用户名: 密码: 验证码:
胶州湾湿地菲律宾蛤仔(Ruditapes philippinarum)和芦苇(Phragmites australis)生物学与生态化学计量学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地具有涵养水源、保持水土、蓄洪防旱、调节气候、净化环境、保持生物多样性与维持生态平衡等多种生态功能,正日益受到人们的重视。胶州湾滨海湿地在净化环境、维持生物多样性、减轻灾害、保护海岸线免受侵蚀等方面发挥着重要作用。芦苇(Phragmites australis)作为胶州湾湿地主要植物群落,在其生态系统的初级生产及生物地化循环中意义重大;菲律宾蛤仔(Ruditapes philippinarum)在胶州湾湿地中不仅有着重要的渔业地位,而且在其生态系统物质循环中扮演着非常重要的角色。两种生物对维护胶州湾湿地的生态功能具有重要的作用。
     本论文以大沽河口湿地及胶州湾浅海湿地为研究区域,主要以2009年5月-2010年6月在胶州湾浅海湿地菲律宾蛤仔增养殖区进行的逐月随机取样以及2009年4-10月对大沽河口湿地芦苇群落进行的调查研究为基础,较系统的研究了两种生物的生物学特征、主要生源要素(碳、氮、磷)含量与元素间比值变化、对环境中的元素移除效应等,初步探讨了胶州湾湿地的生态修复技术。主要研究结果如下:
     (1)胶州湾底播增殖菲律宾蛤仔的生长特性与胶州湾自然种群相同。菲律宾蛤仔的生长发育具有明显季节性,生物量密度冬春季蛤仔生物量较低而夏秋季较高(2318.52±124.75~3343.37±277.37g·m-2),受温度、盐度、浮游植物量等外部环境条件影响较大。环境因子的突发性大幅改变会导致蛤仔生长停滞甚至死亡。
     (2)菲律宾蛤仔体内碳、氮、磷元素含量的变化与其生长繁殖特性及盐度、温度等环境因子的变化有关。碳元素作为菲律宾蛤仔壳体的主要构成元素,在蛤仔碳元素总含量中占较大比例,且在不同月份间含量较稳定,变化范围为9.10±0.13~10.38±0.09mmol-g-1。软体碳元素含量为29.42±0.05~33.64±0.62mmol·g-1。壳体、软体氮元素含量变化趋势相似,变化范围分别为0.07±0.009~0.14±0.009mmol·g-1、5.46±0.12~7.39±0.43mmol·g-1。磷元素含量变化趋势与其性成熟阶段有关。壳体磷元素含量变化略滞后于软体,分别为0.006±0.001~0.016±0.001mmol·g-1、0.058±0.017~0.293±0.029mmol·g-1。不同的养殖环境中,蛤仔体内C:N、N:P比值维持在一定范围内。随生长率变化,蛤仔体内C:N、N:P比值也有相应变化,高的生长速率对应较低的C:N、N:P比值,N:P变化主要是由蛤仔体内P含量的变化决定的。蛤仔体内元素间的比值随其生长发育阶段的不同而有所改变。
     (3)芦苇在生长季节,植株密度与株高成极显著负相关;地上部各器官生物量变化较大,芦苇叶生物量、叶鞘生物量和茎生物量逐渐增加,10月最高。同化器官与非同化器官生物量之比F/C值在生长期逐渐降低,非同化器官对地上部总生物量的变化有较大贡献。降水量对芦苇地上生物量增长有较大影响。
     (4)芦苇叶、叶鞘和茎及地下根系中碳元素含量在春、秋季高于夏季。地上各构件氮元素含量逐渐降低,磷元素含量波动较大。地下根系中氮元素含量先降低后升高;根状茎、须根的磷元素含量逐渐增大。随芦苇个体生长发育与枯萎,碳元素逐渐由叶片向茎中累积。土壤碳、氮元素含量总体呈先降低后升高趋势,土壤磷含量,总体呈降低趋势,7月较高,9月较低,变化范围为0.48±0.14~1.25±0.06mg/g。
     (5)菲律宾蛤仔鲜活个体年收获量约为2.5×105t计,每年通过人为捕捞及蛤仔死亡移除的碳、氮、磷元素总量分别为3.16×104t、1449.6t、149.1t。其中,通过渔业收获蛤仔的软体软体部分移除C量约占胶州湾年均有机碳生产量的10%;通过人为收获及蛤仔死亡年均N移除量占胶州湾外源氮输入量的28.7%;通过蛤仔捕捞、自然死亡年均P移除量约达由河流、污水排放等外部磷元素输入总量的43.3%。大沽河口湿地芦苇固碳能力较强。芦苇对氮元素的截留能力明显高于磷,而与固碳能力相差较大;以大沽河口湿地面积为15.55km2计,每年可经芦苇收获移除的碳、氮、磷总量分别为3.99×104tC·a-1(即1.39×105tCO2·a-1)、627.88tN·a-1和104.05t P·a-1。湿地土壤中储碳、氮、磷量为1757.06t C·a-1、55.84tN·a-1和139.58tP·a-1。
     (6)通过本文中对胶州湾湿地菲律宾蛤仔通过渔业捕捞与自然死亡的元素移除量与大沽河口湿地芦苇及其湿地土壤的固碳、储碳与氮、磷移除效应的研究,结合历史数据,提出胶州湾湿地生态修复技术主要为贝藻混养与芦苇扩植,即采用潮上带河口湿地芦苇群落对湿地污染物的降解和截留与潮下带浅海湿地贝藻混养相结合的形式。
Wetlands, together with marines, and forests are known as three of the world's major ecosystems. The coastal wetland in Jiaozhou Bay plays an important role in purifying environment, maintenance of biodiversity, disaster mitigation, and in protecting coastlines erosion. The reed (Phragmites australis) community, as the principal community type in the estuary wetland of Dagu River, has significant effect on primary production and biogeochemical cycling in the ecosystem. Manila clam (Ruditapes philippinarum) in the Jiaozhou Bay wetlands is not only an important fisheries species, but also acts a critical role in the material cycling of the ecosystem.
     In the present study, the Dagu River estuary wetland and the shallow water region of Jiaozhou Bay were concerned, and selected Manila clams and reeds as two typical animal and plant species respectively. Data was collected by monthly surveys from May2009to Jun.2010in Jiaozhou Bay wetland (excerpt for Feb. and Apr.2010) and monthly surveys between Apr. and Nov.2009in Dagu River estuary wetland. The biological and ecological stoichiometry characteristics of Manila clams and reeds, as well as their ecological effects on the ecosystem were analyzed and assessed to make preliminary exploration of restoration technologies for the degraded wetland ecosystem. The main results are summarized as follows:
     1) The clam shells grew19.64mm annually, similar to other relative studies. Dry weight of the soft body and fatness was higher in August2009and June2010, and the density of the clam reduced gradually within the study period. Low biomass was detected in winter and spring, while it was high in summer and autumn (2318.52±124.75to3343.37±277.37g·m-2). Water temperature was the main factor affecting the mortality of clam, and the relationship between growth rate and water temperature was against to that with salinity; the clam growth was also closely related to breeding activity and clam density.
     2) The variation trend of carbon content in shell was similar to that in entire clam, which tended to be higher in summer and autumn. Carbon content of flesh showed opposite variation trend to that of shell in most months. Nitrogen content of shell and flesh showed obvious seasonal changes, which were lower in spring and summer. Total nitrogen content of clam ranged from0.50±0.003to0.76±0.10mmol-g-1with a decreasing tendency except a high value in March2010. Phosphorus content of clam exhibited large fluctuations, while phosphorus content of shell displayed a lagged variation compared with that of flesh. Carbon and nitrogen contents were slightly affected by shell length, width or height. Elemental contents were closely related to the reproduction cycle
     3) The average height of reed showed significant correlation with density of reed (P<0.01). During the main growth season periods, the aboveground biomass of reed showed generally increasing tendency, reaching at maximum point in October and exhibited evident monthly variations, ranging from between37.59±13.94to7033.02±967.37g-m-2for dry weight. Biomass of leaves, stem and sheath of reed increased generally from April to October. Aboveground biomass of non-photosynthetic organs made a larger contribution to the changes of total aboveground biomass. Preliminary study showed that rainfall had great positive effects on growth of aboveground biomass of reed in the wetlands of Daguhe Estuary.
     4) The leaves, sheaths, stems, ground carbon element content of reed changes in similar pattern, with higher quantity in spring and autumn, and lower in summer. Nitrogen content of the aboveground components reduced gradually Phosphorus content fluctuated in leaf, sheaths, and stems. The carbon content in underground root was higher in spring and autumn and lower summer; the nitrogen content initially decreased then increased, lowest in July. Considering the underground components, the phosphorus content increased gradually along with sampling month, and carbon and nitrogen content exhibited larger variation in fibrous roots. Along with the process of growth, development and wilt of reeds, the carbon accumulated gradually from leaf to stem.
     5) The annual harvest of fresh clams was2.5×105t in the bay, the annual removal of carbon, nitrogen, and phosphorus elements through fishing and natural morality of the clams totaled3.16×104t,1449.6t, and149.1t respectively. The annual removal of carbon, nitrogen, and total phosphorus through reed harvest were3.99×104tC·a--1(i.e.1.39×105tCO2·a-1),627.88t N·a-1and104.05t P·a-1, respectively. The storage of carbon, nitrogen and phosphorus in wetland soil amounted to1757.06t C·a-1,55.82t N·a-1and139.58t P·a-1. Compared with other studies, the reed in estuary wetland of Dagu River is stronger in the capability of carbon sequestration. Reed's retention capacity of nitrogen was significantly higher than that of phosphorus, and exhibited obvious difference compared with its carbon sequestration capacity. The contribution of soil in phosphorus removal cannot be ignored.
     6) Based on the analysis of biological and ecological stoichiometry characteristics of Manila clams and reeds as well as their ecological effects on the ecosystem, preliminary exploration of restoration technologies for the degraded wetland ecosystem was made. It could be concluded as a combination of "polyculture of Manila clam and kelp" and reed planting.
引文
[1]陆健健,何文珊,童春富,等.湿地生态学.北京:高等教育出版社,2006.
    [2]IUCN, I. U. F. T. (1971). Convention on Wetlands of International Importance Especially as Waterfow Habitat. Ramsar, Iran,1971.
    [3]陆健健.中国滨海湿地的分类,环境导报,1996,1:1-2
    [4]赵焕庭,王丽荣.中国海岸湿地的类型,海洋通报,2000,19(6):72-82
    [5]唐小平,黄桂林.中国湿地分类系统的研究,林业科学研究,2003,16(5):531-539
    [6]陆健健.中国湿地.上海:华东师范大学出版社,1990.
    [7]Mitch, W. and G. James. Wetlands.New York:Van Nostrand Reinhold Company,1986.15-20
    [8]Fisher, J. and C. J. Stratford, et al. Variation in nutrient removal in three wetland blocks in relation to vegetation composition, inflow nutrient concentration and hydraulic loading,Ecological Engineering,2009,35(10):1387-1394
    [9]侯雪景,印萍,丁旋,等.青岛胶州湾大沽河口滨海湿地的碳埋藏能力,海洋地质前沿,2012,28(11):17-26
    [10]欧维新,杨桂山,高建华.盐城潮滩湿地对N、P营养物质的截留效应研究,湿地科学,2006,4(3):179-186
    [11]宋英伟,年跃刚,黄民生,等.人工湿地中基质与植物对污染物去除效率的影响,环境工程学报,2009,3(7):1213-1217
    [12]张绪良,张朝晖,徐宗军,等.胶州湾海岸湿地的生物多样性特征,科技导报,2009,27(13):36-41
    [13]刘树元,阎百兴,王莉霞.潜流人工湿地中植物对氮磷净化的影响,生态学报,2011,31(6):1538-1546
    [14]昝肖肖,徐宾铎,任一平,等.青岛大沽河口湿地芦苇的生长及生物量动态研究,中国海洋大学学报(自然科学版),2011,41(11):27-33
    [15]徐宾铎,任一平,叶振江,等.青岛近岸水域鱼类群落分类学多样性的研究.,2007,37(6):907-910,中国海洋大学学报,2007,37(6):907-910
    [16]Weilhoefer, C. L. A review of indicators of estuarine tidal wetland condition, Ecological Indicators,2011,11(2):514-525
    [17]曲向荣,贾宏宇,张海荣,等.辽东湾芦苇湿地对陆源营养物质净化作用的初步研究,应用生态学报,2000,11(2):270-272
    [18]辛琨,肖笃宁.盘锦地区湿地生态系统服务功能价值估算,生态学报,2002,22(8):1345-1349
    [19]孙磊.胶州湾海岸带生态系统健康评价与预测研究:[硕士学位论文].青岛:中国海洋大学,2006
    [20]Wang, Y. and Y. Lin, et al. A System Dynamic Model and Sensitivity Analysis for Simulating Domestic Pollution Removal in a Free-Water Surface Constructed Wetland,Water, Air,& Soil Pollution,2012,223(5):2719-2742
    [21]马妍妍,李广雪,刘勇等.胶州湾湿地动态变化的遥感分析及质量评价,海洋地质与第四纪地质,2008,28(1):69-75
    [22]Wang, Y. and J. Zhang, et al. A simulation model of nitrogen transformation in reed constructed wetlands,Desalination,2009,235(1-3):93-101
    [23]Sader, S. A. and D. Ahl, et al. Accuracy of Landsat-TM and GIS rule-based methods for forest wetland classification in Maine,Remote Sensing Of Environment,1995,53(3):133-144
    [24]中国海湾志编纂委员会.中国海湾志(第四分册).见:北京:海洋出版社,1993
    [25]伍光和,王乃昂,胡双熙,等.自然地理学(第四版).北京:高等教育出版社,2008.
    [26]白光润.地理科学导论.北京:高等教育出版社,2006.
    [27]张绪良与夏东兴.海岸湿地退化对胶州湾渔业和生物多样性保护的影响,海洋技术,2004,23(2):68-70,85
    [28]Shepard, F. P. Nomenclature Based on Sand-silt-clay Ratios, Journal of Sedimentary Petrology,1954,24(3):151-158
    [29]刘瑞玉.胶州湾生态学和生物资源.北京:科学出版社,1992.
    [30]任一平.胶州湾移植底播菲律宾蛤仔资源生物学及养护对策研究:[博士学位论文].青岛:中国海洋大学,2006
    [31]国家环境保护局.GB 3097—1997.海水水质标准.北京:中国环境科学出版社,1997.
    [32]傅海靖.海洋污染与保护.北京:科学出版社,1979.113-121
    [33]贾晓平,杜飞雁与林钦等.海洋渔场生态环境质量状况综合评价方法探讨,中国水产科学,2003,10(2):160-164
    [34]中华人民共和国国家质量监督检验检疫总局与中国国家标准化管理委员会.GB/T 12763.9-2007.海洋调查规范第9部分:海洋生态调查指南.北京:中国标准出版社,2007.
    [35]娄安刚,王学昌,吴德星,等.胶州湾大沽河口邻近海域海水水质预测,海洋环境科学,2002,21(1):52-56,74
    [36]过锋,赵俊,陈聚法.胶州湾湿地水体中总氮和总磷的分布及变化特征,渔业科学进展,2012,33(3):108-114
    [37]张帆,葛长字,陈聚法,等.胶州湾大沽河口潮滩水体N、P营养盐的时空分布,海洋湖沼通报,2012,2:59-68
    [38]孙儒泳,李庆芬,牛翠娟,等.基础生态学.北京:高等教育出版社,2002.
    [39]沈国英,黄凌风,郭丰,等.海洋生态学(第三版).北京:科学出版社,2010.
    [40]Nielsen, E. S. and V. K. Hansen. Light Adaptation in Marine Phytoplankton Populations and Its Interrelation with Temperature, Physiologia Plantarum,1959,12(2):353-370
    [41]中华人民共和国国家质量监督检验检疫总局与中国国家标准化管理委员会.GB/T12763.6-2007.海洋调查规范第6部分:海洋生物调查.北京:中国标准出版社,2007.
    [42]杨东方,高振会,孙培艳,等.胶州湾水温和营养盐硅限制初级生产力的时空变化,海洋科学进展,2006,24(2):203-212
    [43]于庆云,唐学玺,杜恩在,等.胶州湾Chl a周年时空分布特征及与环境因子变化的相关性,中国海洋大学学报,2009,29(增刊):120-126
    [44]孙松,张永山,吴玉霖,等.胶州湾初级生产力周年变化,海洋与湖沼,2005,36(6):481-486
    [45]傅明珠,王宗灵,艳李,等.胶州湾浮游植物初级生产力粒级结构及固碳能力研究,海洋科学进展,2009,27(3):357-366
    [46]马妍妍.基于遥感的胶州湾湿地动态变化及质量评价:[硕士学位论文].青岛:中国海洋大学,2006
    [47]谢文霞,李晓燕,于蓉蓉,等.胶州湾湿地的退化影响因素与生态修复建议,海洋科学,2012,36(10):99-106
    [48]印萍与路应贤.胶州湾的环境演变及可持续利用,海岸工程,2000,19(3):14-22
    [49]张绪良,丰爱平,隋玉柱,等.胶州湾海岸湿地维管束植物的区系特征与保护,生态学杂志,2006,25(7):822-827
    [50]毕洪生,孙松,孙道元.胶州湾大型底栖生物群落的变化,海洋与湖沼,2001,32(2):132-138
    [51]李宝泉,李新正,王洪法,等.胶州湾大型底栖软体动物物种多样性研究,生物多样 性,2006,14(2):136-144
    [52]于海燕,李新正,李宝泉,等.胶州湾大型底栖动物生物多样性现状,生态学报,2006,26(2):416-422
    [53]陈晓娟,薛莹,徐宾铎,等.胶州湾中部海域秋、冬季大型无脊椎动物群落结构及多样性研究,中国海洋大学学报(自然科学版),2010,40(3):78-84
    [54]曾晓起,朴成华,姜伟,等.胶州湾及其邻近水域渔业生物多样性的调查研究,中国海洋大学学报,2004,34(6):977-982
    [55]梅春,徐宾铎,薛莹,等.胶州湾中部海域秋、冬季鱼类群落结构及其多样性研究,中国水产科学,2010,17(1):110-118
    [56]曾慧慧.胶州湾近岸水域鱼类群落结构特征及多样性研究:[硕士学位论文].青岛:中国海洋大学,2012
    [57]庄启谦.中国动物志软体动物门双壳纲帘蛤科.见:北京:科学出版社,2001
    [58]庄启谦,林惠琼,梁羡圆.中国近海蛤仔属的研究,海洋科学集刊,1981,18:207-215
    [59]吴耀泉.中国近海菲律宾蛤仔的生态研究,海洋科学集刊,1995,36(2):13-216
    [60]王如才,王昭萍,张建中.海水贝类养殖学.青岛:青岛海洋大学出版社,1993:302-317
    [61]Anderson, G. J. and M. B. Miller, et al. A guide to Manila clam aquaculture in Puget Sound. Seattle:Washington Sea Grant Program, College of Ocean and Fishery Sciences, University of Washington,1982.
    [62]齐秋贞,杨明月.菲律宾蛤仔的生长发育,水产学报,1988,12(1):1-11
    [63]吴耀泉,吕锡缙,孙道元,等.菲律宾蛤仔生物学与资源,1992.见:刘瑞玉主编.胶州湾生态学和生物资源.北京:科学出版社,1992,339-352
    [64]Ren, Y. and B. Xu, et al. Growth, mortality and reproduction of the transplanted Manila clam (Ruditapes philippinarum Adams & Reeve 1850) in Jiaozhou Bay,Aquaculture Research,2008,39(16):1759-1768
    [65]郭永禄.胶州湾底播增殖菲律宾蛤仔(Ruditapes philippinarum)渔业生物学研究:[硕士学位论文].青岛:中国海洋大学,2005
    [66]Kanaya, G. and E. Nobata, et al. Effects of different feeding habits of three bivalve species on sediment characteristics and benthic diatom abundance,Marine Ecology Progress Series,2005,299:67-78
    [67]郭永禄,任一平,杨汉斌.胶州湾菲律宾蛤仔生长特征研究,中国海洋大学学 报,2005,35(5):779-784
    [68]Yan, X. and G. Zhang, et al. Effects of diet, stocking density, and environmental factors on growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum larvae,Aquaculture,2006,253(1-4):350-358
    [69]Monari, M. and V. Matozzo, et al. Effects of high temperatures on functional responses of haemocytes in the clam Chamelea gallina, Fish & Shellfish Immunology, 2007,22(1-2):98-114
    [70]Yang, F. and T. Yao, et al. Effects of starvation on growth, survival, and body biochemical composition among different sizes of Manila clam Ruditapes philippinarum,Acta Ecologica Sinica,2010,30(3):135-140
    [71]Dahl, S. F. and M. Perrigault, et al. Effects of temperature on hard clam (Mercenaria mercenaria) immunity and QPX (Quahog Parasite Unknown) disease development:I. Dynamics of QPX disease, Journal Of Invertebrate Pathology,2011,106(2):314-321
    [72]Epelbaum, A. and C. M. Pearce, et al. Effects of stocking density and substratum on the survival, growth, burrowing behaviour and shell morphology of juvenile basket cockle, Clinocardium nuttallii:implications for nursery seed production and field outplanting,Aquaculture Research,2011,42(7):975-986
    [73]任一平,徐宾铎,郭永禄,等.胶州湾移植底播菲律宾蛤仔的生长和死亡特性,中国水产科学,2006,13(4):642-649
    [74]王俊,姜祖辉,张波,等.菲律宾蛤仔生理生态学研究Ⅱ.温度、饵料对同化率的影响,海洋水产研究,1999,20(2):42-47
    [75]Navarro, E. and J. I. P. Iglesias, et al. Natural sediment as a food source for the cockle Cerastoderma edule (L.):effect of variable particle concentration on feeding, digestion and the scope for growth, Journal Of Experimental Marine Biology And Ecology, 1992,156(1):69-87
    [76]闫喜武,姚托,张跃环,等.冬季饥饿再投喂对菲律宾蛤仔生长、存活和生化组成的影响,应用生态学报,2009,20(12):3063-3069
    [77]Tezuka, N. and M. Kanematsu, et al. Effect of salinity and substrate grain size on larval settlement of the asari clam (Manila clam, Ruditapes philippinarum), Journal Of Experimental Marine Biology And Ecology,2013,439:108-112
    [78]杨晓新,林小涛,计新丽,等.温度、盐度和光照条件对翡翠贻贝滤水率的影响,海洋科学集刊,2000,24(6):36-38
    [79]吴桂汉,陈品健,江瑞胜,等.盐度和昼夜节律对菲律宾蛤仔摄食率的影响,台湾海峡,2002,21(1):72-77
    [80]Reid, H. I. and P. Soudant, et al. Salinity effects on immune parameters of Ruditapes philippinarum challenged with Vibrio tapetis,Diseases Of Aquatic Organisms,2003, 56:249-258
    [81]Kim, W. S. and H. T. Huh, et al. Effects of salinity on endogenous rhythm of the Manila clam, Ruditapes philippinarum (Bivalvia:Veneridae),2001,138(1):157-162
    [82]Tezuka, N. and S. Kamimura, et al. Settlement, mortality and growth of the asari clam (Ruditapes philippinarum) for a collapsed population on a tidal flat in Nakatsu, Japan,Journal Of Sea Research,2012,69:23-35
    [83]杨鸣.胶州湾移植底播菲律宾蛤仔(.Ruditapes philippinarum)繁育补充特性研究:[硕士学位论文].青岛:中国海洋大学,2007
    [84]Hickman, R. W. and J. Illingworth. Condition cycle of the green lipped mussel Perna canaliculus, in New Zealand,Mar. Biol.,1980,60:27-38
    [85]Drummond, L. and M. Mulcahy, et al. The reproductive biology of the Manila clam, Ruditapes philippinarum, from the North-West of Ireland, Aquaculture,2006, 254(1-4):326-340
    [86]曾德慧与陈广生.生态化学计量学:复杂生命系统奥秘的探索,植物生态学报,2005,29(6):1007-1019
    [87]Sterner, R. W. and J. J. Elser. Ecological stoichiometry:the biology of elements from molecules to the biosphere.Princeton, New Jersey:Princeton University Press,2002.
    [88]Elser, J. J. and R. W. Sterner, et al. Biological stoichiometry from genes to ecosystems,Ecology Letters,2000,3(6):540-550
    [89]Elser, J. J. and W. J. O'Brien, et al. The evolution of ecosystem processes:growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats, Journal Of Evolutionary Biology,2000,13(5):845-853
    [90]Elser, J. J. and K. Acharya, et al. Growth rate-stoichiometry couplings in diverse biota, Ecology Letters,2003,6:936-943
    [91]Urabe, J. and J. J. Elser, et al. Herbivorous animals can mitigate unfavourable ratios of energy and material supplies by enhancing nutrient recycling, Ecology Letters,2002, 5(2):177-185
    [92]Vanni, M. J. and A. S. Flecker, et al. Stoichiometry of nutrient recycling by vertebrates in a tropical stream:linking biodiversity and ecosystem function,Ecology Letters,2002,5:285-293
    [93]Urabe, J. and R. W. Sterner. Regulation of herbivore growth by the balance of light and nutrients,Proceedings of the National Academy Of Sciences,1996,93(16):8465-8469
    [94]Urabe, J. and R. W. Sterner. Contrasting effects of different types of resource depletion on life-history traits in Daphnia, Functional Ecology,2001,15(2):165-174
    [95]Mulder, K. and W. B. Bowden. Organismal stoichiometry and the adaptive advantage of variable nutrient use and production efficiency in Daphnia,Ecological Modelling,2007,202(3-4):427-440
    [96]Mendez, M. and P. S. Karlsson. Nutrient stoichiometry in Pinguicula vulgaris:nutrient availability, plant size, and reproductive status, Ecology,2005,86(4):982-991
    [97]贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论,植物生态学报,2010,34(1):2-6
    [98]Makino, W. and J. B. Corner, et al. Are bacteria more like animals than plants? Growth rate and resource dependence of bacterial C:N:P stoichiometry,Functional Ecology,2003, 17:121-130
    [99]刘升发,范德江,石学法,等.菲律宾蛤仔壳体生长过程中Ca, Mg, Sr, Mn和Fe元素富集规律研究,海洋通报,2008,27(2):43-51
    [100]Taylor, J. D. The steuctural evolution of the bivalve shell, Palaeontology,1973,16(3): 516-534
    [101]Goulletquer, P. and M. Wolowicz. The shell of Cardium edule, Cardium glaucum and Ruditapes philippinarum:organic content, composition and energy value, as determined by different methods, Journal Of The Marine Biological Association Of The United Kingdom,1989,69:563-572
    [102]Zhou, Y. K. and B. L. He, et al. Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors,2004,8(7):482-487
    [103]范德江,刘升发,张爱滨,等.九种现代双壳类壳体物相组成的对比研究,沉积学报, 2005,23(3):475482
    [104]Sterner, R. W. Nutrient Stoichiometry in Aquatic Ecosystems,2009. eds:G. E. Likens. Encyclopedia of Inland Waters. Oxford:Academic Press,820-831
    [105]Robert, R. and G. Trut, et al. Growth, reproduction and gross biochemical composition of the Manila clam Ruditapes philippinarum in the Bay of Arcachon, France,Marine Biology,1993,116:291-299
    [106]Kim, S. K. and H. Rosenthal, et al. Various methods to determine the gonadal development and spawning season of the purplish Washington clam, Saxidomus purpuratus (Sowerby),Journal Of Applied Ichthyology.2005,21:101-106
    [107]Orban, E. and G. Di Lena, et al. Seasonal changes in meat content, condition index and chemical composition of mussels (Mytilus galloprovincialis) cultured in two different Italian sites,Food Chemistry,2005,77:57-65
    [108]Okumus, I. and H. P. Stirling. Seasonal variations in the meat weight, condition index and biochemical composition of mussels (Mytilus edulis L.) in suspended culture in two Scottish sea lochs, Aquaculture,1998,159(3-4):249-261
    [109]Lodeiros, C. J. and J. J. Rengel, et al. Biochemical composition and energy allocation in the tropical scallop Lyropecten (Nodipecten) nodosus during the months leading up to and following the development of gonads,Aquaculture,2001,199(1-2):63-72
    [110]Cotter, E. and S. K. Malham, et al. Summer mortality of the Pacific oyster, Crassostrea gigas, in the Irish Sea:The influence of growth, biochemistry and gametogenesis, Aquaculture.2010,303 (1-4):8-21
    [111]Perdue, J. A. and J. H. Beattie, et al. Some relationships between gametogenic cycle and summer mortality phenomenon in the Pacific oyster (Crassostrea gigas) in Washington State,Journal Of Shellfish Research,1981,1:9-16
    [112]Matus De La Parra, A. and O. Garcia, et al. Seasonal variations on the biochemical composition and lipid classes of the gonadal and storage tissues of Crassostrea gigas (Thunberg,1794) in relation to the gametogenic cycle, Journal Of Shellfish Research,2005,24(2):457-467
    [113]Patrick, S. and N. Faury, et al. Seasonal changes in carbohydrate metabolism and its relationship with summer mortality of Pacific oyster Crassostrea gigas (Thunberg) in Marennes-Oleron bay (France) Aquaculture,2006,252(2-4):328-338
    [114]Elser, J. J. and D. Dobberfuhl, et al. Organism size, life history, and N:P stoichiometry:towards a unified view of cellular and ecosystem processes. Bioscience, 1996,46:674-684
    [115]Gorokhova, E. and M. Kyle. Analysis of nucleic acidsindaphnia:development of methods and onto genetic variations in RNA-DNA content, Journal Of Plankton Research,2002,24(5):511-522
    [116]Alberts, B. and A. Johnson, et al. Molecular Biology of the Cell (5th edition).New York:Garland Science,2007.
    [117]Delgado, M. and A. P. Camacho, et al. The role of lipids in the gonadal development of the clam Ruditapes decussatus (L.), Aquaculture,2004,241(1-4):395-411
    [118]Martinez, G. Seasonal variation in Biochemical composition of three size classes of the Chilean scallop Argopecten purpuratus Lamarck,1819, Veliger,1991,34(4):335-343
    [119]Serdar, S. and A. Lok. Gametogenic cycle and biochemical composition of the transplanted carpet shell clam Tapes decussatus, Linnaeus 1758 in Sufa (Homa) Lagoon, Izmir, Turkey, Aquaculture,2009,293(1-2):81-88
    [120]Henderson, R. J. and S. M. Almatar. Seasonal Changes in the Lipid Composition of Herring (Clupea Harengus) in Relation to Gonad Maturation,Journal Of The Marine Biological Association Of The United Kingdom,1989,69(2):323-334
    [121]Nizzoli, D. and D. T. Welsh, et al. Seasonal nitrogen and phosphorus dynamics during benthic clam and suspended mussel cultivation, Marine Pollution Bulletin,2011,62(6): 1276-1287
    [122]周毅,杨红生,刘石林,等.烟台四十里湾浅海养殖生物及附着生物的化学组成、有机净生产量及其生态效应,水产学报,2002,26(2):21-27
    [123]刘亮.中国植物志禾本科.见:中国科学院中国植物志编辑委员会,编.中国植物志.北京:科学出版社,2002
    [124]杨允菲,郎惠卿.不同生态条件下芦苇无性系种群调节分析,草业学报,1998,7(2):1-9
    [125]杨允菲,李建东.松嫩平原不同生境芦苇种群分株的生物量分配与生长分析,应用生态学报,2003,14(1):30-34
    [126]陈国仓,张承烈.不同生境芦苇形态特征和茎杆解剖结构的比较研究,兰州大学学 报:自然科学版,1991,27(1):91-98
    [127]Engloner, A. I. Structure, growth dynamics and biomass of reed (Phragmites australis)-A review, Flora-Morphology, Distribution, Functional Ecology of Plants,2009,204(5): 331-346
    [128]Peverly, J. H. and J. M. Surface, et al. Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment,Ecological Engineering, 1995,5(1):21-35
    [129]Asaeda, T. and L. H. Nam, et al. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model:implications of duration of aerobic conditions for litter mineralization and sedimentation, Aquatic Botany, 2002,73(3):223-239
    [130]段晓男,王效科,欧阳志云,等.乌梁素海野生芦苇群落生物量及影响因子分析,植物生态学报,2004,2(28):246-251
    [131]王祝华,沈允钢,邱国雄,等.芦苇(Phragmites communis Trin.)生物生产力及其对大气CO2加浓的响应,生态学报,1994,4(14):379-401
    [132]高辉远,李卫军,吐尔逊娜依,等.北疆平原荒漠区不同生长型芦苇叶片水势、蒸腾速率及水分利用效率的研究,中国草地,1995,5):60-66
    [133]吴统贵,吴明,刘丽,等.杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化,植物生态学报,2010,34(1):23-28
    [134]朱学艺,王锁民,张承烈.河西走廊不同生态型芦苇对干旱和盐渍胁迫的响应调节,植物生理学通讯,2003,4(39):371-376
    [135]欧维新,高建华,杨桂山.芦苇湿地对氮磷污染物质的净化效应及其价值初步估算——以苏北盐城海岸带芦苇湿地为例,海洋通报,2006,5(25):90-95
    [136]潘瑞炽.植物生理学.北京:高等教育出版社,2012.
    [137]闰芊,何文珊,陆健健.崇明东滩湿地植被演替过程中生物量与氮含量的时空变化,生态学杂志,2006,9(25):1019-1023
    [138]贾庆宇,周莉,谢艳兵,等.盘锦湿地芦苇群落生物量动态研究,气象与环境学报,2006,22(4):25-29
    [139]张林海,曾从盛,仝川.闽江河口湿地芦苇和互花米草生物量季节动态研究,亚热带资源与环境学报,2008,2(3):25-33
    [140]陆景陵.植物营养学(上册).北京:中国农业大学出版社,2003.
    [141]Berges, J. A. and D. O. Charlebois, et al. Differential Effects of Nitrogen Limitation on Photosynthetic Efficiency of Photosystems I and II in Microalgae,Plant Physiology,1996, 110:689-696
    [142]Koerselman, W. and A. F. M. Meuleman. The Vegetation N:P Ratio:a New Tool to Detect the Nature of Nutrient Limitation,The Journal of Applied Ecology,1996,33(6): 1441-1450
    [143]Feller, I. C. and D. F. Whigham, et al. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida,Oecologia, 2003,134(405-414
    [144]Agren, G. I. The CNP stoichiometry of autotrophs-theory and observations,Ecology Letters,2004,7(8):185-191
    [145]王镜岩,朱圣庚,徐长法.生物化学(第三版).北京:高等教育出版社,2007.
    [146]韩文轩,吴漪,汤璐瑛,等.北京及周边地区植物叶的碳氮磷元素计量特征,北京大学学报(自然科学版),2009,45(5):855-860
    [147]Ninemets, U. and O. Kull. Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees,Tree Physiology,1999,19:349-358
    [148]Baldwin, D. and G. Rees, et al. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland, Wetlands,2006,26(2):455-464
    [149]孙书存,陈灵芝.东灵山地区辽东栎叶养分的季节动态与回收效率,植物生态学报,2001,25(1):76-82
    [150]Nassi O Di Nasso, N. and N. Roncucci, et al. Seasonal Dynamics of Aboveground and Belowground Biomass and Nutrient Accumulation and Remobilization in Giant Reed (Arundo donax L.):A Three-Year Study on Marginal Land,BioEnergy Research,2013,1-12
    [151]Townsend, A. R. and C. C. Cleveland, et al. Controls over foliar N:P ratios in tropical rain forests,Ecology,2007,88(1):107-118
    [152]闫芊,陆健健,何文珊.崇明东滩湿地高等植被演替特征,应用生态学报,2007,18(5):1097-1101
    [153]李海英,彭红春,王启基.高寒矮嵩草草甸不同退化演替阶段植物地上部氮磷元素比较,西北植物学报,2004,24(11):2069-2074
    [154]刘广全,赵士洞,王浩,等.锐齿栎林个体光合器官生长与营养季节动态,生态学报,2001,21(6):883-889
    [155]李鑫,张丽娟,刘威生,等.李营养累积、分布及叶片养分动态研究,土壤,2007,39(6):982-986
    [156]Lin, Y. and L. D. Silveira, et al. Nitrogen and phosphorus dynamics and nutrient restoration of Rhizophora mangle leaves in South Florida, USA,Bulletin Of Marine Science, 2007,80(1):159-169
    [157]Zhang, L. and Y. Bai, et al. Application of N:P Stoichiometry to Ecology Studies, Acta Botanica Sinica,2003,45(9):1009-1018
    [158]梅雪英,张修峰.长江口湿地海三棱蔗草(Scirpus mariqueter)的储碳、固碳功能研究—以崇明东滩为例,农业环境科学学报,2007,26(1):360-363
    [159]贾庆宇,周广胜,莉周,等.湿地芦苇植株氮素分布动态特征分析,植物生态学报,2008,32(4):858-864
    [160]梅雪英,张修峰.长江口典型湿地植被储碳、固碳功能研究—以崇明东滩芦苇带为例,中国生态农业学报,2008,16(2):269-272
    [161]Vitousek, P. M. and J. D. Aber, et al. Human alteration of the global nitrogen cycle: sources and consequences, Ecological Applications,1997,7(3):737-750
    [162]Parsons, R. and R. J. Sunley. Nitrogen nutrition and the role of root-shoot nitrogen signaling particularly in symbiotic systems. Journal Of Experimental Botany,2001,52(suppl 1):435_443
    [163]Jones, D. L. and J. R. Healey, et al. Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biology and Biochemistry,2005,37(3):413-423
    [164]Lynch, J. P. and J. Deikman. Phosphorus in plant biology:regulatory roles in molecular, cellular, organismic and ecosystem processes.Maryland, USA:American Society of Plant Physiologists Rockville,1998.
    [165]郭再华,贺立源,徐才国.磷水平对不同耐低磷水稻苗根系生长及氮、磷、钾吸收的影响,应用与环境生物学报,2006,12(4):449-452
    [166]Coomes, D. A. and P. J. Grubb. Impacts of root competition in forests and woodlands:a theoretical framework and review of experiments,Ecological Monographs,2000,70(2): 171-207
    [167]Maillard, P. and J. Guehl, et al. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur),Tree Physiology,2001,21:163-172
    [168]Ingestad, T. Mineral nutrient requirements of Pinus sylvestris and Picea abies seedlings, Physiologia Plantarum,1979,45:373-380
    [169]Gusewell, S. and W. Koerselman. Variation in nitrogen and phosphorus concentrations of wetland plants, Perspectives in Plant Ecology, Evolution and Systematics,2002,5(1):37-61
    [170]李新宇,唐海萍.陆地植被的固碳功能与适用于碳贸易的生物固碳方式,植物生态学报,2006,30(2):200-209
    [171]Dong, W. and J. Shu, et al. Study on the Carbon Storage and Fixation of Phramites autralis in Baiyangdian Demonstration Area,Procedia Environmental Sciences,2012,13: 324-330
    [172]Falkowski, P. and R. J. Scholes, et al. (2000). The global carbon cycle:a test of our knowledge of earth as a system.290:291-296
    [173]Li, G. and K. Gao, et al. Relationship of photosynthetic carbon fixation with environmental changes in the Jiulong River estuary of the South China Sea, with special reference to the effects of solar UV radiation,Marine Pollution Bulletin,2011,62(8): 1852-1858
    [174]Ver, L. M. B. and F. T. Mackenzie, et al. Carbon cycle in the coastal zone:effects of global perturbations and change in the past three centuries, Chemical Geology,1999, 159(1-4):283-304
    [175]Dai, M. and W. Zhai, et al. Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea,Continental Shelf Research,2008,28(12):1416-1423
    [176]Wilber, D. H. Associations between freshwater inflows and oyster productivity in Apalachicola Bay, Florida,Estuarine, Coastal and Shelf Science,1992,35(2):179-190
    [177]杨东方,王凡,高振会,等.长江口理化因子影响初级生产力的探索Ⅱ.磷不是长江口浮游植物生长的限制因子,海洋科学进展,2006,24(1):97-107
    [178]Zhou, L. and G. Zhou, et al. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China,Aquatic Botany,2009,91(2):91-98
    [179]段晓男,王效科,逯非,等.中国湿地生态系统固碳现状和潜力,生态学报,2008,28(2):463-469
    [180]Pringle, M. J. and D. E. Allen, et al. Soil carbon stock in the tropical rangelands of Australia:Effects of soil type and grazing pressure, and determination of sampling requirement, Geoderma,2011,167:261-273
    [181]刘晓辉,吕宪国.三江平原湿地生态系统固碳功能及其价值评估,湿地科学,2008,6(2):212-217
    [182]Sabine, C. L. and M. Heimann, et al. Current status and past trends of the global carbon cycle,2004. eds:C. B. Field and M. R. Raupach. Scope-Scientific Committee on Problems of the Environment International Council of Scientific Unions.,2004.
    [183]刘厚田.湿地的定义和类型划分,生态学杂志,1995,14(4):73-77
    [184]王宪礼,李秀珍.湿地的国内外研究进展,生态学杂志,1997,16(1):58-62
    [185]Vernberg, F. J. Salt-marsh processes:a review, Environmenta,l Toxicology and Chemistry,1993,12:2167-2182
    [186]高建华,杨桂山,欧维新.苏北潮滩湿地植被对沉积物N、P含量的影响,地理科学,2006,26(2):224-230
    [187]Molles, M. C. Ecology:Concepts and Applications.New York:McGraw-Hill Science,2001.
    [188]Muscutt, A. D. and G. L. Harris, et al. Butter zones to improve water quality:a review of their potential use in UK agriculture, Agriculture Ecosystems & Environment,1993,45: 59-77
    [189]尹澄清.内陆水—陆地交错带的生态功能及其保护与开发前景,生态学报,1995,15(3):331-335
    [190]OLuanaigh, N. D. and R. Goodhue, et al. Nutrient removal from on-site domestic wastewater in horizontal subsurface flow reed beds in Ireland,Ecological Engineering, 2010,36(10):1266-1276
    [191]Xu, X. and B. Gao, et al. Nitrate removal from aqueous solution by Arundo donax L. reed based anion exchange resin, Journal Of Hazardous Materials,2012,203:86-92
    [192]黄娟,王世和,钟秋爽,等.植物生理生态特性对人工湿地脱氮效果的影响,生态环境学报,2009,18(2):471-475
    [193]张葆华,吴德意,叶春,等.不同水深条件下芦苇湿地对氮磷的去除研究,环境科学与技术,2007,30(7):4-6,39
    [194]尹澄清,兰智文,晏维金.白洋淀水陆交错带对陆源营养物质的截留作用初步研究,应用生态学报,1995,6(1):76-80
    [195]黄玉洁,张银龙,李海东,等.太湖人工恢复湿地区植物群落建植对沉积物中氮、磷空间分布的影响,水土保持研究,2011,18(5):161-165
    [196]Walne, P. R. and R. Mann. Growth and biochemical composition in Ostrea edulis and Crassostrea gigas.in:H. Barnes,eds.Aberdeen:Proceedings of the 9th European Marine Biological Symposium,1975.587-607
    [197]Walne, P. R. Experiments on the culture in the sea of the butterfish Venerupis decussata L, Aquaculture,1976,8(4):371-381
    [198]杜荣骞.生物统计学(第三版).北京:高等教育出版社,2009.
    [199]Vittinghoff, E. and D. V. Glidden, et al. Regression Methods in Biostatistics:Linear, Logistic, Survival, and Repeated Measures Models (Statistics for Biology and Health).Springer,2010.
    [200]Zarnoch, C. B. and M. P. Schreibman. Influence of temperature and food availability on the biochemical composition and mortality of juvenile Mercenaria mercenaria (L.) during the over-winter period, Aquaculture,2008,274(2-4):281-291
    [201]金天明.动物生理学.北京:清华大学出版社,2012.
    [202]Weiss, M. B. and P. B. Curran, et al. The influence of plankton composition and water quality on hard clam(Mercenaria mercenaria L.) populations across Long Island's south shore lagoon estuaries (New York, USA), Journal Of Experimental Marine Biology And Ecology,2007,345 (1):12-25
    [203]李超伦,张芳与申欣等.胶州湾叶绿素的浓度、分布特征及其周年变化,海洋与湖沼,2005,36(6):499-506
    [204]Zarnoch, C. B. Studies on the physiological basis for over-winter mortality in juvenile aquacultured hard clams, Mercenaria mercenaria (Linnaeus,1758):[Ph.D thesis].New York:The City University of New York,2006
    [205]张继红,方建光,金显仕,等.低温对菲律宾蛤仔能量收支的影响,水产学报,2002,26(5):423-427
    [206]于庆云,唐学玺,杜恩在,等.胶州湾Chla周年时空分布特征及与环境因子变化的相关性,中国海洋大学学报,2009,39(增刊):120-126
    [207]白波,高明灿,苏莉芬,等.生理学(第6版).北京:人民卫生出版社,2009.
    [208]Ohba, S. Ecological studies in the natural population of a clam, Tapes japonica, with special reference to seasonal variations in the size and structure of the population and to individual growth,Biological journal of Okayama University,1959,5:13-42
    [209]Toba, M. and H. Yamakawa, et al. Observations on the maintenance mechanisms of metapopulations, with special reference to the early reproductive process of the Manila clam Ruditapes philippinarum (Adams & Reeve) in Tokyo Bay,Journal Of Shellfish Research,2007,26 (1):121-130
    [210]杨鸣,任一平,徐宾铎,等.胶州湾移植底播菲律宾蛤仔秋季性腺发育研究,海洋湖沼通报,2008,1:96-103
    [211]杨鸣,任一平,徐宾铎,等.胶州湾移植底播菲律宾蛤仔繁殖和早期发育特性研究,中国海洋大学学报,2007,37(增刊):195-199
    [212]缪国荣.海洋经济动植物发生学图集.青岛:青岛海洋大学出版社,1990.
    [213]Riebesell, U. and K. G. Schulz, et al. Enhanced biological carbon consumption in a high CO2 ocean, Nature,2007,450(7169):545-548
    [214]张继红,方建光,唐启升.中国浅海贝藻养殖对海洋碳循环的贡献,地球科学进展,2005,20(3):359-365
    [215]FIPS, F. F. A. A. FAO yearbook. Fishery and Aquaculture Statistics.2009.Rome,Italy: Food and Agriculture Organization of the United Nations,2011.
    [216]中国农业部渔业局.中国渔业年鉴.见:北京:中国农业出版社,2011
    [217]Nakamura, Y. Filtration rates of the Manila clam, Ruditapes philippinarum:dependence on prey items including bacteria and picocyanobacteria, Journal Of Experimental Marine Biology And Ecology,2001,266:181-192
    [218]Riisgaard, H. U. and D. F. Seerup, et al. Grazing impact of filter-feeding zoobenthos in a Danish fjord, Journal Of Experimental Marine Biology And Ecology,2004,307(2):261-271
    [219]Navarro, J. M. and R. J. Thompson. Biodeposition by the horse mussel Modiolus modiolus (Dillwyn) during the spring diatom bloom, Journal Of Experimental Marine Biology And Ecology,1997,209(1-2):1-13
    [220]Navarrete-Mier, F. and C. Sanz-Lazaro, et al. Does bivalve mollusc polyculture reduce marine fin fish farming environmental impact? Aquaculture,2010,306(1-4):101-107
    [221]Nakamura, Y. and F. Kerciku. Effects of filter-feeding bivalves on the distribution of water quality and nutrient cycling in a eutrophic coastal lagoon, Journal Of Marine Systems,2000,26(2):209-221
    [222]Bartoli, M. and D. Nizzoli, et al. Impact of Tapes philippinarum farming on nutrient dynamics and benthic respiration in the Sacca di Goro, Hydrobiologia,2001,455:203-212
    [223]Viaroli, P. and G. Giordani, et al. The Sacca di Goro Lagoon and an Arm of the Po River, Hdb Env Chem,2006,5H:197-232
    [224]Peterson, C. H. and E. A. Irlandi, et al. The crash in suspension-feeding bivalve populations (Katelysia spp.) in Princess Royal Harbour:an unexpected consequence of eutrophication,Journal Of Experimental Marine Biology And Ecology,1994,176(1):39-52
    [225]Carre, M. and I. Bentaleb, et al. Calcification rate influence on trace element concentrations in aragonitic bivalve shells:Evidences and mechanisms, Geochimica Et Cosmochimica Acta,2006,70(19):4906-4920
    [226]Takesue, R. K. and C. R. Bacon, et al. Influences of organic matter and calcification rate on trace elements in aragonitic estuarine bivalve shells.Geochimica Et Cosmochimica Acta,2008,72(22):5431-5445
    [227]Hickson, J. A. and A. L. A. Johnson, et al. The shell of the Queen Scallop Aequipecten opercularis (L.) as a promising tool for palaeoenvironmental reconstruction:evidence and reasons for equilibrium stable-isotope incorporation, Palaeogeography, Palaeoclimatology, Palaeoecology,1999,154(4):325-337
    [228]Klein, R. T. and K. C. Lohmann, et al. Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus:Covariation with metabolic rate, salinity, and carbon isotopic composition of seawater, Geochimica Et Cosmochimica Acta,1996,60(21):4207-4221
    [229]Maeda-Martinez, A. N. The rates of calcium deposition in shells of molluscan larvae.Comparative Biochemistry and Physiology Part A:Physiology,1987,86(l):21-28
    [230]Chong, K. and W. X. Wang. Comparative studies on the biokinetics of Cd,Cr,Zn in the green mussel perna viridis and Manila clam Ruditapes philippinarum,Environmental Pollution,2001,115:107-121
    [231]Fukunaga, A. and M. J. Anderson. Bioaccumulation of copper, lead and zinc by the bivalves Macomona liliana and Austrovenus stutchburyi, Journal Of Experimental Marine Biology And Ecology,2011,396(2):244-252
    [232]Forrest, B. M. and N. B. Keeley, et al. Bivalve aquaculture in estuaries:Review and synthesis of oyster cultivation effects, Aquaculture,2009,298(1-2):1-15
    [233]Kaspar, H. F. and P. A. Gillespie, et al. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand,Marine Biology,1985,85(2):127-136
    [234]Neori, A. and N. L. C. Ragg, et al. The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems:II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system, Aquacultural Engineering,1998,17 (4):215-239
    [235]Nizzoli, D. and M. Bartoli, et al. Nitrogen and phosphorous budgets during a farming cycle of the Manila clam Ruditapes philippinarum:An in situ experiment, Aquaculture,2006,261 (1):98-108
    [236]Vittinghoff, E. and D. V. Glidden, et al. Regression Methods in Biostatistics:Linear, Logistic, Survival, and Repeated Measures Models (Statistics for Biology and Health).Springer,2010.
    [237]Schmidt Nielsen, K. Animal Physiology:Adaptation and Environment (5th editiom).Cambridge University Press,1997.
    [238]Campbell, M. K. and S. O. Farrell. Biochemistry(7th edition).United States:Brooks/Cole, Cengage Learning,2011.
    [239]尤永隆,林丹军,张彦定.发育生物学(第一版).北京:科学出版社,2011.
    [240]翟中和,王喜忠,丁明孝.细胞生物学(第四版).北京:高等教育出版社,2011.
    [241]Racotta, I. S. and J. L. Ramirez, et al. Biochemical composition of gonad and muscle in the catarina scallop, Argopecten ventricosus, after reproductive conditioning under two feeding systems,Aquaculture,1998,163(1-2):111-122
    [242]兰本健.钒-钼酸铵比色法测定锰矿中的磷含量.中国锰业,2002,20(3):43-46
    [243]鲁如坤.土壤农业化学分析.北京:中国农业科技出版社,1999.106-185
    [244]Koojiman, S. A. L. M. The Stoichiometry of Animal Energetics, Journal Of Theoretical Biology,1995,177(2):139-149
    [245]Melillo, J. M. and C. B. Field, et al. Interactions of the Major Biogeochemical Cycles: Global Change and Human Impacts.Washington, D. C.:Island Press,2003.
    [246]Orgeas, J. and J. Ourcival, et al. Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suber L.) growing on siliceous soils in Provence (France),Plant Ecology,2003, 164(2):201-211
    [247]阎恩荣,王希华与郭明等.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征,植物生态学报,2010,34(1):48-57
    [248]王晶苑,王绍强与李纫兰等.中国四种森林类型主要优势植物的CNP化学计量学特征,植物生态学报,2011,35(6):587-595
    [249]McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C.:N:P stoichiometry in forests worldwide:implications of terrestrial redfield-type ratios. Ecology,2004,85: 2390-2401
    [250]青岛市统计局.青岛市统计年鉴.见:北京:中国统计出版社,2011
    [251]王刚.胶州湾入海点源、海水养殖污染物通量研究:[硕士学位论文].青岛:中国海洋大学,2009
    [252]Tan, L. and Z. Zhang, et al. Distribution of organic carbon in the seawater of Qingdao and adjacent area., Advances in Earth Science,2011,26(4):426-432
    [253]张燕.海湾入海污染物总量控制方法与应用研究:[博士学位论文].青岛:中国海洋大学,2007
    [254]Qi, X. and S. Liu, et al. Cycling of phosphorus in the Jiaozhou Bay, Acta Oceanol. Sin.,2011,30(2):62-74
    [255]Dumbauld, B. R. and J. L. Ruesink, et al. The ecological role of bivalve shellfish aquaculture in the estuarine environment:A review with application to oyster and clam culture in West Coast (USA) estuaries, Aquaculture,2009,290(3-4):196-223
    [256]梅雪英,张修峰.崇明东滩湿地自然植被演替过程中储碳及固碳功能变化,应用生态学报,2007,18(4):933-936
    [257]李凤业,宋金明,李学刚,等.胶州湾现代沉积速率和沉积通量研究,海洋地质与第 四纪地质,2003,23(4):30-33
    [258]李凤业,高抒,贾建军,等.黄、渤海泥质沉积区现代沉积速率,海洋与湖沼,2002,33(4):364-369
    [259]邵明安,王全九,黄明斌.土壤物理学.北京:高等教育出版社,2006.37-38
    [260]Falkowski, P. and R. J. Scholes, et al. The global carbon cycle:A test of our.knowledge of earth as a system, Science,2000,290(5490):291-296
    [261]Brix, H. and B. K. Sorrell, et al. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany,2001,69(2-4):313-324
    [262]Elias, R. W. and B. Gulson. Overview of lead remediation effectiveness, Science of the total environment,2003,303(1-2):1-13
    [263]田家怡,王秀凤与蔡学军等.黄河三角洲湿地生态系统保护与恢复技术.青岛:中国海洋大学出版社,2004.282-283
    [264]IAEA, I. A. E. A. (2007). IAEA Safety Glossary:Terminology used in nuclear safety and radiation protection. Vienna, International Atomic Energy Agency,2007
    [265]Fernandes, H. M. and M. S. Recio, et al. International cooperation and support in environmental remediation-is there any room for improvement? Journal Of Environmental Radioactivity,2013,119:13-20
    [266]Wang, Q. and D. Zhou, et al. Application of bioassays to evaluate a copper contaminated soil before and after a pilot-scale electrokinetic remediation, Environmental Pollution,2009,157(2):410-416
    [267]杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望,青岛海洋大学学报,2003,33(1):53-57
    [268]陈聚法,赵俊,过锋,等.条斑紫菜对胶州湾湿地浅海富营养化状况的生物修复效果,渔业科学进展,2012,33(1):93-101
    [269]张寒野,何培民,陈婵飞,等.条斑紫菜养殖对海区中无机氮浓度影响,环境科学与技术,2005,28(4):44-45
    [270]杨晓玲,郭金耀.条斑紫菜对高浓度氮、磷的耐受性研究,水产科学,2008,27(12):655-657
    [271]汤坤贤,游秀萍,林亚森,等.龙须菜对富营养化海水的生物修复,生态学报,2005,25(11):3044-3051
    [272]张国范.发展滩涂贝类养殖构建环境友好海水健康养殖体系--大连滩涂贝类健康养殖模式研究,中国科学院院刊,2004,19(6):442-445
    [273]刘瑜,纪培福.新品种条斑紫菜的养殖技术.齐鲁渔业,2007,24(12):18-20
    [274]韩庆喜,高雯芳,李宝泉,等.胶州湾菲律宾蛤仔生物量与资源评估,动物学杂志,2004,39(5):60-62
    [275]张静.黄河三角洲重盐碱区植被耐盐性与绿化技术研究:[硕士学位论文].青岛:中国海洋大学,2010
    [276]中华人民共和国农业部.《无公害食品菲律宾蛤仔养殖技术规范》(NY/T5289-2004),2004
    [277]山东省质量技术监督局.《无公害食品菲律宾蛤仔养殖技术规范》(DB37/T444-2004),2004
    [278]刘瑜,纪培福.新品种条斑紫菜的养殖技术.齐鲁渔业,2007,24(12):18-20
    [279]江苏省质量技术监督局.《条斑紫菜半浮动筏式栽培技术规程》(DB32/T170-2005),2005.
    [280]福建省莆田市质量技术监督局.《龙须菜养殖技术规范》(DB35/T 537-2004),2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700