用户名: 密码: 验证码:
基于关联域的距离保护防连锁跳闸策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于关联域的距离保护防连锁跳闸策略,可以有效的识别电网中潮流转移的发生与传递,从后备保护与负荷控制的角度双向应对潮流转移带来的影响,可靠防止连锁事件的发生,其研究对防御大停电事故具有重要现实意义。本文在分析现有防连锁跳闸策略的特点及存在问题的基础上,首次尝试将距离后备保护整定值调整与线路过负荷控制联系在一起,利用广域信息提升传统距离保护的性能,实现电网安全防御系统三道防线的综合应用,探索集保护与控制一体化的统一协调式防连锁跳闸策略。论文的主要研究成果如下:
     (1)提出了利用保护安装处电气量的距离保护Ⅲ段过负荷闭锁方案。分别给出针对故障状态和过负荷状态的识别判据,通过判据校验来区分故障和过负荷,使距离保护Ⅲ段具有选择性闭锁的能力;
     (2)提出了可识别电网结构改变的视在阻抗修正算法。利用与电网运行实时同步的PMU数据,实现在潮流转移情况下输电线路视在阻抗变化过程的动态计算,将线路视在阻抗的变化过程与线路有功功率的输送情况建立联系,从距离保护的角度进行潮流转移识别;
     (3)提出了距离后备保护整定值自适应调整方案。计算距离保护Ⅲ段在不同整定值条件下所能承受的过负荷界限,以过负荷界限为标准,分别给出过负荷界限内、过负荷界限外的距离保护Ⅲ段整定值调整方法;
     (4)提出了一种关联区域的构建方法。根据潮流转移在发生初始对电网影响的有限性,构建与潮流转移、后备保护调整、过负荷控制三者密切相关的关联区域,将全网计算简化为区域计算:
     (5)提出了一种基于关联域的防连锁跳闸策略。该策略以调度中心为决策中枢,以后备保护整定值调整和线路过负荷控制为措施,将保护与控制集成为统一协调的整体,实现电网安全防御系统三道防线的综合应用。
The distance protection control strategy to prevent cascading trips based on related area can effectively identify the flow transfer happening in the power grid. Coping with the effects of the flow transfer from both backup protection and overload control, this strategy can reliably prevent cascading trips. As a result, this method is of great importance for practical significance in the prevention of large-scale blackout in the power system. Based on the analysis of the characteristics and shortcomings of the existing methods, the control strategy which associates the backup protection setting value adjustment with the transmission line overload control to analysis and design, was firstly applied in this paper. By using the wide area information to improve the performance of the traditional distance protection, this method realizes the comprehensive application of three lines defense in the power grid security defense system, and explores the harmonious unity strategy combined with protection and control. The main achievements and contributions of this dissertation are as follows:
     (1) An overload blocking scheme for zone3distance protection based on the local information was proposed. Given the different discrimination criterion for the failure state and load state, this paper used the criterion to distinguish fault and overload which makes the zone3distance protection own the ability of selective block;
     (2) An apparent impedance correction algorithm which can identify the change of network structure was proposed. Use the real-time PMU data which synchronize with the power system operation, the dynamic calculation of transmission line apparent impedance change process in flow transfer state is realized. Connect the apparent impedance and the active power, and then identify the flow transfer from the perspective of distance protection;
     (3) An adaptive setting scheme for distance backup protection was proposed. Raise the overload limit calculation method for zone3distance protection in the different setting value conditions. On the basis of overload limit, raise the adjusting setting scheme within or outside the boundaries of overload limit;
     (4) A method for related area construction was proposed. By analyzing the flow transfer in the initial limited impact on the power grid, construct a flow transfer area related with backup protection and overload control. Using the related area can simplify the entire network calculation for area calculation;
     (5) A control strategy to prevent cascading trips based on related area was proposed. This strategy uses the dispatching center as a decision-making central with backup protection adjustment and overloads control strategy, and integrates the protection and control to realize the comprehensive application of three lines of defense in power grid security defense system.
引文
[1]Kearsley R. Restoration in Sweden and experience gained from the blackout of 1983[C]. IEEE Power Engineering Society Summer Meeting,1986:422-428.
    [2]Kurita A, Sakurai T. The power system failure on July 23,1987 in Tokyo[C]. IEEE Conference Proceedings on Decision and Control,1988:2093-2097.
    [3]何大愚.美国西部电力系统发生大面积停电事故[J].中国电力,1995,28(4):60.
    [4]何大愚.对于美国西部电力系统的1996年7月2日大停电事故的初步认识[J].电网技术,1996,20(9):35-39.
    [5]卢卫星,舒印彪,史连军.美国西部电力系统1996年8月10日大停电事故[J].电网技术,1996,20(9):40-42.
    [6]王梅义.有感于美国西部电网大停电[J].电网技术,1996,20(9):43-46.
    [7]Taylor C W, Erickson D C. Recording and analyzing the July 2 cascading outage[J]. IEEE Computer Applications in Power,1997,10(1):26-30.
    [8]Aggarwal R, Daschmans R, Schellberg R, Venkatasubramanian V, Yirga S. Validation Studies of the July 2,1996 WSCC System Disturbance Event[R]. America:Operating Capability Study Group,Western Systems Coordinating Council, July 1997:1-50.
    [9]何大愚.对美国西部系统1996年两次大事故的后续认识(分层分析)[J].中国电力,1998,31(5):37-40.
    [10]陈建业,王仲鸣.1996年夏季美国西部电力系统停电事故[J].国际电力,1998,3(2):52-56.
    [11]Kosterev D N, Taylor C W, Mittestadt W A. Model validation for the August 10, 1996 WSCC Outage[J]. IEEE Transactions on Power Systems,1999,14(3): 967-979.
    [12]徐航,张启平,励刚,黄志龙,周坚.美加“8.14"大停电教训和启示——兼谈华东电网化解“8.29”和“9.4”重大风险[J].华东电力,2003,32(9):1-13.
    [13]郭永基.加强电力系统可靠性的研究和应用——北美东部大停电的思考[J].电力系统自动化,2003,27(19):1-5.
    [14]印永华,郭剑波,赵建军等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11.
    [15]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14”大停电的警示[J].电力系统自动化,2003,27(18):1-5.
    [16]U.S.-Canada Power Systems Outage Task Force. Final Report on the August 14, 2003 Blackout in the United States and Canada[R].America:April,2004:1-200.
    [17]供用电编辑部.意大利2003年9月28日大停电简介[J].供用电,2003,20(6):3-5.
    [18]Corsi S, Sabelli C. General blackout in Italy Sunday September 28,2003[C]. IEEE Power Engineering Society General Meeting, June 2004,2004(2): 1691-1702.
    [19]唐德生.伦敦南部地区大停电及其教训[J].电网技术,2003,27(11):3-5,12.
    [20]蓝毓俊.2003年世界上几起大停电事件的经验教训和启示[J].电力设备,2004,5(12):67-70.
    [21]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4.
    [22]韩水,苑舜,张进珠.国外典型电网事故分析[M].北京:中国电力出版社,2005:1-100.
    [23]Andersson G, Donalek P, Farmer R, et al. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance[J]. IEEE Transactions on Power Systems,2005, 20(4):1922-1928.
    [24]PSERC. Resources for understanding the Moscow blackout of 2005[EB/OL]. http://www.pserc.wise.edu,2005.
    [25]李春艳,陈洲,肖孟金.西欧“11.4”大停电分析及对华中电网的启示[J].高电压技术,2008,34(1):163-167.
    [26]刘宇,舒治淮,程逍.从巴西电网“2.4”次停电事故看继电保护技术应用原则[J].电力系统自动化,2011,35(8):12-15,71.
    [27]Phadke A G, Thorp J S. Expose Hidden Failures to Prevent Cascading Outages[J]. IEEE Computer Application in Power,1996,9(3):20-23.
    [28]Tamronglak S, Horowitz S H, Phadke A G,Thorp J S. Anatomy of Power System Blackouts Preventive Relaying Strategies[J]. IEEE Trans on Power Delivery, 1996,11(2):708-715.
    [29]NERC. August 14,2003 Blackout:NERC actions to prevent and mitigate the impacts of future cascading blackouts[R]. Princeton, New Jersey:NERC,2004.
    [30]NERC. Final report on the august 14,2003 blackout in the United States and Canada:causes and recommendations[EB/OL]. Princeton, U.S.A:NERC, 2004-04. http://www.nerc.com.
    [31]王梅义.大电网系统技术[M].北京:中国电力出版社,1995:1-100.
    [32]王梅义.维护电网安全的基本策略[J].电网技术,1997,21(2):36-40.
    [33]卢强,梅笙伟.现代电力系统灾变防治和经济运行若干重大基础研究[J]. 中国电力,1999,32(10):25-28.
    [34]曾德文.全国联网安全稳定及其相互影响研究[J].中国电力,2001,34(11):28-33.
    [35]杨卫东,徐政,韩祯祥.电力系统灾变防治系统研究的现状与目标[J].电力系统自动化,2000,24(1):7-12.
    [36]Horowitz S H, Phadke A G. Boosting Immunity to Blackouts[J].IEEE Power and Energy Magazine,2003,1(5):47-53.
    [37]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化,2005,29(12):93-97.
    [38]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1-6.
    [39]卢强,董新洲.继电保护与电力系统灾变防治[J].继电器,2005,33(14):1-6.
    [40]刘昊.电网连锁故障分析方法研究[D].北京:华北电力大学硕士学位论文,2005:1-30.
    [41]李蓉蓉,张晔,江全元.复杂电力系统连锁故障的风险评估[J].电网技术,2006,30(10):18-23.
    [42]Pourbeik P, Kundur P S, Taylor C W. The Anatomy of a Power Grid Blackout-Root Causes and Dynamics of Recent Major Blackouts[J]. IEEE Power and Energy Magazine,2006,4(5):22-29.
    [43]石中立,史中英,姚良忠.现代电力系统连锁性大停电事故机理研究综述[J].电网技术,2010,34(3):48-54.
    [44]丁道齐.复杂大电网安全性分析:智能电网的概念与实现[M].北京:中国电力出版社,2010:1-45.
    [45]贺家李,宋从矩.电力系统继电保护原理[M].北京:中国电力出版社,1994:1-150.
    [46]IEEE Std. C37.113-1999, IEEE Guide for Protective Relay Applications to Transmission Lines[S]. America:Power Systems Relaying Committee of the IEEE Power Engineering Society,1999:1-100.
    [47]王梅义.电网继电保护应用[M].北京:中国电力出版社,1999:1-200.
    [48]陆延昌.继电保护和自动化技术的进步[J].继电器,2004,24(8):30-33.
    [49]王宁.继电保护及安全自动装置存在问题分析及措施[J].华北电力技术,2004,34(7):50-53.
    [50]杨奇逊,黄少峰.微型机继电保护基础[M].北京:中国电力出版社,2005:1-100.
    [51]张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,2005:67-99.
    [52]国家电力调度通信中心.国家电网公司继电保护培训教材[M].北京:中国电力出版社,2009.
    [53]国家电力调度通信中心.电力系统继电保护规程汇编(第二版)[S].北京:中国电力出版社,2000:1-200.
    [54]中华人民共和国国家标准化委员会.GB/T 14285-2006,继电保护和安全自动装置技术规程[S].北京:中国标准出版社,2007.
    [55]隋凤海.变电站故障的远后备保护[J].电力系统及其自动化,1999,23(20):27-28.
    [56]李营,张全.超高压电网后备保护问题探讨[J].中国电力,2000,33(5):80-82.
    [57]熊小伏,周家启,赵霞,杨运国.快速后备保护研究[J].电力系统自动化,2003,27(11):45-47.
    [58]曹明坤.重视后备保护保证电网安全[J].电力设备,2003,4(5):5-9.
    [59]刘玉俊.高压电网后备保护问题[J].内蒙古科技与经济,2004,9(8):65-66.
    [60]孟恒信.关于220kV及以上主网远后备保护的思考[J].华北电力技术,2005,37(2):36-38.
    [61]马磊,王增平,马静.基于本地多信息的后备保护研究[J].继电器,2006,34(4):6-9.
    [62]Horowitz S H, Phadke A G. Third zone revisited[J]. IEEE Transactions on Power Delivery,2006,21(1):23-29.
    [63]毛锦庆,屠黎明,邹为华,聂娟红.从加强主保护简化后备保护论变压器微机型继电保护装置[J].电力系统及其自动化,2006,30(16):1-6.
    [64]韩英铎,王仲鸿,林孔兴.电力系统中的三项前沿课题——柔性输电技术,智能控制,基于GPS的动态安全分析与监测系统[J].清华大学学报,1997,37(7):1-6.
    [65]周孝信.研究开发面向21世纪的电力系统技术[J].电网技术,1997,21(11):11-15.
    [66]Bhargava B. Synchronized Phasor Measurement System Project at Southern California Edison Co[C]. IEEE Power Engineering Society Summer Meeting, July 1999,1999(1):16-22.
    [67]Phadke A G. Synchronized Phasor Measurements-A Historical Overview[C]. Asia Pacific:IEEE/PES Transmission and Distribution Conference and Exhibition,2002,2002(1):476-479.
    [68]Borka Milosevic, Mirosalv Begovic. Voltage-Stability Proctection and Control Using a Wide-Area Network of Phasor Measurements[J]. IEEE Transactions On Power Systems,2003,18(1):121-127
    [69]胡志祥,谢小荣,肖晋宇.广域测量系统的延迟分析及其测试[J].电力系统自动化,2004,28(15):39-43.
    [70]李丹,韩福坤,郭子明.华北电网广域实时动态监测系统[J].电网技术,2004,28(23):52-56.
    [71]IEEE Power Engineering Society. IEEE Std C37.118-2005, IEEE Standard for Synchrophasors for Power Systems[S]. America:IEEE Power Engineering Society,2005:1-100.
    [72]国家电力调度通信中心.电力系统实时动态监测系统技术规范[S].北京:国家电力调度通信中心,2005:1-50.
    [73]Q-GDW 131-2006,电力系统实时动态监测系统技术规范[S].北京:国家电网公司,2006.
    [74]Phadke A G,Thorp J S. Synchronized phasor measurements and their applications[M]. New York:Springer,2008:3-25.
    [75]王志强,刘文霞,范勇峰,刘念,彭晓峰.广域测量系统可靠性研究框架[J].电力系统自动化,2008,32(24):25-29
    [76]Kun Z, Ji S, Chenine, M, et al. Analysis of phasor data latency in wide area monitoring and control systems[C]. IEEE International Conference on Communications Workshops (ICC),2010:1-5.
    [77]GB/T 26862-2011,电力系统同步相量测量装置检测规范[S].北京:中国标准出版社,2011.
    [78]GB/T 26865.2-2011,电力系统实时动态监测系统第2部分:数据传输协议[S].北京:中国标准出版社,2011.
    [79]常乃超,兰洲,甘德强,倪以信.广域测量系统在电力系统分析及控制中的应用综述[J].电网技术,2005,29(10):46-52.
    [80]许树楷,谢小荣,辛耀中.基于同步相量测量技术的广域测量系统应用现状及发展前景[J].电网技术,2005,29(2):45-49.
    [81]易俊,周孝信.电力系统广域保护与控制综述[J].电网技术,2006,30(8):7-13.
    [82]李响,郭志忠.N-1静态安全潮流约束下的输电断面有功潮流控制[J].电网技术,2005,29(3):29-32.
    [83]魏萍,倪以信.基于图论的输电线路功率组成和发电机与负荷间功率输送关系的快速分析[J].中国电机工程学报,2000,20(6):21-25.
    [84]周德才,张保会,姚峰,王立永.基于图论的输电断面快速搜索[J].中国电机工程学报,2006,12:32-38.
    [85]赵慧梅,宋琳莉.基于图论的潮流转移快速搜索[J].水电站设计,2009,02: 40-45.
    [86]倪宏坤,徐玉琴.基于动态规划原理分支界限算法的关键输电断面搜索方法[J].华北电力大学学报(自然科学版),2009,04:11-15.
    [87]程临燕,张保会,郝治国.基于最小基本回路集合的潮流转移快速搜索[J].电力系统自动化,2010,18:21-26.
    [88]潘莉丽,刘建华,彭铖,王大才.电网结构发生变化时潮流转移的快速识别[J].电网技术,2011,06:118-121.
    [89]杨文辉,毕天姝,薛安成,黄少锋,杨奇逊.基于图论的潮流转移路径的快速搜索[J].电网技术,2012,04:84-88.
    [90]沈瑞寒,刘涤尘,赵洁,廖清芬,杜振川.基于加权网络模型的电网潮流转移下危险线路识别[J].电网技术,2012,05:245-250.
    [91]任建文,李刚,王增平,甄旭锋.基于背离路径的输电断面搜索新算法[J].电网技术,2012,04:121-127.
    [92]徐慧明,毕天姝,黄少锋,杨奇逊.基于潮流转移因子的广域后备保护方案[J].电网技术,2006,15:65-71.
    [93]徐慧明,毕天姝,黄少锋,杨奇逊.计及暂态过程的多支路切除潮流转移识别算法研究[J].中国电机工程学报,2007,16:24-30.
    [94]徐慧明,毕天姝,黄少锋.基于WAMS的潮流转移识别算法[J].电力系统自动化,2006,30(14):14-19
    [95]程临燕,张保会,郝治国.基于线路功率组成的关键输电断面快速搜索[J].中国电机工程学报,2010,10:50-56.
    [96]沈晓东,刘俊勇,刘彦.基于节点不平衡功率的粒子群潮流转移控制算法[J].电力系统自动化,2012,07:1-5+70.
    [97]王增平,李刚,任建文.基于前K最短路径的输电断面搜索新算法[J].电工技术学报,2012,04:193-201.
    [98]李莎,任建文.基于有功增加因子的潮流转移快速搜索[J].电网技术,2012,12:176-181.
    [99]Serizawa Y, Myoujin M, Kitamura K,et al. Wide-area current differential backup protection employing broadband communications and time transfer systems[J]. IEEE Transactions on Power Delivery,1998,13(4):1046-1052.
    [100]Serizawa Y, Myoujin M, Sugaya N, et al. Experimental examination of wide-area current differential backup protection employing broadband communications and time transfer systems[C], IEEE PES 1999 Summer Meeting,1999:1070-1075.
    [101]Kangvansaichol K, Crossley P A. Multi-zone current differential protection for transmission networks[C].2003 IEEE PES Transmission and Distribution Conference,2003:359-364.
    [102]Kangvansaichol K, Crossley P A. Multi-zone differential protection for transmission networks[C]. Eighth IEE International Conference on Developments in Power System Protection,2004:428-431.
    [103]Tang J, Yanfeng G, Schulz N, et al. Implementation of a ship-wide area differential protection scheme[J]. IEEE Transactions on Industry Applications, 2008,44(6):1864-1871.
    [104]Qin B L, Guzman-Casillas A, Schweitzer E 0 III. A new method for protection zone selection in microprocessor-based bus relays[J]. IEEE Transactions on Power Delivery,2000,15(3):876-887.
    [105]Su S, Li K K, Chan W L, et al. Agent-based self-healing protection system[J]. IEEE Transactions on Power Delivery,2006,21(2):610-618.
    [106]丛伟,潘贞存,赵建国.基于电流差动原理的广域继电保护系统[J].电网技术,2006,30(5):91-95.
    [107]Eissa M M, Masoud M E, El an war M M M. A novel back up wide area protection technique for power transmission grids using phasor measurement unit[J]. IEEE Transactions on Power Delivery,2010,25(1):270-278
    [108]Adamiak M G, Apostolov A P, Begovic M M, et al. Wide area protection-technology and infrastructures[J]. IEEE Transactions on power Delivery,2006,21(2):601-609.
    [109]Su S Li K K, Chan W L, et al. Adaptive agent-based wide-area current differential protection system [J]. IEEE Transactions on Industry Applications, 2010,46(5):2111-2117.
    [110]Giovanini R, Hopkinson K, Coury D V, et al. A primary and backup cooperative protection system based on wide area agents[J]. IEEE Transactions on Power Delivery,2006,21(3):1222-1230.
    [111]范玉顺,曹军威.多代理系统理论、方法与应用[M].北京:清华大学出版社,2002:1-16.
    [112]Serizawa Y, Imamura H, Kiuchi M. Performance evaluation of IP-based relay communications for wide-area protection employing external time synchronization[C]. IEEE Power Engineering Society Summer Meeting,2001: 909-914.
    [113]苏盛,段献忠,曾祥君.基于多Agent的广域电流差动保护系统[J].电网技术,2005,29(14):15-19.
    [114]Skeie T, Johannessen S, Brunner C. Ethernet in substation automation[J]. IEEE Control Systems Magazine,2002,22(3):43-51.
    [115]彭静,卢继平,汪洋.广域测量系统通信主干网的风险评估[J].中国电机工 程学报,2010,30(4):84-90.
    [116]Tan J C, Crossley P A, Kirschen D, et al. An expert system for the back-up protection of a transmission network[J]. IEEE Transactions on Power Delivery, 2000,15(2):508-514.
    [117]Tan J C, Crossley PA, MclarenPG, et al. Sequential tripping strategy for a transmission network back-up protection expert system[J]. IEEE Transactions on Power Delivery,2002,17(1):68-74.
    [118]Tan J C, Crossley P A, Hall I, et al. Intelligent Wide area back-up protection and it's role in enhancing transmission network reliability[C]. IEE Seventh International Conference on Developments in Power System Protection,2001: 446-449.
    [119]Tan J C, Crossley P A, Mclaren P G,et al. Application of a wide area backup protection expert system to prevent cascading outages [J]. IEEE Transactions on Power Delivery,2002,17(2):375-380.
    [120]Tan J C, Crossley P A, Gale P F, et al. Control of the central sectionaliser in a wide area back-up protection expert system[C]. IEEE Power Engineering Society General Meeting,2003:595-600.
    [121]杨增力,石东源,段献忠.基于方向比较原理的广域继电保护系统[J].中国电机工程学报,2008,28(22):87-93.
    [122]从伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法研究[J].中国电机工程学报,2006,26(21):8-14.
    [123]王慧芳,何奔腾.利用状态量信息的集合保护规范化判据研究[J].中国电机工程学报,2008,28(22):81-86.
    [124]闫常友,周孝信,康建东.潮流转移灵敏度以及安全评估指标研究[J].中国电机工程学报,2010,19:7-13.
    [125]余兴祥,刘友波,罗辉,林勇.考虑潮流转移结构特征的输电线路脆弱度在线评估[J].电力科学与技术学报,2011,04:80-87.
    [126]杨文辉,毕天姝,黄少锋,薛安成,杨奇逊.基于电网生存性评估的关键线路识别方法[J].中国电机工程学报,2011,07:29-35.
    [127]马瑞,陶俊娜,徐慧明.基于潮流转移因子的电力系统连锁跳闸风险评估[J].电力系统自动化,2008,12:17-21.
    [128]Dutta S, Singh S P. Optimal rescheduling of generators for congestion management based on particle swarm optimization[J]. IEEE Transactions on Power Systems,2008,23(4):1560-1569.
    [129]Capitanescu F, Wehenkel L. Redispatching active and reactive powers using a limited number of control actions[J]. IEEE Transactions on Power Systems, 2011,26(3):1221-1230.
    [130]程临燕,郝治国,张保会.基于内点法消除输电断面过载的实时控制算法[J].电力系统自动化,2011,35(17):51-55.
    [131]姚峰,张保会,周德才.输电断面有功安全性保护及其快速算法[J].中国电机工程学报,2006,26(13):31-36.
    [132]程临燕,张保会,郝治国.基于综合灵敏度分析的快速控制算法研究[J].电力自动化设备,2009,29(4):46-49.
    [133]徐慧明,毕天姝,黄少锋.基于广域同步测量系统的预防连锁跳闸控制策略[J].中国电机工程学报,2007,27(19):31-38.
    [134]顾乃炎,侯志俭.几种快速确定发电机分配系数的方法[J].电网技术,1999,23(6):40-43.
    [135]何洋,洪潮,陈昆薇.稀疏向量技术在静态安全分析中的应用[J].中国电机工程学报,2003,23(1):41-44.
    [136]张玮,潘贞存,赵建国.新的防止大停电事故的后备保护减载控制策略[J].电力系统自动化,2007,08:27-31+99.
    [137]丁理杰,江全元,包哲静,曹一家.基于多智能体技术的大电网连锁跳闸预防控制[J].电力系统自动化,2008,17:6-11.
    [138]李刚,王增平,任建文,闫利伟.基于图论分区与改进BFS算法搜索安全约束集的防联锁过载控制策略[J].电工技术学报,2012,11:219-229.
    [139]葛耀中.自适应继电保护及其前景展望[J].电力系统自动化,1997,21(9):42-46.
    [140]Rockefeller G D, Wagner G L, Linders J R, et al. Adaptive transmission relaying:concepts for improved performance[J], IEEE Transactions on Power Delivery,1988,3(4):1446-1456.
    [141]葛耀中,杜兆强,刘浩芳.自适应速断保护的动作性能分析[J].电力系统自动化,2001,25(18):28-32.
    [142]Sidhu T S. A new approach for calculating zone-2 setting of distance relay and its use in an adaptive protection system[J], IEEE Transactions on Power Delivery,2004,19(1):1-7.
    [143]Horowitz S H, Phadke A G, Thorp J S. Adaptive transmission system relaying[J], IEEE Transactions on Power Delivery,1988,3(4):1436-1446.
    [144]吕颖,孙宏斌,张伯明.在线继电保护智能预警系统的开发[J].电力系统自动化,2006,30(4):1-5.
    [145]曹国臣,蔡国伟,王海军.继电保护整定计算方法存在的问题与解决对策[J].中国电机工程学报,2003,32(10):51-56.
    [146]Horowitz S H, Phadke A G, and Renz B. The future of power transmission[J]. IEEE Power and Energy Magazine,2010,8(2):34-40.
    [147]Bernabeu E E, Thorp J S, Centeno V. Methodology for a security/dependability adaptive protection scheme based on data mining[J]. IEEE Transactions on Power Delivery,2012,27(1):104-111.
    [148]林湘宁,夏文龙,熊玮.不受潮流转移影响的距离后备保护动作特性自适应调节研究[J].中国电机工程学报,2011,31(增刊):83-87.
    [149]Novosel D, Madani V, Bhargava B, et al. Dawn of the grid synchronization[J]. IEEE Power and Energy Magazine,2008,6(1):49-60.
    [150]De La Ree J, Centeno V,Thorp J S, et al. Synchronized phasor measurement applications in power systems[J]. IEEE Transactions on Smart Grid,2010,1(1): 20-27.
    [151]Chakrabarti S, Kyriakides E, Bi T S, et al. Measurements get together[J]. IEEE Power and Energy Magazine,2009,7(1):41-49.
    [152]Phadke A G, Voslkis H, Moraes D, et al. The wide world of wide-area measurement J]. IEEE Power and Energy Magazine,2008,6(5):52-65.
    [153]Yang Q X, Bi T S, Wu J T. WAMS implementation in China and the challenges for bulk power system protection[C]. IEEE Proceedings of Power Engineering Society General Meeting,2007:1-6.
    [154]杨文辉,毕天姝,薛安成,黄少锋,杨奇逊.潮流转移区域后备保护动作特性自适应调整策略[J].电力系统自动化,2011,18:1-6.
    [155]徐岩,吕彬,毛铮,李炜,邹金.防止距离Ⅲ段保护因过负荷误动的方法[J].电力科学与工程,2012,10:22-27+32.
    [156]杨文辉,毕天姝,薛安成,黄少锋,杨奇逊.关键后备保护过负荷闭锁方案研究[J].华北电力大学学报(自然科学版),2011,03:1-6.
    [157]张伯明,陈寿孙,严正.高等电力网络分析[M].北京:清华大学出版社,2007:89-98.
    [158]Anderson P M. Power system protection[M]. America:Wiley-IEEE Press,1998: 361-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700