用户名: 密码: 验证码:
温度敏感凝胶对铀的吸附性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以经济、环境友好地方式从水中吸附铀具有重要的科学和现实意义。以壳聚糖(Chitosan,简称CS)为吸附功能组分,以N_-异丙基丙烯酰胺(N_-Isopropylacrylamide,简称NIPAAm)为温度响应组分,采用互穿网络技术(IPN)、大孔技术、离子印迹技术(IIT)等方法方法,制备对水中的铀具有温度转变控制吸附/解吸功能的温度敏感智能聚合物,实现对铀的绿色解吸,研究了其对铀吸附行为的影响。通过红外光谱分析(FT-IR),扫描电镜(SEM)形态分析等手段,结合吸附等温线拟合,吸附热力学试验和吸附动力学试验。
     利用互穿网络技术将CS作为金属离子的接受体引入到温敏响应的聚N_-异丙基丙烯酰胺(PNIPAAm)水凝胶中,制备了温度敏感聚N_-异丙基丙烯酰胺/壳聚糖半互穿网络温敏水凝胶水凝胶(PNIPAAm/CS semi-IPN hydrogels)。测试了不同温度和pH值下semi-IPN水凝胶的溶胀性能。用制备的水凝胶研究了不同条件下对铀的吸附性能。动力学研究证明一级动力学模型比二级动力学模型更易拟合实验数据。为讨论在温度高于和低于最低临界共溶温度(LCST)半互穿网络水凝胶对铀的吸附机理,朗缪尔和弗伦德里希吸附模型被用于描述在293K和323K下的凝胶对铀的吸附等温线。在不同温度下的吸附结果表明PNIPAAm/CS水凝胶在低温下吸附UO22+离子。ΔH和ΔS的负值说明半互穿网络PNIPAAm/CS水凝胶对铀的吸附是自发放热的过程,并且温度升高自由能ΔG的值也升高说明吸附过程更易在低温下进行。
     为了提高PNIPAAm/CS半互穿网络温敏水凝胶对铀的吸附作用,利用制孔的原理,制备了大孔PNIPAAm/CS semi-IPN凝胶。用扫描电镜和红外光谱法对凝胶进行了表征。研究了该水凝胶的溶胀性、温敏性。研究了在不同温度、时间下大孔凝胶对铀的吸附性能。将该大孔凝胶对铀溶液进行吸附,结果显示:PNIPAAm/CSsemi-IPN水凝胶对铀的吸附效果明显增大,在303K下,吸附时间为2h时达到吸附平衡,对铀的吸附量为115mg/g。同时,测定了温度变化对铀吸附的影响,结果表明,在LCST左右,有最大吸附量,当温度升高,该凝胶的吸附性能下降。
     离子印迹在重金属离子的吸附研究中已经有了广泛的应用,印迹聚合物对模板离子有较高的吸附能力和较强的识别特性。因此,对PNIPAAm/CS凝胶进行了改进,制备了铀模板印迹的PNIPAAm/CS semi-IPN水凝胶。用制备的凝胶对铀离子进行了吸附试验。实验结果表明,凝胶对铀的吸附在6h达到平衡,最大吸附量为89mg/g。
Absorption of uranium from aqueous solutions with environmentically friendly andeconomic methods has great scientific value and realistic significance. Thermosensitivesmart gel, which could control the process of adsorption and desorption of uranium, wasprepared by introducing chitosan (CS) as adsorption component and N_-Isopropylacrylamide (NIPAAm) as thermosensitive component with IPN、porous techniques andion-imprinted techniques (IIT). The prepared gels were characterized by FTIR and SEManalysis. The kinetic, thermodynamic adsorption and adsorption isotherms of U(VI) ionswere studied in a batch adsorption experiments.
     Thermo-sensitive semi-inter-penetrating network (semi-IPN) hydrogels were preparedby introducing CS as a metal ion receptor into the poly(N_-isopropylacrylamide)(PNIPAAm) hydrogels with an IPN technique. The swelling behavior of the semi-IPNhydrogels under different temperatures was studied. Feasibility of U(VI) sorption usingthe prepared hydrogels were investigated at different optimized conditions. The kineticstudy demonstrated that the pseudo-first-order model correlated with the experimentaldata better than the pseudo-second-order model examined. To discuss the mechanism ofadsorption of uranium(VI) ions on the semi-IPN hydrogels at temperature above andbelow the lower critical solution temperature (LCST), Langmuir and Freundlichadsorption models were applied to describe the isotherms at293and323K. Theadsorption results at different temperature showed that the PNIPAAm/CS hydrogelsadsorbed UO22+ions at lower temperature. Thermodynamic parameters such as enthalpychange (ΔH), entropy change (ΔS), free energy change (ΔG) were determined. Thenegative values of ΔH and ΔS indicated that the spontaneous nature and exothermicprocess of the U(VI) adsorption. The increase in the value of ΔG with a rise intemperature showed that the sorption was more favorable to low temperature.
     Porous poly(N_-isopropylacrylamide)/chitosan IPN were prepared by suspendedemulsion polymerization to improve the adsorption ability of uranium. The porous IPN hydrogels were characterized by FTIR and SEM analysis. The swelling behavior,temperature sensitivity, pH sensitivity were investigated. The results indicated that theporous IPN hydrogels exhibited pH and temperature-sensitivity. And the uraniumadsorption onto porous PNIPAAm/CS increased obviously. At303K,2h, the maximunadsorption amount was115mg/g. The behavior of the porous hydrogels towardUranium(VI) at different temperatures were studied, the result showed that the uraniumadsorption amount decreased as temperature increased.And at LCST, the hydrogel hadmaximum adsorption amount.
     Ion imprinted technology was applied widely in industrial analysis, ion imprintedpolymer has high adsorption capacity and selectivity. Therefore, uranium imprintedPNIPAAm/CS semi-IPN hydrogels were prepared by IIT.The adsorption capacity for theuranium(VI) ions of the hydrogels were systematically studied in this paper. The resultsshowed that the sorption equilibrium was achieved in6h and the maximum sorption ofuranium(VI) imprinted polymer was about89mg/g.
引文
[1]徐伟昌.生物技术在核.工业中的应用,国防科技大学出版社,2002
    [2] V. Padmavathy, P. Vasudevan, S. Dhingra. Biosorption of nickel (II) ions on Baker's yeast. ProcessBiochemistry,2003(38):1389-1395
    [3] Z. Aksu. Determination of the equilibrium, kinetic and thermodynamic parameters of the batchbiosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochemistry,2002(38):89-99
    [4]王翠萍,徐伟昌,庞红顺.榕树叶对铀吸附的研究.环境科学与技术,2004(27):19-20
    [5]夏良树,陈仲清.啤酒酵母菌—活性污泥曝气工艺处理含铀废水研究.核技术,2006(29):872-876
    [6]夏良树,王孟,邓昌爱,傅仕福.榕树叶-活性污泥协同曝气处理含铀废水.核化学与放射化学,2007(28):231-235
    [7]林莹,高柏,李元锋.核工业低浓度含铀废水处理技术进展.山东化工,2009(38):35-38
    [8]刘文娟,徐伟昌,王宝娥.酵母菌对铀吸附作用的初步实验.环境保护科学,2004(30):39-41
    [9]冯媛,易发成,稻壳对铀吸附性能的研究.原子能科学技术,2011(45):161-167
    [10]沈志海,朱三光,凹凸棒石的性能及其用途概述.非金属矿,1986(16):47-50
    [11]宋金如,龚治湘.凹凸棒石粘土吸附铀的性能研究及应用.华东地质学院学报,1998(21):265-272
    [12]刘艳,易发成,王哲.膨润土对铀的吸附研究.非金属矿,2010:52-53
    [13] S. Katragadda, H. Gesser, A. Chow. The extraction of uranium by amidoximated orlon. Talanta,1997(45):257-263
    [14] Y. K. Agrawal, P. Shrivastav, S. K. Menon. Solvent extraction, separation of uranium (VI) withcrown ether. Separation and purification technology,2000(20):177-183
    [15]刘梅,朱桂茹,苏燕,王铎,高从堦.偕胺肟基纤维的合成及对铀的吸附性能研究.水处理技术,2009(35):13-16
    [16] F. El Aamrani, L. Duro, J. De Pablo, J. Bruno. Experimental study and modeling of the sorptionof uranium (VI) onto olivine-rock. Applied geochemistry,2002(17):399-408
    [17]熊正为,王清良,郭成林.蒙脱石吸附铀机理实验研究.湖南师范大学自然科学学报,2007(30):75-79
    [18]李增新,薛淑云.廉价吸附剂处理重金属离子废水的研究进展.环境污染治理技术与设备,2006(7):6-11
    [19]郭敏杰,刘振,李梅.壳聚糖吸附重金属离子的研究进展.化工环保,2005(24):262-265
    [20]郭振楚,刘福清,彭校宗.壳寡糖与镧,铈配合物的合成,表征及应用.中国稀土学报,2005(21):98-101
    [21] J. Liu, X. Chen, Z. Shao, P. Zhou. Preparation and characterization of chitosan/Cu (II) affinitymembrane for urea adsorption. Journal of applied polymer science,2003(90):1108-1112
    [22]赵春禄,孙鹏程,刘辉.接枝交联改性壳聚糖吸附性能研究.青岛理工大学学报,2011(32):53-57
    [23]孙兰萍,赵大庆,许晖,张斌.壳聚糖对镍吸附作用的研究.环境与健康杂志,2009(25):979-982
    [24]王洁,黄晓乃,刘迎九,丁德馨.壳聚糖吸附铀的机理探讨.金属矿山,2009:149-151
    [25]李春光,郑宾国,孔殿超.壳聚糖吸附废水中Cr (Ⅵ)的工艺研究.工业安全与环保,2011(37):1-3
    [26] Y. Liu, X. Cao, R. Hua, Y. Wang, C. Pang. Selective adsorption of uranyl ion on ion-imprintedchitosan/PVA cross-linked hydrogel. Hydrometallurgy,2010(104):150-155
    [27]王彩霞,刘云海,庞翠.三种交联壳聚糖对铀的吸附性能研究.中国核科学技术进展报告-中国核学会2009年学术年会论文集,2009(1)
    [28]王彩霞,刘云海,黄德娟,庞翠.丝氨酸改性壳聚糖的合成及其对铀的吸附研究.化学研究与应用,2009(21):1361-1364
    [29] I. Ogata.石油工业化学1980
    [30]徐晖,丁平田.药物在pH敏感聚甲基丙烯酸—poloxamer水凝胶中的扩散行为.应用化学,2001(18):305-308
    [31] S. Hirotsu, Y. Hirokawa, T. Tanaka. Volume-phase transitions of ionized N-isopropylacrylamidegels. Journal of Chemical Physics,1987(87):1392-1395
    [32] A. S. Hoffman. Applications of thermally reversible polymers and hydrogels in therapeutics anddiagnostics. Journal of Controlled Release,1987(6):297-305
    [33] L. I. Valuev, O. N. Zefirova, I. V. Obydennova, N. A. Plate. Targeted Delivery of Drugs Providedby Water-Soluble Polymeric Systems with Low Critical Solution Temperature (LCST, Journal ofbioactive and compatible polymers,1994(9):55-65
    [34] Y. Hirokawa, T. Tanaka. Volume phase transition in a non-ionic gel. AIP Conference Proceedings,1984(107)::203-208
    [35] K. Haraguchi, H. J. Li. Control of the Coil‐to‐Globule Transition and Ultrahigh MechanicalProperties of PNIPA in Nanocomposite Hydrogels. Angewandte Chemie International Edition,2005(44):6500-6504
    [36] X. Z. Zhang, R. X. Zhuo. Synthesis and properties of thermosensitive poly(N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response. Materials Letters,2002(52):5-9
    [37]翟茂林,哈鸿飞.水凝胶的合成,性质及应用.大学化学,2001(16):22-27
    [38] H. Katsuyama, Koatsu Gasu.1995(32)
    [39]江金强,强婧,倪忠斌,宋晓青,张红武,刘晓亚,陈明清.光敏感遥爪聚合物—聚4-乙烯基吡啶的制备及其溶液性质.物理化学学报,2011(27):664-670
    [40] S. Beltran, H. H. Hooper, H. W. Blanch, J. M. Prausnitz. Swelling equilibria for ionizedtemperature‐sensitive gels in water and in aqueous salt solutions. The Journal of chemical physics,1990(92):2061-2067
    [41] F. M. Winnik. Fluorescence studies of aqueous solutions of poly (N-isopropylacrylamide) belowand above their LCST. Macromolecules,1990(23):233-242
    [42] K. Haraguchi, S. Taniguchi, T. Takehisa. Reversible Force Generation in a Temperature‐Responsive Nanocomposite Hydrogel Consisting of Poly (N‐isopropylacrylamide) and Clay.ChemPhysChem,2005(6):238-241
    [43]史海营,李瑞霞,吴大诚. N-异丙基丙烯酰胺高分子水凝胶研究进展.广东化工,2006(33):8-10
    [44] X. Z. Zhang, R. X. Zhuo, J. Z. Cui, J. T. Zhang. A novel thermo-responsive drug delivery systemwith positive controlled release. International journal of pharmaceutics,2002(235):43-50
    [45]房喻,胡道道,崔亚丽.智能型高分子水凝胶的应用研究现状(1).高技术通讯,2001(3):107-110
    [46] C. H. Lee, Y. Z. Wang. Synthesis and characterization of epoxy‐based semi‐interpenetratingpolymer networks sulfonated polyimides proton‐exchange membranes for direct methanol fuel cellapplications. Journal of Polymer Science Part A: Polymer Chemistry,2008(46):2262-2276
    [47] S. K. Dhoke, S. Palraj, K. Maruthan, M. Selvaraj. Preparation and characterization ofheat-resistant interpenetrating polymer network (IPN). Progress in organic coatings,2007(59):21-27
    [48] R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, S. H. Moon. Covalent organic/inorganic hybridproton-conductive membrane with semi-interpenetrating polymer network: Preparation andcharacterizations. Journal of Power Sources,2008(179):458-466
    [49] H. Tokuyama, S. Naohara, M. Fujioka, S. Sakohara. Preparation of molecular imprintedthermosensitive gels grafted onto polypropylene by plasma-initiated graft polymerization. Reactiveand Functional polymers,2008(68):182-188
    [50]张高奇,查刘生,梁伯润.交联聚(N-异丙基丙烯酰胺)/(海藻酸钠/聚(N-异丙基丙烯酰胺))半互穿网络水凝胶的制备及其溶胀性能.功能高分子学报,2009(22):64-68
    [51]詹秀环,田博士,姚新建.聚丙烯酸/聚(N-异丙基丙烯酰胺)互穿网络水凝胶的制备及其性能.精细石油化工,2010(5):73-75
    [52] J. Zhang, N. A. Peppas. Synthesis and characterization of pH-and temperature-sensitive poly(methacrylic acid)/poly (N-isopropylacrylamide) interpenetrating polymeric networks.Macromolecules,2000(33):102-107
    [53] X. S. Wu, A. S. Hoffman, P. Yager. Synthesis and characterization of thermally reversiblemacroporous poly (N‐isopropylacrylamide) hydrogels. Journal of Polymer Science Part A: PolymerChemistry,1992(30):2121-2129
    [54]刘晓华,王晓工.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅰ.以CaCO3为成孔剂制备方法、表征及动力学研究.高分子学报2002(4):354-357
    [55] X. Z. Zhang, R. X. Zhuo. Preparation of fast responsive. thermally sensitive poly(N-isopropylacrylamide) gel, European polymer journal,2000(36):2301-2303
    [56] R. Kanazawa, K. Mori, H. Tokuyama, S. Sakohara. Preparation of thermosensitive microgeladsorbent for quick adsorption of heavy metal ions by a temperature change. Journal of chemicalengineering of Japan,2004(37):804-807
    [57] H. Tokuyama, M. Fujioka, S. Sakohara. Development and performance of a novel molecularimprinted thermosensitive gel with a cross-linked chelating group for the temperature swingadsorption of a target metal. Journal of chemical engineering of Japan,2005(38):633-640
    [58] H. Tokuyama, T. Iwama. Temperature-swing solid-phase extraction of heavy metals on a poly(N-isopropylacrylamide) hydrogel. Langmuir,2007(23):13104-13108
    [59] Y. Liu, X. Cao, Z. Le, M. Luo, W. Xu, G. Huang. Pre-concentration and determination of traceuranium (VI) in environments using ion-imprinted chitosan resin via solid phase extraction. Journal ofthe Brazilian Chemical Society,2010(21):533-540
    [1] J. Ricka, T. Tanaka. Swelling of ionic gels: quantitative performance of the Donnan theory.Macromolecules,1984(17):2916-2921
    [2] A. S. Hoffman. Applications of thermally reversible polymers and hydrogels in therapeutics anddiagnostics. Journal of Controlled Release,1987(6):297-305
    [3] Y. H. Bae, T. Okano, S. W. Kim. Temperature dependence of swelling of crosslinked poly(N,N′-alkylsubstituted acrylamides) in water. Journal of Polymer Science Part B: Polymer Physics,1990(28):923-936
    [4] A. Suzuki, T. Tanaka. Phase transition in polymer gels induced by visible light. Nature,1990(346):345-347
    [5] E. Kokufata, Y.-Q. Zhang, T. Tanaka. Saccharide-sensitive phase transition of a lectin-loaded gel.Nature,1991(351):302-304
    [6] I. C. Kwon, Y. H. Bae, T. Okano, S. W. Kim. Drug release from electric current sensitive polymers.Journal of Controlled Release,1991(17):149-153
    [7] Y. L. Guan, L. Shao, J. Liu, K. D. Yao. pH effect on correlation between water state and swellingkinetics of the crosslinked chitosan/polyether semi-IPN hydrogel. Journal of Applied Polymer Science,1996(62):1253-1258
    [8] H. Tokuyama, A. Kanehara. Temperature swing adsorption of gold(III) ions onpoly(N-isopropylacrylamide) gel. Reactive and Functional Polymers,2007(67):136-143
    [9] H. Tokuyama, T. Iwama. Solid-phase extraction of indium(III) ions onto thermosensitivepoly(N-isopropylacrylamide). Separation and Purification Technology,2009(68):417-421
    [10] C. Alvarez-Lorenzo, O. Guney, T. Oya, Y. Sakai, M. Kobayashi, T. Enoki, Y. Takeoka, T. Ishibashi, K.Kuroda, K. Tanaka, G. Wang, A. Y. Grosberg, S. Masamune, T. Tanaka. Reversible adsorption of calciumions by imprinted temperature sensitive gels. Journal of Chemical Physics,2001(114):2812-2816
    [11] R. Kanazawa, T. Yoshida, T. Gotoh, S. Sakohara. Preparation of Molecular Imprinted ThermosensitiveGel Adsorbents and Adsorption/Desorption Properties of Heavy Metal Ions by Temperature Swing. Journalof Chemical Engineering of Japan,2004(37):59-66
    [12] J. Zhang, R. Bhat, K. D. Jandt. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels withenhanced responsive properties. Acta Biomaterialia,2009(5):488-497
    [13] W. Lee, Y. Chen. Studies on preparation and swelling properties of theN-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. Journal of Applied Polymer Science,2001(82):2487-2496
    [14] S. Xie, J. Yang, C. Chen, X. Zhang, Q. Wang, C. Zhang. Study on biosorption kinetics andthermodynamics of uranium by Citrobacter freudii. Journal of Environmental Radioactivity,2008(99):126-133
    [15] A. J. Varma, S. V. Deshpande, J. F. Kennedy. Metal complexation by chitosan and its derivatives: areview. Carbohydrate Polymers,2004(55):77-93
    [16] S. Chatterjee, S. H. Woo. The removal of nitrate from aqueous solutions by chitosan hydrogel beads.Journal of Hazardous Materials,2009(164):1012-1018
    [17] Y. Liu, X. Cao, Z. Le, M. Luo, W. Xu, G. Huang. Pre-concentration and determination of traceuranium (VI) in environments using ion-imprinted chitosan resin via solid phase extraction. Journal of theBrazilian Chemical Society,2010(21):533-540
    [18] C. Pang, Y. Liu, X. Cao, R. Hua, C. Wang, C. Li. Adsorptive removal of uranium from aqueoussolution using Chitosan-coated attapulgite. J Radioanal Nucl Chem,2010(286):185-193
    [19] S. Lagergren. Zur theorie der sogenannten adsorption gel ster stoffe. Kungliga SvenskaVetenskapsakademiens Handlingar,1898(24):1-39
    [20] W. Weber, J. Morris. Intraparticle diffusion during the sorption of surfactants onto activated carbon. JSanit Eng Div Am Soc Civ Eng,1963(89):53-61
    [21] I. Langmuir. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc.,1916(38):2221-2295
    [22] H. M. F. Freundlich. Uber die adsorption in lasungen. Z. Phys. Chem.,1906(57):385-470
    [23] A. Kilislioglu, B. Bilgin. Thermodynamic and kinetic investigations of uranium adsorption onamberlite IR-118H resin. Applied radiation and isotopes,2003(58):155-160
    [1] J. Chen, H. Park, K. Park. Synthesis of superporous hydrogels: Hydrogels with fast swelling andsuperabsorbent properties. Journal of biomedical materials research,1999(44)53-62
    [2] J. Chen, W. E. Blevins, H. Park, K. Park. Gastric retention properties of superporous hydrogelcomposites. Journal of controlled release,2000(64):39-51
    [3] F. A. Dorkoosh, J. Coos Verhoef, M. H. C. Ambagts, M. Rafiee-Tehrani, G. Borchard, H. E. Junginger.Peroral delivery systems based on superporous hydrogel polymers: release characteristics for the peptidedrugs buserelin, octreotide and insulin. European journal of pharmaceutical sciences,2002(15):433-439
    [4] P. Tiainen, P. E. Gustavsson, A. Ljungl f, P. O. Larsson. Superporous agarose anion exchangers forplasmid isolation. Journal of Chromatography A,2007(1138):84-94
    [5]吴国杰,崔英德.壳聚糖/聚醚半互穿网络水凝胶的合成与力学性能的研究.功能材料,2005(36):1386-1388
    [6] D. Kim, K. Park. Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks. Polymer,2004(45):189-196
    [7] S. Lagergren. Zur theorie der sogenannten adsorption gel ster stoffe. Kungliga SvenskaVetenskapsakademiens Handlingar,1898(24):1-39
    [8] W. Weber, J. Morris. Intraparticle diffusion during the sorption of surfactants onto activated carbon. JSanit Eng Div Am Soc Civ Eng,1963(89):53-61
    [9] A. Kilislioglu, B. Bilgin. Thermodynamic and kinetic investigations of uranium adsorption on amberliteIR-118H resin. Applied radiation and isotopes,2003(58):155-160
    [1] O. Hayden, F. L. Dickert. Selective microorganism detection with cell surface imprinted polymers.Advanced Materials,2001(13)1480-1483
    [2] L. Schweitz, L. I. Andersson, S. Nilsson. Capillary electrochromatography with predeterminedselectivity obtained through molecular imprinting. Analytical Chemistry,1997(69):1179-1183
    [3] J. D. Lei, T. W. Tan. Enantioselective separation of naproxen and investigation of affinitychromatography model using molecular imprinting. Biochemical engineering journal,2002(11):175-179
    [4] E. Caro, R. Marce, P. Cormack, D. Sherrington, F. Borrull. Synthesis and application of anoxytetracycline imprinted polymer for the solid-phase extraction of tetracycline antibiotics. Analyticachimica acta,2005(552):81-86
    [5] Y. Zhai, Y. Liu, X. Chang, X. Ruan, J. Liu. Metal ion-small molecule complex imprinted polymermembranes: Preparation and separation characteristics. Reactive and Functional polymers,2008(68):284-291
    [6] H. Huo, H. Su, T. Tan. Adsorption of Ag+by a surface molecular-imprinted biosorbent. Chemicalengineering journal,2009(150):139-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700