变化过程,探讨众多因素对再生丝素蛋白水溶液结构与性质的影响,从中了解蚕丝蛋白的纤维化机理。在此基础上,进一步探索开发较常规干纺工艺更为简单环保的工艺制备出性能优良的再生丝素蛋白纤维。
     为了对蚕体内纤维化过程有更深入地了解,本论文首先采用偏光显微镜、旋转流变仪、红外光谱仪、拉曼光谱仪和动态光散射仪对蚕吐丝过程中丝腺不同部位的SF水溶液的结构与性能进行了研究。研究发现,只有前部丝腺和中部丝腺前区的溶液具有偏光现象。随着SF水溶液从中部后区向前区流动,溶液的粘度和弹性均逐渐变小,SF分子构象也逐渐向p-折叠构象转变。同时,SF发生了聚集,在中部丝腺前区形成了尺寸较大且较为均匀的聚集体。这些结果表明,蚕体内SF溶液在从后部丝腺向前部丝腺流动的过程中,溶液中的SF分子逐渐由原先的无序状态转变成有序态结构。并且,在蚕体内中部丝腺前区的SF溶液很可能已经形成了液晶态结构。
     为了模拟蚕体内纺丝液的变化过程,本论文进一步采用自制的平板剪切装置,以较高浓度的再生丝素蛋白(RSF)水溶液为研究对象,研究了不同剪切速率下,溶液浓度、pH值和Ca2+含量等因素对RSF水溶液性质与结构的影响。研究表明,RSF水溶液经过一定的剪切作用后将呈现出各向异性的性质。并且,在本论文研究范围内,RSF浓度的提高、pH值的降低、Ca2+的添加均有助于剪切作用下RSF水溶液由各向同性转变为各向异性。为了进一步探讨剪切时间对高浓度RSF水溶液体系的影响,本论文还将光学剪切台与同步辐射小角X射线散射设备联用并结合流变性能分析,在线研究了恒定剪切速率下,剪切不同时间的RSF水溶液结构与性质的变化。研究发现,适当延长剪切时间与提高剪切速率(应力)等效,均有利于RSF分子的聚集及有序排列并促进向β-折叠构象的转变;随着剪切时间的延长,RSF水溶液的粘度逐渐增加至出现峰值,此时溶液中足够多的RSF分子已由无序状态沿剪切方向聚集形成了类棒状结构聚集体,对应溶液开始呈现各向异性(偏光现象)。继续延长剪切时间,体系粘度下降,溶液中RSF聚集体长径比增大,棒状结构和偏光现象更为明显。综合这些研究结果,我们推测,在本论文研究条件下,当高浓度RSF水溶液在一定剪切速率下剪切至开始呈现各向异性时,溶液中的丝素蛋白分子很可能开始形成了一种棒状液晶态有序结构。并且,本论文在对由常规非简化方法制备(即同时调节了pH值和Ca2+含量)的高浓度RSF水溶液与简化工艺法制备(即仅调节Ca2+含量)的高浓度RSF水溶液的相关研究中均获得了上述类似的结果。由此表明,pH值的调整对于RSF水溶液中液晶态结构的形成并无明显影响。
     为此,结合剪切实验结果,本论文提出了更为环保的以仅添加适量Ca2+的RSF水溶液为纺丝液来制备RSF纤维的简化干法纺丝工艺,并采用毛细管纺丝装置实施了干法纺丝。研究发现,所得初生纤维由于尚未达到天然蚕丝的高倍拉伸状态,因此二级结构和力学性能与天然脱胶丝相比尚有差距。因此,本论文进一步对纺丝工艺及后拉伸等条件进行了探讨。结果表明,适当提高卷绕速率、纺丝液浓度和毛细管长径比有利于促使纤维中丝素蛋白分子发生向β-折叠构象的转变并提高纤维的力学性能,本论文实验条件下较合适的卷绕速率为3cm/s,纺丝液浓度为53wt%,毛细管长径比为80。为了进一步改善纤维结构,提高纤维性能,本论文选择乙醇-水混合溶液作为后处理剂,对简化工艺法RSF初生纤维进行拉伸浸泡后处理。研究结果表明,和常规非简化法RSF纤维相比,简化工艺法RSF纤维表现出了更完善的二级结构、结晶结构、取向结构和更好的力学性能。经后处理的简化工艺法RSF纤维的结晶度约为48%,和天然脱胶丝相近。同时,纤维的取向度也有大幅度提高,力学性能明显改善,其断裂强度、初始模量和断裂能分别达到了357.3MPa、10.3GPa和52.7kJ/kg,大大优于天然脱胶丝。此外,本论文还采用微流体芯片纺丝装置进行了简化工艺法RSF水溶液的干纺初探,发现通过该技术,RSF纤维的结构与性能有望进一步改善。这些结果表明,通过简化RSF纺丝液的制备工艺,即无需调节溶液的pH值,仅加入适量Ca2+并利用干法纺丝及适当的后处理手段,可以更为简单环保地制备高性能RSF纤维。
     在上述研究的基础上,为进一步探明Ca2+在简化工艺法RSF纤维形成过程中的作用,本论文采用简化工艺法制备了不同Ca2+含量的RSF水溶液并进行了干法纺丝和拉伸后处理,分析了Ca2+含量对RSF水溶液及所得纤维结构和性能的影响。研究表明,Ca2+含量对RSF水溶液的流变性能和可纺性影响较大。随着Ca2+含量的增加,高浓度RSF水溶液的粘度逐渐下降。在本论文条件下,Ca2+含量在1.25-2.50mmol/g范围内,高浓度RSF水溶液干纺可纺性相对较好。并且,Ca2+的加入促进了RSF水溶液中p-折叠构象和大尺寸RSF聚集体的形成,也进一步促使所纺制的RSF初生和后处理纤维中p-折叠构象含量和结晶度的提高,同时也有利于纤维内部大分子链和晶区的取向排列,由此使纤维的力学性能也相对较好。对Ca2+作用机理的研究发现,Ca2+的加入会与RSF分子链的亲水区形成类似COO--Ca2+--OOC的螯合结构,从而促进分子链间氢键以利于p-折叠构象的形成。并且,这种紧密的分子结构在经过喷丝头的剪切和后处理过程中的拉伸作用后,更易于沿外力方向上进行有序排列,从而形成结构完善、性能较好的RSF纤维。
Both silkworm and spider can efficiently dry spin outstanding fibers under environmentally friendly conditions using water as solvent at atmospheric pressure and room temperature. Recently, the studies on biomimicking the spinning processes of spider and silkworm have been carried out with great attentions by researchers in many fields, especially in the field of polymer materials. However, the poor protein amount produced by spider has set a restriction to the further research on animal silk. In contrast, silkworm silk has similar amino acid composition and formation mechanism as spider silk. Meanwhile, silkworm silk can be obtained easily and shows excellent mechanical properties as spider silk under certain spinning conditions. Therefore, silkworm silk has been selected as a model to perform the biomimetic spinning of silk by many researchers.
     When studying the biomimetic spinning of silk, it is necessary to understand the spinning system of silkworm and the structures and properties of the silk fibroin (SF) aqueous solution in vivo, then a suitable spinning dope can be prepared by mimicking the SF state and an environmentally friendly dry spinning technology can be explored to produce high performance regenerated silk fibroin (RSF) fibers. However, the investigations on the rheological properties of the natural SF solutions and the structural change of SF aggregates along the silk gland are rarely reported. Meanwhile, the formation mechanism of silk is still incompletely known. Therefore, before studying the biomimetic spinning of silk, the structures and properties of the natural spinning dopes in different divisions of silk gland were firstly investigated in this thesis. Then the changing process of natural dope was mimicked in vitro and the effects of various factors on the structures and properties of RSF aqueous solution were discussed to better understand the formation mechanism of silk. Based on these works, an environmentally friendly and simple dry spinning technology was further explored to prepare high performance RSF fibers.
     To understand the formation process of silk in vivo, in this thesis, the structures and properties of the SF aqueous solutions from different divisions of silk gland were investigated using polarized microscope, rotational rheometer, FT-IR spectrometer, Raman spectrometer and dynamic laser light scattering instrument. It was found that only the anterior division and the anterior part of middle silk gland showed birefringence. With flowing from the posterior part to the anterior part in the middle silk gland, the viscosity and elasticity of the SF aqueous solution decreased, and its conformation was also gradually transformed into P-sheet. Meantime, the aggregation of SF gradually occurred and the larger aggregates with more uniform size were eventually formed in the anterior part of middle silk gland. These results indicated that as the SF solution flowed from the posterior division to the anterior division in the silk gland, it was gradually changed from isotropy to anisotropy and the liquid crystal structure might be initially formed in the anterior part of middle silk gland.
     In order to biomimic the SF dope in silk gland, the condensed RSF aqueous solution was prepared.Then, the effects of solution concentration, pH value and Ca2+content on the structures and properties of the RSF solution under different shear rates were studied using plate shear device. It was found that the RSF aqueous solution was changed to anisotropy after being applied sufficient shear. Meanwhile, it was also found that the increase of concentration, decrease of pH value and the addition of Ca2+promoted the solutions'structural transition from isotropy to anisotropy. Furthermore, the effect of shear time on the structures and properties of condensed RSF aqueous solution system was investigated online by using optical shearing instrument, synchrotron radiation small angle X-ray scattering and rotational rheometer. It was found that the extension of shear time and the increase of shear rate (stress) were equivalent, and both could lead the aggregation of RSF molecules and the conformational transition to β-sheet. As the shear time increased, the viscosity of the RSF aqueous solution gradually increased to a maximum. Meantime, rod like structures were formed due to the aggregation of enough RSF molecules along the shear direction, and the corresponding solution showed birefringence. As the shear time was further extended, the solution viscosity decreased and the length/diameter ratio of RSF aggregates increased. The rod like structures and the birefringence of the solution became more obviously. These results indicated that the RSF molecules might gradually form a rod-like liquid crystalline structure in the solution when the condensed RSF aqueous solution was optically anisotropic after being applied sufficient shear.In addition, both the conventionally prepared RSF aqueous solution (with the adjustment of pH value and Ca2+concentration) and the simply prepared RSF aqueous solution (with solely adjusting the Ca2+concentration) showed similar results. This indicated that the adjustment of pH value had little effect on the formation of liquid crystal structure in the RSF aqueous solution.
     In view of the shear experiments' results, a new and more environmentally friendly dry spinning technology with solely adding Ca2+was proposed to prepare RSF dry-spun fiber using capillary spinning equipment. The resultant RSF fiber exhibited poorer structures and mechanical properties compared with the natural degummed silk, which was due to the deficient drawing of the artificial silk in air. In order to improve its mechanical properties, the parameters for the spinning and post-treatment were further adjusted. It was found that a proper increase of the take-up rate, spinning dope concentration and the length/diameter ratio of capillary promoted the formation of β-sheet conformation and hence improved the mechanical properties of the fibers. In this thesis, the suitable take-up rate, spinning dope concentration and the length/diameter ratio of capillary were about3cm/s,53wt%and80, respectively. Moreover, the ethanol aqueous solution was chosen as the post-treatment agent, and then the RSF fiber was drawn and immersed in the solution to improve its properties and structures. It was found that compared with the conventionally prepared RSF post-treated fiber, the simply prepared RSF post-treated (Sim-Post) fiber showed better secondary structure, crystalline structure and orientation, as well as better mechanical properties. After post-treatment, the crystallinity of the Sim-Post fiber was about48%, which was similar to that of the natural degummed silk. Meanwhile, the mechanical properties of the Sim-Post fiber were also greatly enhanced, with an average breaking strength of357.3Mpa, an initial modulus of10.3GPa and a breaking energy of52.7kJ/kg, which were even better than those of the natural degummed silk. In addition, the microfluidic chip was tried to dry spin RSF fibers from the simply prepared RSF aqueous solution. It was found that the structures and properties of the resultant RSF fiber could be improved by using this technology. The above results indicated that high performance RSF fibers could be obtained more simply and environmentally friendly by simplifying the preparation process of RSF spinning dope, which was without the adjustment of pH value and with solely adding Ca2+,using a dry spinning technology and a proper post-treatment.
     Based on the above work and in order to understand the role of Ca2+on the formation of RSF fibers, the RSF aqueous solutions with different concentrations of Ca2+were prepared for dry spinning and post-treatment. Meanwhile, the effects of Ca2+on the structures and properties of RSF aqueous solutions and the resultant fibers were investigated. Results showed that the concentration of Ca2+greatly affected the rheological properties and spinnability of RSF aqueous solutions. As the concentration of Ca2+increased, the viscosity of the solution decreased. In this thesis, when the concentrations of Ca2+were1.25~2.50mmol/g, the RSF aqueous solutions showed good spinnability. Meanwhile, the addition of Ca2+prompted the formation of β-sheet and the aggregation of RSF, which further caused the increase of β-sheet content and crystallinity in the resultant as-spun and post-treated RSF fibers. Moreover, Ca2+was favorable for the orientation of macromolecular chains and crystalline regions in the fibers, which resulted in better mechanical properties. Studies on the role of Ca2+on RSF fiber formation showed that the Ca2+could form a COO--Ca2+--OOC bond between two negatively charged hydrophilic spacers of RSF chains, which promoted the formation of intermolecular hydrogen bond and led to the β-sheet conformation. Moreover, this packed structure could be assembled orderly after physical shearing and drawing during spinning and post-treatment, which resulted in forming high performance RSF fibers.
引文
[1]J. Magoshi, Y. Magoshi, M.A. Becker, S. Nakamura, Biospinning by Bombyx mnori silkworm. Abstracts of Papers of the American Chemical Society,1996,212:53.
    [2]Z.Z. Shao, F. Vollrath, Materials:surprising strength of silkworm silk. Nature, 2002,418(6899):741-741.
    [3]J. Magoshi, Y. Magoshi, Fiber formation of silkworm and crystallization of silk. Sen-I Gakkaishi,2007,63(9):244-252.
    [4]M. Pezolet, T. Lefevre, Structure-function relationships in spider silk, European Biophysics Journal with Biophysics Letters,2011,40:144-144.
    [5]J.P. Yan, G.Q. Zhou, D.P. Knight, Z.Z. Shao, X. Chen, Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution:discussion of spinning parameter. Biomacromolecules,2010, 11(1):1-5.
    [6]W. Wei, Y.P. Zhang, Y.M. Zhao, H.L. Shao, X.C. Hu, Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method. Materials and Design,2012,36:816-822.
    [7]C. Zaharia, M.R. Tudora, P.O. Stanescu, E. Vasile, C. Cincu, Silk fibroin films for tissue bioengineering applications. Journal of Optoelectronics and Advanced Materials,2012,14(1-2):163-168.
    [8]M.E. Kinahan, E. Filippidi, S. Koster, X. Hu, H.M. Evans, T. Pfohl, D.L. Kaplan, J. Wong, Tunable silk:using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules,2011,12(5):1504-1511.
    [9]D. Porter, F. Vollrath, Silk as a biomimetic ideal for structural polymers. Advanced Materials,2009,21(4):487-492.
    [10]P. Colomban, H.M. Dinh, Origin of the variability of the mechanical properties of silk fibres:The nanomechanics of single silkworm and spider fibres. Journal of Raman Spectroscopy,2012,43(8):1035-1041.
    [11]C.W.P. Foo, E. Bini, J. Hensman, D.P. Knight, R.V. Lewis, D.L. Kaplan, Role of pH and charge on silk protein assembly in insects and spiders. Applied Physics A-Materials Science & Processing,2006,82(2):223-233.
    [12]S.K. Sarangi, Studies on the silk gland of Bombyx mori, comparative analysis during 5th instar development. Proceedings of the Indian Academy of Sciences Animal Sciences,1985,94(4):413-419.
    [13]金媛,张耀鹏,杭怡春,罗杰,邵惠丽,胡学超,家蚕体内不同部位的同步辐射成像分析.世界科技研究与发展,2011,33(4):593-594.
    [14]J. Magoshi, Y. Magoshi, S. Nakamura, Mechanism of fiber formation of silkworm silk polymers,1994,544:292-310.
    [15]M. Moriya, K. Ohgo, Y. Masubuchi, T. Asakura, Flow analysis of aqueous solution of silk fibroin in the spinneret of Bombyx mori silkworm by combination of viscosity measurement and finite element method calculation. Polymer,2008,49(4): 952-956.
    [16]M. Moriya, K. Ohgo, Y. Masubuchi, D.P. Knight, T. Asakura, Micro-computerized tomographic observation of the spinning apparatus in Bombyx mori silkworms. Polymer,2008,49(26):5665-5669.
    [17]T. Asakura, K. Umemura, Y. Nakazawa, H. Hirose, J. Higham, D. Knight, Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. Biomacromolecules,2007,8(1):175-181.
    [18]解芳,高浓度再生丝素蛋白水溶液的仿生纺丝初探.东华大学博士学位论文,2007.
    [19]于同隐,邵正中,桑蚕丝素蛋白的结构、形态及其化学改性.高分子通报,1990,3:154-156..
    [20]刘永成,邵正中,蚕丝蛋白的结构与功能.高分子通报,1998,3:17-22.
    [21]C.Z. Zhou, F. Confalonieri, M. Jacquet, R. Perasso, Z.G Li, J. Janin, Silk fibroin:structural implications of a remarkable amino acid sequence. Proteins-Structure Function and Genetics,2001,44(2):119-122.
    [22]Y. Suzuki, A. Aoki, Y. Nakazawa, D.P. Knight, T. Asakura, Structural analysis of the synthetic peptide (Ala-Gly-Ser-Gly-Ala-Gly), a model for the crystalline domain of Bombyx mori silk fibroin, studied with C-13 CP/MAS NMR, REDOR, and statistical mechanical calculations. Macromolecules,2010,43(22): 9434-9440.
    [23]S.W. Ha, H.S. Gracz, A.E. Tonelli, S.M. Hudson, Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules,2005,6(5):2563-2569.
    [24]陶慰孙,李惟,姜涌明,蛋白质分子基础,高等教育出版社,北京,2005.
    [25]王廷华,邹晓莉,蛋白质理论与技术,科学出版社,北京,2005.
    [26]P.J. Willcox, S.P. Gido, W. Muller, D.L. Kaplan, Evidence of a cholesteric liquid crystalline phase in natural silk spinning processes. Macromolecules,1996, 29(15):5106-5110.
    [27]K. Kerkam, C. Viney, D. Kaplan, S. Lombardi, Liquid crystallinity of natural silk secretions. Nature,1991,349(6310):596-598.
    [28]C. Viney, Natural silks:archetypal supramolecular assembly of polymer fibres. Supramolecular Science,1997,4(1-2):75-81.
    [29]李光宪,于同隐,丝蛋白纤维化机理(Ⅰ)-中部丝腺内丝蛋白大分子的有序态.科学通报,1989,21:1656-1659.
    [30]H.J. Jin, D.L. Kaplan, Mechanism of silk processing in insects and spiders. Nature,2003,424(6952):1057-1061.
    [31]N.D. Lazo, D.T. Downing, Crystalline regions of Bombyx mori silk fibroin may exhibit beta-turn and beta-helix conformations. Macromolecules,1999,32(14): 4700-4705.
    [32]X. Chen, D.P. Knight, Z.Z. Shao, Beta-turn formation during the conformation transition in silk fibroin. Soft Matter,2009,5(14):2777-2781.
    [33]Q.X. Ruan, P. Zhou, Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR-NMR correlation. Journal of Molecular Structure,2008,883:85-90.
    [34]T. Lefevre, F. Paquet-Mercier, J.F. Rioux-Dube, M. Pezolet, Review structure of silk by Raman spectromicroscopy:From the spinning glands to the fibers. Biopolymers,2012,97(6):322-336.
    [35]J.G Hardy, L.M. Romer, T.R. Scheibel, Polymeric materials based on silk proteins. Polymer,2008,49(20):4309-4327.
    [36]T. Asakura, R. Sugino, J.M. Yao, H. Takashima, R. Kishore, Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the processed silk fiber (silk II) from Bombyx mori using solid-state C-13, N-15, and H-2 NMR. Biochemistry,2002,41(13):4415-4424.
    [37]T. Yamane, K. Umemura, Y. Nakazawa, T. Asakura, Molecular dynamics simulation of conformational change of poly(Ala-Gly) from silk I to silk II in relation to fiber formation mechanism of Bombyx mori silk fibroin. Macromolecules,2003, 36(18):6766-6772.
    [38]T. Asakura, K. Ohgo, K. Komatsu, M. Kanenari, K. Okuyama, Refinement of repeated beta-turn structure for silk I conformation of Bombyx mori silk fibroin using C-13 solid-state NMR and X-ray diffraction methods. Macromolecules,2005, 38(17):7397-7403.
    [39]A. Ochi, K.S. Hossain, J. Magoshi, N. Nemoto, Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Biomacromolecules,2002,3(6):1187-1196.
    [40]J. Magoshi, Y. Magoshi, M.A. Becker, S. Nakamura, Crystallization, liquid crystal and fiber formation of silk fibroin. Journal of applied polymer science. Applied polymer symposium,1985,41:187.
    [41]王洪,刘娜,张耀鹏,邵惠丽,胡学超,蚕腺体内丝素蛋白溶液的形态和构象研究.丝绸,2005,6:16-19.
    [42]C. Vepari, D.L. Kaplan, Silk as a biomaterial. Progress in Polymer Science, 2007,32(8-9):991-1007.
    [43]S.I. Inoue, J. Magoshi, T. Tanaka, Y. Magoshi, M. Becker, Atomic force microscopy:Bombyx mori silk fibroin molecules and their higher order structure. Journal of Polymer Science Part B-Polymer Physics,2000,38(11):1436-1439.
    [44]谢殉,周平,邓风,武培怡,宗小红,姚文华,pH值对丝素蛋白构象转变的影响.高等学校化学学报,2001,25(5):961-965.
    [45]J. Magoshi, Y. Magoshi, M.A. Becker, M. Kato, Z. Han, T. Tanaka, S. Inoue, S. Nakamura, Crystallization of silk fibroin from solution. Thermochimica Acta,2000, 352:165-169.
    [46]A. Matsumoto, A. Lindsay, B. Abedian, D.L. Kaplan, Silk fibroin solution properties related to assembly and structure. Macromolecular Bioscience,2008,8(11): 1006-1018.
    [47]A. Martel, M. Burghammer, R.J. Davies, E. Di Cola, C. Vendrely, C. Riekel, Silk fiber assembly studied by synchrotron radiation SAXS/WAXS and Raman spectroscopy. Journal of the American Chemical Society,2008,130(50): 17070-17074.
    [48]Y.X. He, N.N. Zhang, W.F. Li, N. Jia, B.Y. Chen, K. Zhou, J.H. Zhang, Y.X. Chen, C.Z. Zhou, N-terminal domain of Bombyx mori fibroin mediates the assembly of silk in response to pH decrease. Journal of Molecular Biology,2012,418(3-4): 197-207.
    [49]L. Zhou, X. Chen, Z.Z. Shao, Y.F. Huang, D.P. Knight, Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. Journal of Physical Chemistry B,2005,109(35):16937-16945.
    [50]J. Magoshi, Y. Magoshi, M.A. Becker, S. Nakamura, Biospinning (silk fiber formation, multiply spinning mechanisms) Polymeric Materials Encyclopedia.1996.
    [51]P. Zhou, X. Xie, F. Deng, Z. Ping, X. Xun, D. Feng, Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and C-13 solid-state NMR. Biochemistry,2004,43(35): 11302-11311.
    [52]C. Holland, A.E. Terry, D. Porter, F. Vollrath, Natural and unnatural silks. Polymer,2007,48(12):3388-3392.
    [53]徐孝旭,张宝砚,金属离子在蚕丝蛋白构象转变中的作用机理研究.高分子通报,2008,3:48-51.
    [54]A. Nagano, H. Sato, Y. Tanioka, Y. Nakazawa, D. Knight, T. Asakura, Characterization of a Ca binding-amphipathic silk-like protein and peptide with the sequence (Glu)(8)(Ala-Gly-Ser-Gly-Ala-Gly)(4) with potential for bone repair. Soft Matter,2012,8(3):741-748.
    [55]J.P. Schneider, J.W. Kelly, Templates that induce Alpha-Helical, Beta-Sheet, and loop conformations. Chemical Reviews,1995,95(6):2169-2187.
    [56]X.H. Zong, P. Zhou, Z.Z. Shao, S.M. Chen, X. Chen, B.W. Hu, F. Deng, W.H. Yao, Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. Biochemistry,2004,43(38): 11932-11941.
    [57]钟一鸣,杨宇红,陈新,邵正中,铜离子对水溶液中再生丝素蛋白构象转变的诱导作用.高分子学报,2009,10:1056-1061.
    [58]W. Zhou, Y.F. Huang, Z.Z. Shao, X. Chen, Effect of Fe and Mn on the conformation transition of Bombyx mori silk fibroin. Acta Chimica Sinica,2007, 65(19):2197-2201.
    [59]Y.B. Deng, D. Ji, P.C. Sun, D. Knight, J.H. Cai, P. Zhou, The role of Mn(II) in silk fibroin based on EPR and NMR spectroscopy. Spectroscopy Letters,2011, 44(3):176-185.
    [60]W. Chen, T. Koyama, K. Hanabusa, H. Shirai, Studies on metal-complexes of biopolymers. Formation of Nickel(Ii) silk sericin (Bombyx-mori) complexes and their secondary structures. Kobunshi Ronbunshu,1994,51(3):167-171.
    [61]Q.X. Ruan, P. Zhou, B.W. Hu, D. Ji, An investigation into the effect of potassium ions on the folding of silk fibroin studied by generalized two-dimensional NMR-NMR correlation and Raman spectroscopy. Febs Journal,2008,275(2): 219-232.
    [62]J. Magoshi, T. Tanaka, S. Inoue, H. Tsuda, Y. Magoshi, T. Hata, M.A. Becker, B. Lotz, Mechanism of fiber formation of multiple spinning by silkworm. Abstracts of Papers of the American Chemical Society,2003,225:560-560.
    [63]A. Ochi, N. Nemoto, J. Magoshi, E. Ohyama, K.S. Hossain, Rheological behaviors of aqueous solution of silk fibroin. Journal of the Society of Rheology Japan,2002,30(5):289-294.
    [64]C. Holland, A.E. Terry, D. Porter, F. Vollrath, Comparing the rheology of native spider and silkworm spinning dope. Nature Materials,2006,5(11):870-874.
    [65]I. Greving, M.Z. Cai, F. Vollrath, H.C. Schniepp, Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy. Biomacromolecules,2012,13(3):676-682.
    [66]M. Rossle, P. Panine, V.S. Urban, C. Riekel, Structural evolution of regenerated silk fibroin under shear:Combined wide-and small-angle x-ray scattering experiments using synchrotron radiation. Biopolymers,2004,74(4):316-327.
    [67]M.N. Padamwar, A.P. Pawar, Silk sericin and its applications:A review. Journal of Scientific & Industrial Research,2004,63(4):323-329.
    [68]K.H. Lee, Silk sericin retards the crystallization of silk fibroin. Macromolecular Rapid Communications,2004,25(20):1792-1796.
    [69]C.S. Ki, I.C. Um, Y.H. Park, Acceleration effect of sericin on shear-induced beta-transition of silk fibroin. Polymer,2009,50(19):4618-4625.
    [70]Y.C. Hang, Y.P. Zhang, Y. Jin, H.L. Shao, X.C. Hu, Preparation and characterization of electrospun silk fibroin/sericin blend fibers. Materials Research Society,2011,26(23):2931-2937.
    [71]R. Gebhardt, C. Vendrely, M. Hantland, C. Riekel, Silk fiber formation after high-pressure treatment of fibroin solution in a diamond anvil cell. Macromolecules, 2008,41(24):9934-9936.
    [72]T. Tanaka, M. Kobayashi, S.I. Inoue, H. Tsuda, J. Magoshi, Change of water contents in drawn silk. Journal of Polymer Science Part B-Polymer Physics,2003, 41(3):274-280.
    [73]V.V. Rodin, D.P. Knight, The molecular mobility of water in natural polymers:silk Bombyx mori with a low water content as studied by H-1 DQF NMR. Biofizika,2004,49(5):800-808.
    [74]J.A. Kluge, U. Rabotyagova, GG Leisk, D.L. Kaplan, Spider silks and their applications. Trends in Biotechnology,2008,26(5):244-251.
    [75]R.L. Lock, Process for making silk fibroin fibers.1993, E. I. Du Pont De Nemours And Company:United States.1-4.
    [76]J.M. Yao, H. Masuda, C.H. Zhao, T. Asakura, Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate. Macromolecules,2002,35(1):6-9.
    [77]Z.H. Zhu, Y. Kikuchi, K. Kojima, T. Tamura, N. Kuwabara, T. Nakamura, T. Asakura, Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms. Journal of Biomaterials Science-Polymer Edition,2010,21(3):395-412.
    [78]E. Marsano, P. Corsini, C. Arosio, A. Boschi, M. Mormino, G.Freddi, Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres. International Journal of Biological Macromolecules, 2005,37(4):179-188.
    [79]J. Perez-Rigueiro, L. Biancotto, P. Corsini, E. Marsano, M. Elices, G.R. Plaza, GV. Guinea, Supramolecular organization of regenerated silkworm silk fibers. International Journal of Biological Macromolecules,2009,44(2):195-202.
    [80]Y. Xu, H.L. Shao, Y.P. Zhang, X.C. Hu, Studies on spinning and rheological behaviors of regenerated silk fibroin/N-methylmorpholine-N-oxide center dot H2O solutions. Journal of Materials Science,2005,40(20):5355-5358.
    [81]I.C. Um, H.Y. Kweon, K.G Lee, D.W. Ihm, J.H. Lee, Y.H. Park, Wet spinning of silk polymer-I. Effect of coagulation conditions on the morphological feature of filament. International Journal of Biological Macromolecules,2004, 34(1-2):89-105.
    [82]I.C. Um, C.S. Ki, H.Y. Kweon, K.G Lee, D.W. Ihm, Y.H. Park, Wet spinning of silk polymer-Ⅱ. Effect of drawing on the structural characteristics and properties of filament. International Journal of Biological Macromolecules,2004, 34(1-2):107-119.
    [83]K.H. Lee, D.H. Baek, C.S. Ki, Y.H. Park, Preparation and characterization of wet spun silk fibroin/poly(vinyl alcohol) blend filaments. International Journal of Biological Macromolecules,2007,41(2):168-172.
    [84]C.S. Ki, K.H. Lee, D.H. Baek, M. Hattori, I.C. Urn, D.W. Ihm, Y.H. Park, Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system. Journal of Applied Polymer Science,2007,105(3): 1605-1610.
    [85]H.J. Cho, Y.J.Yoo, J.W. Kim, Y.H. Park, D.G.Bae, I.C. Um, Effect of molecular weight and storage time on the wet- and electro-spinning of regenerated silk fibroin. Polymer Degradation and Stability,2012,97(6):1-7.
    [86]G.Q. Zhou, Z.Z. Shao, D.K. Porter, J.P. Yan, and X. Chen, Silk fibers extruded artificially from aqueous solutions of regenerated bombyx mori silk fibroin are tougher than their natural counterparts. Advanced Materials,2008,20:1-5.
    [87]F.G Omenetto, D.L. KapLan, A new route for silk. Nature Photonics,2008, 2(11):641-643.
    [88]W. Tiyaboonchai, P. Chomchalao, S. Pongcharoen, M. Sutheerawattananonda, P. Sobhon, Preparation and characterization of blended Bombyx mori silk fibroin scaffolds. Fibers and Polymers,2011,12(3):324-333.
    [89]E.Wenk, H.P. Merkle, L. Meinel, Silk fibroin as a vehicle for drug delivery applications. Journal of Controlled Release,2011,150(2):128-141.
    [90]N.C. Tansil, L.D. Koh, M.Y. Han, Functional silk:colored and luminescent. Advanced Materials,2012,24(11):1388-1397.
    [91]H. Tao, M.A. Brenckle, M.M. Yang, J.D. Zhang, M.K. Liu, S.M. Siebert, R.D. Averitt, M.S. Mannoor, M.C. McAlpine, J.A. Rogers, D.L. Kaplan, F.G Omenetto, Silk-based conformal, adhesive, edible food sensors. Advanced Materials, 2012,24(8):1067-1072.
    [92]B.B. Mandal, A. Grinberg, E.S. Gil, B. Panilaitis, D.L. Kaplan, High-strength silk protein scaffolds for bone repair. Proceedings of the National Academy of Sciences of the United States of America,2012,109(20):7699-7704.
    [93]A. Heard, S. Socrate, K. Burke, E. Norwitz, D. Kaplan, M. House, A silk-based injectable biomaterial as an alternative to cervical cerclage:an in-vitro study. American Journal of Obstetrics and Gynecology,2012,206(1):288-288.
    [94]Z. Yang, L.S. Xu, F. Yin, Y.Q. Shi, Y. Han, L. Zhang, H.F. Jin, Y.Z. Nie, J.B. Wang, X. Hao, D.M. Fan, X.M. Zhou, In vitro and in vivo characterization of silk fibroin/gelatin composite scaffolds for liver tissue engineering. Journal of Digestive Diseases,2012,13(3):168-178.
    [95]S. Zarkoob, D.H. Reneker, R.K. Eby, S.D. Hudson, D. Ertley, W.W. Adams, Structure and morphology of nano electrospun silk fibers. Abstracts of Papers of the American Chemical Society,1998.216:122.
    [96]L. Jeong, K.Y. Lee, J.W. Liu, W.H. Park, Time-resolved structural investigation of regenerated silk fibroin nanofibers treated with solvent vapor. International Journal of Biological Macromolecules,2006,38(2):140-144.
    [97]Y. Kawahara, A. Nakayama, N. Matsumura, T. Yoshioka, M. Tsuji, Structure for electro-spun silk fibroin nanofibers. Journal of Applied Polymer Science,2008, 107(6):3681-3684.
    [98]F. Zhang, B.Q. Zou, H.X. Zhang, L. Bai, Studies of electrospun regenerated SF/TSF nanofibers. Polymer,2009,50:279-285.
    [99]S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, F. Ko, Regeneration of Bombyx mori silk by electrospinning-part 1:processing parameters and geometric properties. Polymer,2003,44(19):5721-5727.
    [100]S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, F. Ko, Regeneration of Bombyx mori silk by electrospinning. Part 2. Process optimization and empirical modeling using response surface methodology. Polymer,2004,45(11):3701-3708.
    [101]J. Ayutsede, M. Gandhi, S. Sukigara, M. Micklus, H.E. Chen, F. Ko, Regeneration of Bombyx mori silk by electrospinning. Part 3:characterization of electrospun nonwoven mat. Polymer,2005,46(5):1625-1634.
    [102]S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park, Silk fibroin nanofiber. Electrospinning, properties, and structure. Polymer Journal,2003,35(2):185-190.
    [103]S.Y. Park, C.S. Ki, Y.H. Park, H.M. Jung, K.M. Woo, H.J. Kim, Electrospun silk fibroin scaffolds with macropores for bone regeneration:an in vitro and in vivo study. Tissue Engineering Part A,2010,16(4):1271-1279.
    [104]H. Wang, Y.P. Zhang, H.L. Shao, X.C. Hu, Electrospun ultra-fine silk fibroin fibers from aqueous solutions. Journal of Materials Science,2005,40(20): 5359-5363.
    [105]J.X. Zhu, H.L. Shao, X.C. Hu, Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH. International Journal of Biological Macromolecules,2007,41(4):469-474.
    [106]杭怡春,再生丝素/丝胶蛋白水溶液的静电纺丝和干法纺丝研究.2012,东华大学,博士论文:上海.
    [107]H. Cao, X. Chen, L. Huang, Z.Z. Shao, Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution. Materials Science & Engineering C-Materials for Biological Applications,2009,29(7):2210-2274.
    [108]C. Chen, C.B. Cao, X.L. Ma, Y. Tang, H.S. Zhu, Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method. Polymer, 2006,47(18):6322-6327.
    [109]H.J. Jin, S.V. Fridrikh, GC. Rutledge, D.L. Kaplan, Electrospinning Bombyx mori silk with poly (ethylene oxide). Biomacromolecules,2002,3(6): 1233-1239.
    [110]W.H. Park, L. Jeong, D.I. Yoo, S. Hudson, Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer,2004, 45(21):7151-7157.
    [111]P. Corsini, J. Perez-Rigueiro, GV. Guinea, GR. Plaza, M. Elices, E. Marsano, M.M. Carnasciali, G Freddi, Influence of the draw ratio on the tensile and fracture behavior of NMMO regenerated silk fibers. Journal of Polymer Science Part B-Polymer Physics,2007,45(18):2568-2579.
    [112]C.R. Wittmer, T. Claudepierre, M. Reber, P. Wiedemann, J.A. Garlick, D. Kaplan, C. Egles, Multifunctionalized Electrospun Silk Fibers Promote Axon Regeneration in the Central Nervous System. Advanced Functional Materials,2011, 21(22):4232-4242.
    [113]W.T. Zhou, J.X. He, S. Du, S.Z. Cui, W.D. Gao, Electrospun silk fibroin/cellulose acetate blend nanofibres:structure and properties. Iranian Polymer Journal,2011,20(5):389-397.
    [114]W.C. Jao, M.C. Yang, C.H. Lin, C.C. Hsu, Fabrication and characterization of electrospun silk fibroin/TiO2 nanofibrous mats for wound dressings. Polymers for Advanced Technologies,2012,23(7):1066-1076.
    [115]S. Aznar-Cervantes, M.I. Roca, J.G. Martinez, L. Meseguer-Olmo, J.L. Cenis, J.M. Moraleda, T.F. Otero, Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry,2012,85:36-43.
    [116]杭怡春,张耀鹏,邵惠丽,胡学超,功能材料,2010,41(1):108-111.
    [117]H. Pan, Y.P. Zhang, Y.C. Hang, H.L. Shao, X.C. Hu, Y.M. Xu, C. Feng, Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. Biomacromolecules,2012,13(9):2859-2867.
    [118]朱晶心,仿生制备的再生丝素蛋白水溶液的静电纺丝及干法纺丝初探.东华大学博士学位论文,2009.
    [119]W. Wei, Y.P. Zhang, Y.M. Zhao, J. Luo, H.L. Shao, X.C. Hu, Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. Materials Science & Engineering C-Materials for Biological Applications,2011,31(7):1602-1608.
    [120]W. Wei, Y.P. Zhang, H.L. Shao, X.C. Hu, Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. Materials Research Society,2011,26(9):1100-1106.
    [121]W. Wei, Y.P. Zhang, H.L. Shao, X.C. Hu, Determination of molecular weight of silk fibroin by non-gel sieving capillary electrophoresis. Journal of Aoac International,2010,93(4):1143-1147.
    [122]魏伟,再生丝素蛋白水溶液的干法纺丝及后处理研究.东华大学博士学位论文,上海,2011.
    [123]M.J. Sun, Y.P. Zhang, Y.M. Zhao, H.L. Shao, X.C. Hu, The structure-property relationships of artificial silk fabricated by dry-spinning process. Journal of Materials Chemistry,2012,22:18372-18379.
    [124]杭怡春,张耀鹏,李寅莹,金媛,邵惠丽,胡学超,再生丝素/丝胶蛋白水溶液的同轴干法纺丝.功能材料,2011,12(42):2277-2280.
    [125]T. Scheibel, D. Huemmerich, S. Remmensee, C. Freudiger, A. Bausch, Microfluidic device for controlled aggregation of spider silk, in International Patent, 2007:Germany,1-7.
    [126]S. Rammensee, U. Slotta, T. Scheibel, A.R. Bausch, Assembly mechanism of recombinant spider silk proteins. Proceedings of the National Academy of Sciences of the United States of America,2008,105(18):6590-6595.
    [127]A. Martel, M. Burghammer, R. Davies, E. Dicola, P. Panine, J.B. Salmon, C. Riekel, A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small-and wide-angle X-ray scattering. Biomicrofluidics,2008. 2(2):1-7.
    [128]黄燕,罗杰,张耀鹏,胡隆宇,邵惠丽,胡学超,微流体芯片动态调控蛋白水溶液pH或Ca2+浓度.高分子通报,2010,1(12):61-66.
    [129]黄燕,罗杰,张耀鹏,邵惠丽,胡学超,微流体芯片在纤维成型方面的应用研究进展.传感器与微系统,2010,30(1):1-9.
    [130]L. Jie, Y.P. Zhang, Y. Huang, H.L. Shao, X.C. Hu, A bio-inspired microfluidic concentrator for regenerated silk fibroin solution. Sensors and Actuators B:Chemical,2012,162:435-440.
    [1]J. Magoshi, Y. Magoshi, M.A. Becker, S. Nakamura, Crystallization, liquid crystal and fiber formation of silk fibroin. Journal of applied polymer science. Applied polymer symposium,1985,41:187.
    [2]D.P. Knight, F. Vollrath, Biological liquid crystal elastomers. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,2002, 357(1418):155-163.
    [3]C. Viney, S Natural silks:archetypal supramolecular assembly of polymer fibres. Supramolecular Science,1997,4(1-2):75-81.
    [4]H.J. Jin, D.L. Kaplan, Mechanism of silk processing in insects and spiders. Nature,2003,424(6952):1057-1061.
    [5]C. Vepari, D.L. Kaplan, Silk as a biomaterial. Progress in Polymer Science, 2007,32(8-9):991-1007.
    [6]J. Magoshi, Y. Magoshi, S. Nakamura, Physical-properties and structure of silk. The mechanism of fiber formation from liquid silk of silkworm Bombyx-mori. Polymer Communications,1985,26(10):309-311.
    [7]J. Magoshi, S. Nakamura, Gelation and subsequent molecular-orientation of silk fibroin. Viscoelasticity of Biomaterials,1992,489:231-248.
    [8]J. Magoshi, Y. Magoshi, S. Nakamura, Mechanism of fiber formation of silkworm. Silk Polymers,1994,544:292-310.
    [9]J. Magoshi, Y. Magoshi, M.A. Becker, S. Nakamura, Biospinning by Bombyx mori silkworm. Abstracts of Papers of the American Chemical Society,1996,212:53.
    [10]J. Magoshi, Y. Magoshi, M.A. Becker, S. Nakamura, Biospinning (silk fiber formation, multiply spinning mechanisms) Polymeric Materials Encyclopedia.1996.
    [11]J. Magoshi, Y. Magoshi, M. Kato, M.A. Becker, S. Nakamura, The role of calcium ions in the silk fibroin fiber formation process. Abstracts of Papers of the American Chemical Society,1997,214:209.
    [12]J. Magoshi, Y. Magoshi, S. Nakamura, Low energy and super spinning of silkworm (silk)-Multiple spinning of Bombyx mori. Sen-I Gakkaishi,1997,53(3): 87-97.
    [13]J. Magoshi, Y. Magoshi, M. Kato, M.A. Becker, H. Zhang, S. Nakamura, Biospinning-The control of calcium ions. Abstracts of Papers of the American Chemical Society,1999,217:469-469.
    [14]J. Magoshi, T. Tanaka, S. Inoue, H. Tsuda, Y. Magoshi, T. Hata, M.A. Becker, B. Lotz, Mechanism of fiber formation of multiple spinning by silkworm. Abstracts of Papers of the American Chemical Society,2003,225:560.
    [15]J. Magoshi, Y. Magoshi, Fiber formation of silkworm and crystallization of silk. Sen-I Gakkaishi,2007,63(9):244-252.
    [16]K. Kerkam, C. Viney, D. Kaplan, S. Lombardi, Liquid crystallinity of natural silk secretions. Nature,1991,349(6310):596-598.
    [17]C. Viney, K. Kerkam, L. Gilliland, D. Kaplan, S. Fossey, Molecular order in silk secretions. Complex Fluids,1992,248:89-94.
    [18]C.W.P. Foo, E. Bini, J. Hensman, D.P. Knight, R.V. Lewis, D.L. Kaplan, Role of pH and charge on silk protein assembly in insects and spiders. Applied Physics A-Materials Science & Processing,2006,82(2):223-233.
    [19]D. Kaplan, W.W. Adams, B. Farmer, C. Viney, Silk-Biology, structure, properties, and genetics. Silk Polymers,1994,544:2-16.
    [20]李光宪,于同隐,丝蛋白纤维化机理-中部丝腺内丝蛋白大分子的有序态.科学通报,1989,21:1656-1659.
    [21]邵正中,吴冬,李光宪,用拉曼光谱研究蚕丝蛋白的结构与功能的关系.光散射学报,1996,1(7):2-7.
    [22]J. Magoshi, Y. Magoshi, M.A. Becker, M. Kato, Z. Han, T. Tanaka, S. Inoue, S. Nakamura, Crystallization of silk fibroin from solution. Thermochimica Acta,2000, 352:165-169.
    [23]何曼君,张红东,陈维孝,董西侠,高分子物理.2009,复旦大学出版社:上海.
    [24]L. Zhou, X. Chen, Z.Z. Shao, Y.F. Huang, D.P. Knight, Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. Journal of Physical Chemistry B,2005,109(35):16937-16945.
    [25]于同隐,邵正中,桑蚕丝素蛋白的结构、形态及其化学改性.高分子通报,1990,(3):154-156.
    [26]A. Ochi, N. Nemoto, J. Magoshi, E. Ohyama, K.S. Hossain, Rheological behaviors of aqueous solution of silk fibroin. Journal of the Society of Rheology Japan,2002,30(5):289-294.
    [27]C. Holland, A.E. Terry, D. Porter, F. Vollrath, Comparing the rheology of native spider and silkworm spinning dope. Nature Materials,2006,5(11):870-874..
    [28]魏伟,张耀鹏,赵瀛梅,邵惠丽,胡学超,再生丝素蛋白水溶液的干法纺丝.功能高分子学报,2009,22(3):229-236.
    [29]Y.Y. Sun, Y.C. Liu, M.H. Ma, Z.Z. Shao, X. Chen, T.Y. Yu, FT-IR study of conformation transition of silk fibroin induced by intermolecular hydrogen bonds. Chemical Journal of Chinese Universities-Chinese,1998,19(1):135-138.
    [30]P. Monti, P. Taddei, G Freddi, T. Asakura, M. Tsukada, Raman spectroscopic characterization of Bombyx mori silk fibroin:Raman spectrum of Silk I. Journal of Raman Spectroscopy,2001,32(2):103-107.
    [31]W. Zhou, X. Chen, Z.Z. Shao, Conformation studies of silk proteins with infrared and Raman spectroscopy. Progress in Chemistry,2006,18(11):1514-1522.
    [32]P. Monti, G.Freddi, A. Bertoluzza, N. Kasai, M. Tsukada, Raman spectroscopic studies of silk fibroin from Bombyx mori. Journal of Raman Spectroscopy,1998,29(4):297-304.
    [33]S.D. Funari, C. Betzel, V. Chandra, T.P. Singh, M. Genov, Dynamic light scattering (DLS) in protein solutions. Biophysical Journal,2000,78(1):292.
    [34]K. Onuma, T. Kubota, S. Tanaka, N. Kanzaki, A. Ito, K. Tsutsui, Dynamic light scattering investigation in aqueous solutions of bc(1)-complex membrane protein. Journal of Physical Chemistry B,2002,106(16):4318-4324.
    [35]Y. Li, V. Lubchenko, P.G.Vekilov, The use of dynamic light scattering and brownian microscopy to characterize protein aggregation. Review of Scientific Instruments,2011,82(5):1-8.
    [36]A. Ochi, K.S. Hossain, J. Magoshi, N. Nemoto, Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Biomacromolecules,2002,3(6):1187-1196.
    [37]C. Hitscherich, J. Kaplan, M. Allaman, J. Wiencek, P.J. Loll, Static light scattering studies of ompf porin:Implications for integral membrane protein crystallization. Protein Science,2000,9(8):1559-1566.
    [38]张美珍,柳百坚,谷晓昱,聚合物研究方法.2007,北京:中国轻工业出版社.
    [39]董朝霞,林梅钦,李明远,吴肇亮,散射技术在研究高分子溶液和凝胶方面的应用.高分子通报,2001,5:25-33.
    [40]C. Wu, W. Buck, B. Chu, Light-Scattering Characterization of an alternating copolymer of ethylene and tetrafluoroethylene.2. Molecular-weight distributions. Macromolecules,1987,20(1):98-103.
    [1]M. Moriya, F. Roschzttardtz, Y. Nakahara, H. Saito, Y. Masubuchi, T. Asakura, Rheological properties of native silk fibroins from domestic and wild silkworms, and flow analysis in each spinneret by a finite element method. Biomacromolecules,2009,10(4):929-935.
    [2]D.N. Breslauer, L.P. Lee, S.J. Muller, Simulation of flow in the silk gland. Biomacromolecules,2009,10(1):49-57.
    [3]I. Greving, M.Z. Cai, F. Vollrath, H.C. Schniepp, Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy. Biomacromolecules,2012,13(3):676-682.
    [4]C. Holland, J.S. Urbach, D.L. Blair, Direct visualization of shear dependent silk fibrillogenesis. Soft Matter,2012,8(9):2590-2594.
    [5]J. Magoshi, Y. Magoshi, S. Nakamura, Mechanism of fiber formation of silkworm. Silk Polymers,1994,544:292-310.
    [6]J. Magoshi, T. Tanaka, S. Inoue, H. Tsuda, Y. Magoshi, T. Hata, M.A. Becker, B. Lotz, Mechanism of fiber formation of multiple spinning by silkworm. Abstracts of Papers of the American Chemical Society,2003,225:560.
    [7]J. Magoshi, Y. Magoshi, Fiber formation of silkworm and crystallization of silk. Sen-I Gakkaishi,2007,63(9):244-252.
    [8]X. Chen, D.P. Knight, Z.Z. Shao, F. Vollrath, Regenerated Bombyx silk solutions studied with rheometry and FTIR. Polymer,2001,42(25):9969-9974.
    [9]C. Holland, A.E. Terry, D. Porter, F. Vollrath, Natural and unnatural silks. Polymer,2007,48(12):3388-3392
    [10]C. Riekel, M.C.G Gutierrez, A. Gourrier, S. Roth, Recent synchrotron radiation microdiffraction experiments on polymer and biopolymer fibers. Analytical and Bioanalytical Chemistry,2003,376(5):594-601.
    [11]M. Rossle, P. Panine, V.S. Urban, C. Riekel, Structural evolution of regenerated silk fibroin under shear:Combined wide- and small-angle x-ray scattering experiments using synchrotron radiation. Biopolymers,2004,74(4):316-327.
    [12]A. Martel, M. Burghammer, R.J. Davies, E. Di Cola, C. Vendrely, C. Riekel, Silk fiber assembly studied by synchrotron radiation SAXS/WAXS and Raman spectroscopy. Journal of the American Chemical Society,2008,130(50): 17070-17074.
    [13]A. Martel, M. Burghammer, R. Davies, E. DiCola, P. Panine, J.B. Salmon, C. Riekel, A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small- and wide-angle X-ray scattering. Biomicrofluidics,2008, 2(2):1-7.
    [14]刘娜,张新财,王洪,邵惠丽,胡学超,剪切作用下高浓度再生丝素蛋白水溶液性质的研究.上海纺织科技,2005,33(7):8-10.
    [15]F. Xie, H.H. Zhang, H.L. Shao, X.C. Hu, Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution. International Journal of Biological Macromolecules,200,38(3-5):284-288.
    [16]吴望一,流体力学.1982,北京:北京大学出版社.
    [17]X. Xie, P. Zhou, F. Deng, P.Y. Wu, X.H. Zong, W.H. Yao, Influence of pH value on the conformation transition of silk fibroin. Chemical Journal of Chinese Universities-Chinese,2004,25(5):961-965.
    [18]P. Zhou, X. Xie, F. Deng, Z. Ping, X. Xun, D. Feng, Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and C-13 solid-state NMR. Biochemistry,2004,43(35): 11302-11311.
    [19]P. Monti, G Freddi, A. Bertoluzza, N. Kasai, M. Tsukada, Raman spectroscopic studies of silk fibroin from Bombyx mori. Journal of Raman Spectroscopy,1998,29(4):297-304.
    [20]周文,陈新,邵正中,红外和拉曼光谱用于对丝蛋白构象的研究.化学进展,2008,18(11):1514-1522.
    [21]L. Zhou, X. Chen, Z.Z. Shao, Y.F. Huang, D.P. Knight, Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. Journal of Physical Chemistry B,2005,109(35):16937-16945.
    [22]何曼君,张红东,陈维孝,董西侠,高分子物理.2009,复旦大学出版社:上海.
    [23]C. Viney, Natural silks:archetypal supramolecular assembly of polymer fibres. Supramolecular Science,1997,4(1-2):75-81.
    [24]K. Kerkam, D. Kaplan, S. Lombardi, C. Viney, Liquid-crystalline characteristics of natural silk secretions. Materials Synthesis Based on Biological Processes,1991,218:239-244.
    [25]C. Viney, A.E. Huber, D.L. Dunaway, K. Kerkam, S.T. Case, Optical characterization of silk secretions and fibers. Silk Polymers,1994,544:120-136.
    [26]J. Magoshi, Y. Magoshi, M. Kato, M.A. Becker, S. Nakamura, The role of calcium ions in the silk fibroin fiber formation process. Abstracts of Papers of the American Chemical Society,1997,214:209.
    [27]G.Y. Li, P. Zhou, Y.J. Sun, W.H. Yao, Y. Mi, H.Y. Yoa, Z.Z. Shao, T.Y. Yu, The effect of metal ions on the conformation transition of silk fibroin. Chemical Journal of Chinese Universities-Chinese,2001,22(5):860-862.
    [28]C.W.P. Foo, E. Bini, J. Hensman, D.P. Knight, R.V. Lewis, D.L. Kaplan, Role of pH and charge on silk protein assembly in insects and spiders. Applied Physics a-Materials Science & Processing,2006,82(2):223-233.
    [29]朱晶心,仿生制备的再生丝素蛋白水溶液的静电纺丝及干法纺丝初探.东华大学博士学位论文,2009.
    [30]W. Wei, Y.P. Zhang, Y.M. Zhao, J. Luo, H.L. Shao, X.C. Hu, Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. Materials Science & Engineering C-Materials for Biological Applications,2011,31(7):1602-1608.
    [31]W. Wei, Y.P. Zhang, H.L. Shao, X.C. Hu, Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. Materials Research Society,2011,26(9):1100-1106.
    [32]W. Wei, Y.P. Zhang, Y.M. Zhao, H.L. Shao, X.C. Hu, Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method. Materials and Design,2012,36:816-822.
    [33]M.J. Sun, Y.P. Zhang, Y.M. Zhao, H.L. Shao, X.C. Hu, The structure-property relationships of artificial silk fabricated by dry-spinning process. Journal of Materials Chemistry,2012,22:18372-18379.
    [34]M.J. Sun, Y.P. Zhang, H.L. Shao, X.C. Hu, Synchrotron radiation microdiffraction of natural silkworm silk and regenerated silk fibroin fibers, in Proceedings of 2011 International Conference on Advanced Fibers and Polymer Materials.2011, Shanghai:Chemical Industry Press.
    [1]S.W. Ha, A.E. Tonelli, S.M. Hudson, Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules, 2005,6(3):1722-1731.
    [2]J.Y.X. Chen, Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Advanced Materials,2009,21:366-370.
    [3]J.P. Yan, G.Q. Zhou, D.P. Knight, Z.Z. Shao, X. Chen, Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution:discussion of spinning parameters. Biomacromolecules,2010,11(1):1-5.
    [4]K. Matsumoto, H. Uejima, T. Iwasaki, Y. Sano, H. Sumino, Studies on regenerated protein fibers.3. Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method. Journal of Applied Polymer Science,1996,60(4): 503-511.
    [5]D.M. Phillips, L.F. Drummy, R.R. Naik, H.C. De Long, D.M. Fox, P.C. Trulove, R.A. Mantz, Regenerated silk fiber wet spinning from an ionic liquid solution. Journal of Materials Chemistry,2005,15(39):4206-4208.
    [6]C.S. Ki, K.H. Lee, D.H. Baek, M. Hattori, I.C. Urn, D.W. Ihm, Y.H. Park, Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system. Journal of Applied Polymer Science,2007,105(3): 1605-1610.
    [7]J.S. Ko, K.H. Lee, D.G.Bae, I.C. Um, Miscibility, Structural Characteristics, and thermal behavior of wet spun regenerated silk fibroin/nylon 6 blend filaments. Fibers and Polymers,2010,11(1):14-20.
    [8]H.J. Cho, Y.J. Yoo, J.W. Kim, Y.H. Park, D.G.Bae, I.C. Um, Effect of molecular weight and storage time on the wet-and electro-spinning of regenerated silk fibroin. Polymer Degradation and Stability,2012,97(6):1060-1066.
    [9]朱晶心,仿生制备的再生丝素蛋白水溶液的静电纺丝及干法纺丝初探.东华大学博士学位论文,2009.
    [10]魏伟,张耀鹏,赵瀛梅,邵惠丽,胡学超,再生丝素蛋白水溶液的干法纺丝.功能高分子学报,2009,22(3):229-235.
    [11]魏伟,张耀鹏,赵瀛梅,邵惠丽,胡学超,再生丝素蛋白干纺纤维的后处理体系及方法.功能高分子学报,2010,23(3):230-235.
    [12]W. Wei, Y.P. Zhang, Y.M. Zhao, J. Luo, H.L. Shao, X.C. Hu, Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. Materials Science & Engineering C-Materials for Biological Applications,2011,31(7):1602-1608.
    [13]W. Wei, Y.P. Zhang, H.L. Shao, X.C. Hu, Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. Materials Research Society,2011,26(9):1100-1106.
    [14]W. Wei, Y.P. Zhang, Y.M. Zhao, H.L. Shao, X.C. Hu, Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method. Materials and Design,2012,36:816-822.
    [15]J. Magoshi, Y. Magoshi, M. Kato, M.A. Becker, S. Nakamura, The role of calcium ions in the silk fibroin fiber formation process. Abstracts of Papers of the American Chemical Society,1997,214:209.
    [16]G.Y. Li, P. Zhou, Y.J. Sun, W.H. Yao, Y. Mi, H.Y. Yoa, Z.Z. Shao, T.Y. Yu, The effect of metal ions on the conformation transition of silk fibroin. Chemical Journal of Chinese Universities-Chinese,2001,22(5):860-862.
    [17]P. Zhou, X. Xie, F. Deng, Z. Ping, X. Xun, D. Feng, Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and C-13 solid-state NMR. Biochemistry,2004,43(35): 11302-11311.
    [18]C.W.P. Foo, E. Bini, J. Hensman, D.P. Knight, R.V. Lewis, D.L. Kaplan, Role of pH and charge on silk protein assembly in insects and spiders. Applied Physics a-Materials Science & Processing,2006,82(2):223-233.
    [19]J. Luo, Y.P. Zhang, Y. Huang, H.L. Shao, X.C. Hu, A bio-inspired microfluidic concentrator for regenerated silk fibroin solution. Sensors and Actuators B-Chemical,2012,162(1):435-440.
    [20]L. Zhou, X. Chen, Z.Z. Shao, Y.F. Huang, D.P. Knight, Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. Journal of Physical Chemistry B,2005,109(35):16937-16945
    [21]邵正中,吴冬,李光宪,用拉曼光谱研究蚕丝蛋白的结构与功能的关系.光散射学报,1996,1(7):2-7.
    [22]M. Rossle, P. Panine, V.S. Urban, C. Riekel, Structural evolution of regenerated silk fibroin under shear:Combined wide-and small-angle x-ray scattering experiments using synchrotron radiation. Biopolymers,2004,74(4):316-327.
    [23]F. Xie, H.H. Zhang, H.L. Shao, X.C. Hu, Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution. International Journal of Biological Macromolecules,2006,38(3-5):284-288.
    [24]何曼君,张红东,陈维孝,董西侠,高分子物理,复旦大学出版社,上海,2009.
    [25]刘娜,张新财,王洪,邵惠丽,胡学超,剪切作用下高浓度再生丝素蛋白水溶液性质的研究.上海纺织科技,2005,33(7):8-10.
    [26]X. Chen, Z.Z. Shao, D.P. Knight, F. Vollrath, Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry,2001,89(1):25-34.
    [27]X. Chen, Z.Z. Shao, N.S. Marinkovic, L.M. Miller, P. Zhou, M.R. Chance, Conformation transition of silk protein membranes monitored by time-resolved FTIR spectroscopy:Effect of alkali metal ions on Nephila spidroin membrane. Acta Chimica Sinica,2002,60(12):2203-2208.
    [28]X. Chen, Z.Z. Shao, D.P. Knight, F. Vollrath, Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics, 2007,68(1):223-231.
    [29]I.C. Um, C.S. Ki, H.Y. Kweon, K.G.Lee, D.W. Ihm, Y.H. Park, Wet spinning of silk polymer-Ⅱ. Effect of drawing on the structural characteristics and properties of filament. International Journal of Biological Macromolecules,2004, 34(1-2):107-119.
    [30]W. Wei, Y.P. Zhang, Y.M. Zhao, H.L. Shao, X.C. Hu, Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method. Materials and Design,2012,36:816-822.
    [31]林江滨,姚晋荣,周丽,陈新,邵正中,再生蚕丝的制备及其结构与性能初探.高等学校化学学报,2007,28(6):1181-1185.
    [32]B.Q. Zuo, L. Liu, Z. Wu, Effect on properties of regenerated silk fibroin fiber coagulated with aqueous Methanol/Ethanol. Journal of Applied Polymer Science, 2007,106(1):53-59.
    [33]M.Z. Li, W. Tao, S. Kuga, Y. Nishiyama, Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment. Polymers for Advanced Technologies,2003,14(10):694-698.
    [34]周平,李贵阳,孙尧俊,姚文华,宓泳,姚惠英,邵正中,于同隐,金属离子导致的丝素蛋白的构象转变.高等学校化学学报,2001,22(5):860-862.
    [35]T. Asakura, R. Sugino, J.M. Yao, H. Takashima, R. Kishore, Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the processed silk fiber (silk II) from Bombyx mori using solid-state C-13, N-15, and H-2 NMR. Biochemistry,2002,41(13):4415-4424.
    [36]T. Yamane, K. Umemura, Y. Nakazawa, T. Asakura, Molecular dynamics simulation of conformational change of poly(Ala-Gly) from silk I to silk II in relation to fiber formation mechanism of Bombyx mori silk fibroin. Macromolecules,2003, 36(18):6766-6772.
    [37]J.O. Warwicker, The crystal structure of silk fibroin. Acta Crystallographica 1954,7:565-573.
    [38]Y. Takahashi, Crystal-structure of silk of Bombyx-mori. Silk Polymers,1994, 544:168-175.
    [39]L.F. Drummy, D.M. Phillips, M.O. Stone, B.L. Farmer, R.R. Naik, Thermally induced alpha-helix to beta-sheet transition in regenerated silk fibers and films. Biomacromolecules,2005,6(6):3328-3333.
    [40]M.J. Sun, Y.P. Zhang, Y.M. Zhao, H.L. Shao, X.C. Hu, The structure-property relationships of artificial silk fabricated by dry-spinning process. Journal of Materials Chemistry,2012,22:18372-18379.
    [41]J.O. Warwicker, Comparative Studies of Fiboins Ⅱ. The crystal structures of various fibroins. Journal of Molecular Biology,1960,2:350-362.
    [42]R.E. Marsh, Corey, R. B., Pauling, L., An investigation of the structure of silk fibroin. Acta Crystallographica,1955,8:62.
    [43]Y. Takahashi, M. Gehoh, K. Yuzuriha, Structure refinement and diffuse streak scattering of silk (Bombyx mori). International Journal of Biological Macromolecules,1999,24(2-3):127-138.
    [44]L.F. Drummy, B.L. Farmer, R.R. Naik, Correlation of the beta-sheet crystal size in silk fibers with the protein amino acid sequence. Soft Matter,2007,3(7): 877-882.
    [45]A. Martel, M. Burghammer, R.J. Davies, C. Riekel, Thermal behavior of Bombyx mori silk:Evolution of crystalline parameters, molecular structure, and mechanical properties. Biomacromolecules,2007,8(11):3548-3556.
    [46]A. Martel, M. Burghammer, R. Davies, E. DiCola, P. Panine, J.B. Salmon, C. Riekel, A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small-and wide-angle X-ray scattering. Biomicrofluidics,2008. 2(2):1-7.
    [47]莫志深,张宏放,张吉东,晶态聚合物结构和X射线衍射.第二版.2010,科学出版社:北京.
    [48]C.J. Bettinger, K.M. Cyr, A. Matsumoto, R. Langer, J.T. Borenstein, D.L. Kaplan, Silk fibroin microfluidic devices. Advanced Materials,2007,19(19): 2847-2850.
    [49]M.E. Kinahan, E. Filippidi, S. Koster, X. Hu, H.M. Evans, T. Pfohl, D.L. Kaplan, J. Wong, Tunable silk:using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules,2011,12(5):1504-1511.
    [50]J. Luo, Y.P. Zhang, Y. Huang, H.L. Shao, X.C. Hu, A bio-inspired microfluidic concentrator for regenerated silk fibroin solution. Sensors and Actuators B:Chemical,2012,162:435-440.
    [51]M. Mao, J.K. He, Y.X. Liu, X. Li, D.C. Li, Ice-template-induced silk fibroin-chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta Biomaterialia,2012,8(6):2175-2184.
    [1]J. Magoshi, Y. Magoshi, M.A. Becker, S. Nakamura, Crystallization, liquid crystal and fiber formation of silk fibroin. Journal of applied polymer science. Applied polymer symposium,1985,41:187.
    [2]J. Magoshi, Y. Magoshi, M.A. Becker, S. Nakamura, Biospinning by Bombyx mori silkworm. Abstracts of Papers of the American Chemical Society,1996,212:53.
    [3]H.GM. Edwards, D.W. Farwell, Raman-spectroscopic studies of silk. Journal of Raman Spectroscopy,1995,26(8-9):901-909.
    [4]J. Magoshi, Y. Magoshi, S. Nakamura, Mechanism of fiber formation of silkworm. Silk Polymers,1994,544:292-310.
    [5]J. Magoshi, Y. Magoshi, M. Kato, M.A. Becker, S. Nakamura, The role of calcium ions in the silk fibroin fiber formation process. Abstracts of Papers of the American Chemical Society,1997,214:209.
    [6]X. Xie, P. Zhou, F. Deng, P.Y. Wu, X.H. Zong, W.H. Yao, Influence of pH value on the conformation transition of silk fibroin. Chemical Journal of Chinese Universities-Chinese,2004,25(5):961-965.
    [7]J. Magoshi, Y. Magoshi, M. Kato, M.A. Becker, S. Nakamura, Biospinning (silk fiber formation, multiply spinning mechanisms) Polymeric Materials Encyclopedia.1996.
    [8]C.W.P. Foo, E. Bini, J. Hensman, D.P. Knight, R.V. Lewis, D.L. Kaplan, Role of pH and charge on silk protein assembly in insects and spiders. Applied Physics a-Materials Science & Processing,2006,82(2):223-233.
    [9]C. Holland, A.E. Terry, D. Porter, F. Vollrath, Natural and unnatural silks. Polymer,2007,48(12):3388-3392.
    [10]S.W. Ha, H.S. Gracz, A.E. Tonelli, S.M. Hudson, Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules,2005,6(5):2563-2569.
    [11]W. Wei, Y.P. Zhang, H.L. Shao, X.C. Hu, Determination of molecular weight of silk fibroin by non-gel sieving capillary electrophoresis. Journal of Aoac International,2010,93(4):1143-1147.
    [12]周平,李贵阳,孙尧俊,姚文华,宓泳,姚惠英,邵正中,于同隐,金属离子导致的丝素蛋白的构象转变.高等学校化学学报,2001,22(5):860-862.
    [13]P. Zhou, X. Xie, F. Deng, Z. Ping, X. Xun, D. Feng, Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and C-13 solid-state NMR. Biochemistry,2004,43(35): 11302-11311.
    [14]A. Nagano, H. Sato, Y. Tanioka, Y. Nakazawa, D. Knight, T. Asakura, Characterization of a Ca binding-amphipathic silk-like protein and peptide with the sequence (Glu)(8)(Ala-Gly-Ser-Gly-Ala-Gly)(4) with potential for bone repair. Soft Matter,2012,8(3):741-748.
    [15]K.S. Hossain, A. Ochi, E. Ooyama, J. Magoshi, N. Nemoto, Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm. Biomacromolecules,2003, 4(2):350-359.
    [16]L. Zhou, X. Chen, Z.Z. Shao, Y.F. Huang, D.P. Knight, Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. Journal of Physical Chemistry B,2005,109(35):16937-16945.
    [17]朱晶心,仿生制备的再生丝素蛋白水溶液的静电纺丝及干法纺丝初探.东华大学博士学位论文,2009.
    [18]董朝霞,林梅钦,李明远,吴肇亮,光散射技术在研究高分子溶液和凝胶方面的应用.高分子通报,2001,5:25-33.
    [19]X.W. Zhang, F.Y. Ke, J. Han, L. Ye, D.H. Liang, A.Y. Zhang, Z.G.Feng, The self-aggregation behaviour of amphotericin B-loaded polyrotaxane-based triblock copolymers and their hemolytic evaluation. Soft Matter,2009,5(23):4797-4803.
    [20]W. Wei, Y.P. Zhang, Y.M. Zhao, H.L. Shao, X.C. Hu, Studies on the post-treatment of the dry-spun fibers from regenerated silk fibroin solution: Post-treatment agent and method. Materials and Design,2012,36:816-822.
    [21]W. Wei, Y.P. Zhang, H.L. Shao, X.C. Hu, Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. Materials Research Society,2011,26(9):1100-1106.
    [22]M.J. Sun, Y.P. Zhang, Y.M. Zhao, H.L. Shao, X.C. Hu The structure-property relationships of artificial silk fabricated by dry-spinning process. Journal of Materials Chemistry,2012,22:18372-18379.
    [23]M.J. Sun, Y.P. Zhang, H.L. Shao, X.C. Hu, Synchrotron radiation microdiffraction of natural silkworm silk and regenerated silk fibroin fibers.in Proceedings of 2011 International Conference on Advanced Fibers and Polymer Materials.2011. Shanghai:Chemical Industry Press.
    [24]何曼君,张红东,陈维孝,董西侠,高分子物理.2009,复旦大学出版社:上海.
    [25]J.H. Viles, F.E. Cohen, S.B. Prusiner, D.B. Goodin, P.E. Wright, H.J. Dyson, Copper binding to the prion protein:Structural implications of four identical cooperative binding sites. Proceedings of the National Academy of Sciences of the United States of America,1999,96(5):2042-2047.
    [26]朱良均,姚菊明,李幼禄,蚕丝蛋白的氨基酸组成及其对人体的生理功能.中国蚕业,1997,69:42-44.
    [27]J.O. Warwicker, The crystal structure of silk fibroin. Acta Crystallographica 1954,7:565-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700