用户名: 密码: 验证码:
Fmoc保护的二肽小分子水凝胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
9-芴甲氧基(Fmoc)保护的二肽是多肽合成中常见一种中间产物,研究发现该类物质具有以下优点:(1)具有生物相容性;(2)容易被生物降解;(3)具有一定的药物作用;因此由该类分子形成的水凝胶在药物载体、药物缓释、组织工程和化学传感器等方面应用广泛。
     本论文选用N-羟基琥珀酰亚胺作为羧基活化试剂,DCC作为缩合剂,在二甲氧基乙烷溶剂中将Fmoc-D-丙氨酸的羧基进行活化,然后以乙醇和丙酮的混合液(V_1:V_2=4:1)作溶剂,在碳酸氢钠提供的弱碱性条件下,直接用上述反应生成的活化酯分别与另外的五种氨基酸反应,合成出了Fmoc-D-丙氨酰基-D-丙氨酸、Fmoc-D-丙氨酰基-L-丝氨酸、Fmoc-D-丙氨酰基-L-苏氨酸、Fmoc-D-丙氨酰基-L-酪氨酸和Fmoc-D-丙氨酰基-L-赖氨酸五种Fmoc-D-丙氨酰基二肽。运用紫外可见(UV)、核磁共振(1H NMR)和傅里叶变换红外(FTIR)等测试手段对产物分子进行了结构签定,并根据反应物及其产物的性质特征推测了该类反应的反应机理。
     研究了上述合成的五种结构相似侧链基团大小不同的Fmoc-D-丙氨酰基二肽形成凝胶的情况。运用流变测试手段检测了五种二肽形成凝胶的性能,采用TEM和SEM对形成的凝胶的形貌进行了表征,并用CD测试手段测试了分子间的微观排列情况。另外还研究了pH、酸根离子以及外界温度的变化对四种Fmoc-D-丙氨酰基二肽水凝胶的影响。
     研究发现,尽管五种Fmoc-D-丙氨酰基二肽结构相似,但其侧链基团的大小不同,其形成凝胶的微观形貌及机械性能有很大的差别,随着侧链基团的增大,形成凝胶的形貌逐渐由丝状变成管状,机械性能也随侧链基团的增加而降低。根据测试数据对上述五种凝胶的形成机制进行了推测。另外研究还发现,用含有不同阴离子的酸调节Fmoc-D-丙氨酰基二肽溶液的pH值来制备水凝胶,在pH<5的条件下四种Fmoc-D-丙氨酰基二肽都能形成水凝胶,并且同一种Fmoc-D-丙氨酰基二肽用含有不同阴离子的酸调节pH值形成的水凝胶的形貌相似,说明酸的阴离子对Fmoc-D-丙氨酰基二肽形成的水凝胶没有产生明显的影响。由于氯元素是人体中常见的元素,所以在用作药物载体、组织工程等方面的水凝胶的研究时可以选择盐酸作为酸化试剂来制备水凝胶。温度对四种Fmoc-D-丙氨酰基二肽形成的水凝胶的影响比较显著,酸化后形成的水凝胶随外界温度的变化而发设定那个相应的相变,即当温度达到一定的高度(溶胶-凝胶转变温度)时,凝胶变成溶胶,室温下冷却又恢复成凝胶状,说明四种Fmoc-D-丙氨酰基二肽水凝胶是温敏型可逆凝胶。
     本论文研究的意义在于合成了五种Fmoc-D-丙氨酰基二肽,制备出了四种温敏型可逆水凝胶,发现了结构相似的分子,侧链基团的大小对分子性质产生很大影响的现象。
     本论文的研究结果为生物药物寻找合适的载体提供了一定的参考,在某种程度上,丰富生物药物载体库。
9-Fluorenylmethoxycarbonyl(Fmoc)protected dipeptides are ones of common intermediates in the synthesis of peptides.It was found that 9-Fluorenylmethoxy carbonyl(Fmoc)protected dipeptides have some advantages such as biocompatibility, biodegradability and drug effects,so the hydrogels formed by these dipeptides can be used in drug delivery,drug release,tissue engineering,chemical sensor and so on.
     In this paper,we chose N-hydroxysuccinimide as activator of carboxyl group and DCC as condensing agent,the N-hydroxysuccinimide ester of Fmoc-D-Alanine was synthesized in anhydrous dimethoxyethane solvent,then the ester was used as one of reactant provided carboxyl to react with another amino acids in ethanol and acetone mixture(V_1:V_2=4:1),at last,five Fmoc-D-Alanyl-dipeptides were synthesized. The structures of Fmoc-D-Alanyl-dipeptides are established by experimental technique UV,1H-NMR and FTIR,and the reaction mechanism was speculated according to the properties of the reactants and products.
     The character in gelled solvent of the above resulted Fmoc-D-Alanyl-dipeptides was studied,and the properties of the five Fmoc-D-Alanyl-dipeptides in rheology, morphology and microscopic arrangement was tested by the experimental technique Rheometer,TEM,SEM and CD.In addition,the effects of pH,the acid radical ion and the temperature to the hydrogels was studied.
     It was found that although the five Fmoc-D-Alanyl-dipeptides have the similar structure,the five gels formed by them are different in the mechanical property and morphology.Along with the size of side group increasing,the morphology of the gels changed from nanofiber to nanotube.According to the information from the above test,we speculated the mechanism of the hydrogels formation,.In addition,it was also found that the above four compounds can form hydrogels adjusted by different acids on the condition of pH<5,the results of TEM show that the morphologies of hydrogels acidized by hydrochloride,nitric acid and sulfuric acid are not different.The result suggests that we can acidized the Fmoc-D-Alanyl-dipeptides solution by hydrochloride in the study of preparation hydrogel used in drug delivery,drug release and tissue engineering.The temperature of surroundings made great effect to the hydrogels,when the temperature arrived the T_g,the hydrogels can change into solution,but cooled to the room temperature,the hydrogels formed again. The results show that the hydrogels are thermosensitive reversible hydrogels.
     The research significance in this paper consists in synthesis of five Fmoc-D-Alanyl-dipeptides, prepared four Fmoc-D-Alanyl-dipeptides thermosensitive reversible hydrogels,finding the phenomenon of the side groups effects to the whole molecule.
     The results of our research provide some reference for drug delivery and enriched the database of drug delivery to a certain extent.
引文
[1]黄剑锋编.溶胶-凝胶原理与技术.第一版 北京:化学工业出版社,2005.1.
    [2]傅献彩,沈文霞,姚天扬编.物理化学.第四版 北京:高等教育出版社,1995.1073.
    [3]北京大学化学系.胶体化学教研室.第一版 北京:北京大学出版社,1993.295.
    [4]Simmons,B.A.;Taylor,C.E.;Landis,F.A.;John,V.T.;McPherson,G.L.;Schwartz,D.K.;Moore,R.Microstructure Determination of AOT + Phenol Organogels Utilizing Small-Angle X-ray Scattering and Atomic Force Microscopy.J.Am.Chem.Soc.2001,123,2414-2421.
    [5]Kunitake,T.;Okahata,Y.;Shimomura,M.;Yasunami,S.;Takarabe,K.Formation of Stable Bilayer Assemblies in Water from Single-Chain Amphiphiles.Relationship between the Amphiphile Structure and the Aggregate Morphology.J.Am.Chem.Soc.1981,103,5401-5413.
    [6]Aggeli,A.;Nyrkova,I.A.;Bell,M.;Harding,R.;Carrick,L.;McLeish,T.C.B.;Semenov,A.N.;Boden,N.Hierarchical Self-Assembly of Chiral Rod-like Molecules as a Model for Peptide β-Sheet Tapes,Ribbons,Fibrils,and Fibers.Proc.Natl.Acad.Sci.U.S.A.2001,98,11857-11862.
    [7]Imae,T.;Takahashi,Y.;Muramatsu,H.Formation of Fibrous Molecular Assemblies by Amino Acid Surfactants in Water.J.Am.Chem.Soc.1992.114,3414-3419.
    [8]Franceschi,.S.;de Viguerie,N.;Riviere,M.;Lattes,A.Synthesis and aggregation of two-headed surfactants bearing amino acid moieties.New J.Chem.1999,23,447-452.
    [9]Bhattacharya,S.;Acharya,S.N.G.Pronounced Hydrogel Formation by the Self-Assembled Aggregates of N-Alkyl Disaccharide Amphiphiles.Chem.Mater.1999,11,3504-3511.
    [10]Hanabusa,K.;Hirata,T.;Inoue,D.;Kimura,I.;Shirai,H.Formation of physical hydrogels with terpyridine-eontaining carboxylic acids.Colloid Surf,A 2000,169,307-315.
    [11]Menger,F.M.;Caran,K.L.Anatomy of a Gel Amino Acid Derivatives That Rigidify Water at Submillimolar Concentrations.J.Am.Chem.Soc.2000,122,11679-11691.
    [12]吴其晔,巫静安编著.高分子材料流变学.北京:高等教育出版社,2002.1.
    [13]Jung,J.H.;John,G.;Masuda,M.;Yoshida,K.;Shinkai,S.;Shimizu,T.Self-Assembly of a Sugar-Based Gelator in Water:Its Remarkable Diversity in Gelation Ability and Aggregate Structure.Langmuir 2001,17,7229-7232.
    [14]Makarevic,J.;Jokic,M.;Peric,B.;Tomisic,V.;Kojic-Prodic,B.;Zinic,M.Bis(Amino Acid)Oxalyl Amides as Ambidextrous Gelators of Water and Organic Solvents:Supramolecular Gels with Temperature Dependent Assembly/Dissolution Equilibrium.Chem.Eur.J.2001,7,3328-3341.
    [15]Jung,J.H.;Shinkai,S.;Shimizu,T.Spectral Characterization of Self-Assemblies of Aldopyranoside Amphiphilic Gelators:What is the Essential Structural Difference between Simple Amphiphiles and Bolaamphiphiles.Chem.Eur.J.2002,8,2684-2690.
    [16]Frkanec,L.;Jokic,M.;Makarevic,J.;Wolsperger,K.;Zinic,M.Bis(PheOH)Maleic Acid Amide-Fumaric Acid Amide Photoizomerization Induces Microsphere-to-Gel Fiber Morphological Transition:The Photoinduced Gelation System.J.Am.Chem.Soc.2002,124,9716-9717.
    [17]Fuhrhop,J.H.;Svenson,S.;Boettcber,C.;Rossler,E.;Vieth,H.M.Long-Lived Micellar N-Alkylaldonamide Fiber Gels.Solid-State NMR and Electron Microscopic Studies.J.Am.Chem.Soc.1990,112,4307-4312.
    [18]Nakazawa,I.;Masuda,M.;Okada,Y-.;Hanada,T.;Yase,K.;Asal,M.;Shimizu,T.Spontaneous Formation of Helically Twisted Fibers from 2-Glucosamide Bolaamphiphiles:Energy-Filtering Transmission Electron Microscopic Observation and Even-Odd Effect of Connecting Bridge.Langmuir 1999,15,4757-4764.
    [19]Xing,B.;Yu,C.W.;Chow,K.H.;Ho,P.L.;Fu,D.G.;Xu,B.Hydrophobic Interaction and Hydrogen Bonding Cooperatively Confer a Vancomycin Hydrogel:A Potential Candidate for Biomaterials.J.Am.Chem.Soc.2002,124,14846-14847.
    [20]Milan Jokie,Janja Makarevie,Mladen Zinic.A novel type of small organic gelators:bis(amino acid)oxalyl amides.Chem.Commun.1995,1723-1724.
    [21]Suzuki,M.;Yumoto,M.;Kimura,M.;Shirai,H.;Hanabusa,K.Novel family of low molecular weight hydrogelators based on L-lysine derivatives.Chem.Commun.2002,884-885.
    [22]Maitra,U.;Mukhopadhyay,S.;Sarkar,A.;Rao,P.;Indi,S.S.Hydrophobic Pockets in a Nonpolymeric Aqueous Gel:Observation of such a Gelation Process by Color Change.Angew.Chem.,Int.Ed.Engl.2001,40,2281-2283.
    [23]Newkome,G.R.;Baker,G.R.;Arai,S.;Sannders,M.J.;Russo,P.S.;Theriot,K.J.;Moorefield,C.N.;Rogers,L.E.;Miller,J.E.;Lieux,T.R.;Murray,M.E.;Phillips,B.;Pascal,L.Synthesis and haracterization of Two-Directional Cascade Molecules and Formation of Aqueous Gels.J.Am.Chem.Soc.1990,112,8458-8465.
    [24]Nakashima,T.;Kimizuka,N.Light-Harvesting Supramolecular Hydrogels Assembled from Short-Legged Cationic L-Glutamate Derivatives and Anionic Fluorophores.Adv.Mater.2002,14,1113-1116.
    [25]Iwaura,R.;Yoshida,K.;Masuda,M.;Ohnishi-Kameyama,M.;Yoshida,M.;Shimizu,T.Oligonucleotide-Templated Self-Assembly of Nucleotide Bolaamphiphiles:DNA-Like Nanofibers Edged by a Double-Helical Arrangement of A-T Base Pairs.Angew.Chem.,Int.Ed.Engl.2003,42,1009-1012.
    [26]Kobayashi,H.;Friggeri,A.;Koumoto,K.;Amaike,M.;Shinkal,S.;Reinhoudt,D.N.Molecular Design of "Super" Hydrogelators:Understanding the Gelation Process of Azobenzene-Based Sugar Derivatives in Water.Org.Lett.2002,4,1423-1426.
    [27]Gronwald,O.;Shinkal,S.'Bifunctional' sugar-integrated gelators for organic solvents and water on the role of nitro-substituents in 1-O-methyl-4,6-O-(nitrobenzylidene)-monosaccharides for the improvement of gelation ability.J.Chem.Soc.,Perkin Trans.2.2001,1933-1937.
    [28]Shimizu,T.;Masuda,M.Stereochemical Effect of Even-Odd Connecting Links on Supramolecular Assemblies Made of 1-Glucosamide Bolaamphiphiles.J.Am.Chem.Soc. 1997,119,2812-2818.
    [29]Kogiso,M.;Hanada,T.;Yase,K.;Shimizu,T.Intralayer hydrogen-bond-directed self-assembly of nano-fibers from dicarboxylic valylvaline bolaamphiphiles.Chem.Commun.1998,1791-1792.
    [30]Kogiso,M.;Ohnishi,S.;Yase,K.;Masuda,M.;Shimizu,T.Dicarboxylic Oligopeptide Bolaamphiphiles:Proton-Triggered Self-Assembly of Microtubes with Loose Solid Surfaces.Langmuir 1998,14,4978-4986.
    [31]Suzuki,M.;Yumoto,M.;Kimura,M.;Shirai,H.;Hanabusa,K.A Family of Low-Molecular-Weight Hydrogelators Based on L-Lysine Derivatives with a Positively Charged Terminal Group.Chem.Eur.J.2003,9,348-354.
    [32]Estroff,L.A.;Hamilton,A.D.Effective Gelation of Water Using a Series of Bis-urea Dicarboxylic Acids.Angew.Chem.,Int.Ed.Engl.2000,39,3447-3450.
    [33]Iwaura,R.;Yoshida,K.;Masuda,M.;Yase,K.;Shimizu,T.Spontaneous Fiber Formation and Hydrogelation of Nucleotide Bolaamphiphiles.Chem.Mater.2002,14,3047-3053.
    [34]Wang,R.;Geiger,C.;Chen,L.;Swanson,B.;Whitten,Do G.Direct Observation of Sol-Gel Conversion:The Role of the Solvent in Organogel Formation.J.Am.Chem.Soc.2000,122,2399-2400.
    [35]Song,J.;Cheng,Q.;Kopta,S.;Stevens,R.C.Modulating Artificial Membrane Morphology:pH-Induced Chromatic Transition and Nanostructural Transformation of a Bolaamphiphilic Conjugated Polymer from Blue Helical Ribbons to Red Nanofibers.J.Am.Chem.Soc.2001,123,3205-3213.
    [36]Kolbel,M.;Menger,F.M.Hierarchical structure of a self-assembled xerogel.Chem.Commun.2001,275-276.
    [37]Pochan,D.J.;Pakstis,L.;Ozbas,B.;Nowak,A.P.;Deming,T.SANS and Cryo-TEM Study of Self-Assembled Diblock Copolypeptide Hydrogels with Rich Nano-through Microscale Morphology.Macromolecules 2002,35,5358-5360.
    [38]Imae,T.;Funayama,K.;Krafft,M.P.;Giulieri,F.;Tada,T.;Matsumoto,T.Small-Angle Scattering and Electron Microscopy Investigation of Nanotubules Made from a Perfluoroalkylated Glucophospholipid.Colloid Interface Sci.1999,212,330-337.
    [39]Fukuda,H.;Goto,A.;Imae,T.Structure Determination of Helical Fibers by Numerical Simulation for Small-Angle Neutron Scattering.Langmuir 2002,18,7107-7114.
    [40]Mikami,M.;Matsuzaki,T.;Masuda,M.;Shimizu,T.;Tanabe,K.Molecular dynamics simulation for the crystal structure of synthetic sugar-based bolaamphiphiles.Comput.Mater.Sci.1999,14,267-276.
    [41]顾雪蓉,朱育平编.凝胶化学.第一版北京:化学工业出版社,2005.
    [42]Kunitake,T.;Okahata,Y.;Shimomura,M.;Yasunami,S.;Takarabe,K.Formation of Stable Bilayer Assemblies in Water from Single-Chain Amphiphiles.Relationship between the Amphiphile Structure and the Aggregate Morphology.J.Am.Chem.Soc.1981,103,5401-5413.
    [43]Thomas,B.N.;Safinya,C.R.;Plano,R.J.;Clark,N.A.Lipid Tubule Self-Assembly: Length Dependence on Cooling Rate Through a First-Order Phase Transition.Science 1995,267,1635-1638.
    [44]Israelachvili,J.N.Intermolecular and Surface Forces,2nd ed.;Academic Press:New York,1991.
    [45]Gronwald,O.;Shinkai,S.Sugar-lntegrated Gelators of Organic Solvents.Chem.Eur.J.2001,7,4328-4334.
    [46]Bhattacharya,S.;Acharya,S.N.G.Pronounced Hydrogel Formation by the Self-Assembled Aggregates of N-Alkyl Disaccharide Amphiphiles.Chem.Mater.1999,11,3504-3511.
    [47]Jung,J.H.;John,G.;Masuda,M.;Yoshida,K.;Shinkai,S.;Shimizu,T.Self-Assembly of a Sugar-Based Gelator in Water:Its Remarkable Diversity in Gelation Ability and Aggregate Structure.Langmuir 2001,17,7229-7232.
    [48]Kiyonaka,S.;Shinkal,S.;Hamachi,I.Combinatorial Library of Low Molecular-Weight Organo-and Hydrogelators Based on Glycosylated Amino Acid Derivatives by Solid-Phase Synthesis.Chem.Eur.J.2003,9,976-983.
    [49]Masahiro Suzuki;Mariko Yumoto;Mutsumi Kimura;Hirofusa Shirai;Kenji Hanabusa.Novel family of low molecular weight hydrogelators based on L-lysine derivatives.Chem.Commun.2002,884-885.
    [50]Yan Zhang,Hongwei Gu,Zhimou Yang,and Bing Xu.Supramolecular Hydrogels Respond to Ligand-Receptor Interaction.J.Am.Chem.Soc.2003,125,13680-13681.
    [51]Arianna Friggeri,Cornelia van der Pol,Kjeld J.C.van Bommel,Andre Heeres,Marc C.A.Stuart,Ben L.Feringa,and Jan van Esch.Cyclohexane-Based Low Molecular Weight Hydrogelators:A Chirality Investigation.Chem.Eur.J.2005,11,5353-5361.
    [52]Vineetha Jayawarna,Murtza All,Thomas A.Jowitt,Aline F.Miller,Alberto Saiani,dulie E.Gough,and Rein V.Ulijn Nanostructured Hydrogels for hree-Dimensional Cell Culture Through Self-Assembly of Fluorenylmethoxycarbonyl-Dipeptides.Adv.Mater.2006,18,611-614.
    [53]Sophie Toledano,Richard J.Williams,Vineetha Jayawarna,and Rein V.Ulijn Enzyme-Triggered Self-Assembly of Peptide Hydrogels via Reversed Hydrolysis.J.Am Chem.Soc.2006,128,1070-1071.
    [54]Zhimou Yang,Keming Xu,Ling Wang,Hongwei Gu,Heng Wei,Mingjie Zhang and Bing Xu.Self-assembly of small molecules affords multifunctional supramolecular hydrogels for topically treating simulated uranium wounds.Chem.Commun.,2005,4414-4416.
    [55]Rao,J.H.;Lahiri,J.;Isaacs,L.;Weis,R.M.;Whitesides,G.M.A Trivalent System from Vancomycin.D-Ala-D-Ala with Higher Affinity Than Avidin.Biotin.Science 1998,280,708-711.
    [56]Walsh,C.T.Science 1993,262,164.
    [57]Yan Zhang,Zhimou Yang,Fang Yuan,Hongwei Gu,Ping Gao,Bing Xu.Molecular Recognition Remolds the Self-Assembly of Hydrogelators and Increases the Elasticity of the Hydrogel by 10~6-Fold.J.Am.Chem.Soc.2004,126,15028-15029.
    [58]Estroff,L.A.;Hamilton,A.D.Effective Gelation of Water Using a Series of Bis-urea Dicarboxylic Acids.Angew.Chem.,Int.Ed..2000,39,3447-3450.
    [59]Jung,J.H.;John,G.;Masuda,M.;Yoshida,K.;Shinkai,S.;Shimizu,T.Self-Assembly of a Sugar-Based Gelator in Water:Its Remarkable Diversity in Gelation Ability and Aggregate Structure.Langmuir 2001,17,7229-7232.
    [60]Vauthey,S.;Santoso,S.;Gong,H.Y.;Watson,N.;Zhang,S.G.Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles.Proc.Natl.Acad.Sci.U.S.A.2002,99,5355-5360.
    [61]Bengang Xing,Chun-Wing Yu,Kin-Hung Chow,Pak-Leung Ho,Degang Fu,Bing Xu,Hydrophobic Interaction and Hydrogen Bonding Cooperatively Confer a Vancomycin Hydrogel:A Potential Candidate for Biomaterials.J.Am.Chem.Soc.2002,124,14846-14847.
    [62]R.M.Burch,M.Weitzberg,N.Blok,R.Muhlhauser,D.Martin,S.G.Farmer,J.M.Bator,J.R.Connor,C.Ko,W.Kuhn,B.A.McMillan,M.Raynor,B.G.Shearer,C.Tiffany,D.E.Wilkins.N-(Fluorenyl-9-methoxycarbonyl)amino acids,a class of anti-inflammatory agents with a different mechanism of action.Proc.Natl.Acad.Sci.U.S.A.,1991,88,355-359.
    [63]Zhimou Yang,Hongwei Gu,Yan Zhang,Ling Wang,Bing Xu.Small molecule hydrogels based on a class of anti-inflammatory agents.Chem.Commun.2004,208-209.
    [64]J.C.Tiller.Lokale Anreicherung von Wirkstoffen durch Hydrogelierung.Angew.Chem.2003,115,3180-3183.
    [65]C.Valenta,E.Nowack,A.Bernkop-Schnurch.Deoxycholate-hydrogels:novel drug carrier systems for topical use.Int.J.Pharm.1999,185,103-111.
    [66]L.Moreau,P.Barthelemy,M.El Maataoui,M.W.Grinstaff.Supramolecular Assemblies of Nucleoside Phosphocholine Amphiphiles.J.Am.Chem.Soc.2004,126,7533-7539.
    [67]U.Maitra,S.Mukhopadhyay,A.Sarkar,P.Rao,S.S.Indi.Hydrophobic Pockets in a Nonpolymeric Aqueous Gel:Observation of such a Gelation Process by Color Change.Angew.Chem.2001,113,2341-2343.
    [68]Z.Yang,B.Xu.A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes.Chem.Commun.2004,2424-2425.
    [69]沈同,王镜岩主编.生物化学.第二版(上册)北京:高等教育出版社,1990.78-79.
    [70]邢其毅,徐瑞秋,周政编.基础有机化学.第一版(下册)北京:高等教育出版社,1983.1104.
    [71]鲁崇贤,杜洪光主编.有机化学.第一版 北京:科学出版社,2003.634.
    [72]黄惟德,陈常庆著.多肽合成.第一版 北京:科学出版社,1985.1.
    [73]黄惟德,陈常庆著.多肽合成.第一版 北京:科学出版社,1985.3.
    [74]Louis A.Carpino,Grace Y.Han.The 9-Fluorenylmethoxycarbonyl Amino-Protecting Group.J.Org.Chem.1972,37,3404.
    [75]Ronald M.Burch,Moshe Weitzberg,Natalie Blok,Richard Muhlhauser,David Martin,Stephen G.Farmer,Jenny M.Bator,Jane R.Connor,Chiew Ko,Wendy Kuhn,Barbara A.McMillan,Maureen Raynor,Barry G.Shearer,Carol Tiffany,Deidre E.Wilkins. N-(Fluorenyl-9-Mcthoxycarbonyl)Amino Acids,a Class of Antiinflammatory Agents With a different Mechanism of Action.Proc.Natl.Acad.Sci.U.S.A.1991,88:355-359.
    [76]Coyne,W.E.(1970)in Medicinal Chemistry,ed.Burger,A.(Wiley,New York),p.967.
    [77]Yan Zhang,Zhimou Yang,Fang Yuan,Hongwei Gu,Ping Gao,Bing Xu.Molecular Recognition Remolds the Self-Assembly of Hydrogelators and Increases the Elasticity of the Hydrogel by 106-Fold.J.Am.Chem.Soc.2004,126,15028-15029.
    [78]Yan Zhang,Hongwei Gu,Zhimou Yang,Bing Xu.Supramolecular Hydrogels Respond to Ligand-Receptor Interaction.J.Am.Chem.Soc.2003,125,13680-13681.
    [79]鲁崇贤,杜洪光主编.有机化学.第一版 北京:科学出版社,2003.630.
    [80]周峻山编著.实用氨基酸手册,1989.
    [81]H.Senff,W.Richtering.Temperature sensitive microgel suspensions:Colloidal phase behavior and rheology of soft spheres.Journal of chemical physics 1999,111.1705-1711.
    [82]Derek H.Owena,Jennifer J.Petersa,David F.Katza.Rheological properties of contraceptive gels.Contraception 2000,62,321-326.
    [83]Takayoshi Kawasaki,Maki Tokuhiro,Nobuo Kimizuka,Toyoki Kunitake.Hierarchical Self-Assembly of Chiral Complementary Hydrogen-Bond Networks in Water:Reconstitution of Supramolecular Membranes.J.Am.Chem.Soc.2001,123,6792-6800.
    [84]N.D.Lazo,Donald T.Downing.Circular Dichroism of Model Peptides Emulating the Amphipathic α-Helical Regions of Intermediate Filaments.Biochemistry 1997,36,2559-2565.
    [85]Radhakrishnan Mahalakshmi,Ganesh Shanmugam,Prasad L.Polavarapu,Padmanabhan Balaram.Circular Dichroism of Designed Peptide Helices and b-Hairpins:Analysis of Trp-and Tyr-Rich Peptides.ChemBioChem.2005,6,2152-2158.
    [86]Bulent Ozbas,Juliana Kretsinger,Karthikan Rajagopal,Joel P.Schneider,Darrin J.Pochan.Salt-Triggered Peptide Folding and Consequent Self-Assembly into Hydrogels with Tunable Modulus.Macromolecules 2004,37,7331-7337.
    [87]Joel P.Schneider,Darrin J.Pochan,Bulent Ozbas,Karthikan Rajagnpal,Lisa Pakstis,Juliana Kretsinger.Responsive Hydrogels from the Intramolecular Folding and Self-Assembly of a Designed Peptide.J.Am.Chem.Soc.2002,124,15030-15037.
    [88]Darrin J.Pochan,Joel P.Schneider,Juliana Kretsinger,Bulent Ozbas,Karthikan Rajagopai,and Lisa Haines.Thermally Reversible Hydrogels via Intramolecular Folding and Consequent Self-Assembly of a de Novo Designed Peptide.J.Am.Chem.Soc.2003,125,11802-11803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700