用户名: 密码: 验证码:
生物油水蒸汽催化重整制氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢是理想的载能体,是用于燃料电池和内燃机的理想清洁燃料。然而,从化石燃料中提取氢不仅会带来环境污染,而且化石燃料的储备正在消耗殆尽。开发可再生清洁能源一生物质能源,对中国能源结构调整,减少温室气体排放,保护生态环境将发挥巨大作用。然而,生物质的高度分散性和较低的能量密度决定了它的高运输成本和经济可行性,而通过生物质快速裂解制得的生物油代表了一种具有较高能量密度的原料,它可以较容易分散制取,然后集中制取氢气,以生物油为原料制取氢气为生物油的利用提供了一条新的途径。本论文对生物油水蒸汽催化重整制氢进行了催化剂的选择、制备,对生物油的热解特性,热动力学进行了分析,对生物油模型物及生物油进行了催化重整制氢的工艺条件、基本规律、催化机理的研究。
     以廉价Ni过渡金属为催化剂的活性组分,载体主体为海泡石,添加助剂MgO或Mo03,用浸渍法制备一系列Ni基催化剂Ni/Sepiolite, Ni/MgO-Sepiolite, Ni/Mo-Sepiolite, Ni/Mo-MgO-Sepiolite,获得催化剂制备的最佳条件,并对催化剂进行XRD、XPS、BET、SEM、TG/DTG表征。
     在空气气氛下采用热重分析法对固定床反应器中生物油水溶性组分的热解特性进行对比研究,利用Achar-Brindley-Sharp-Wendworth(Achar)微分法和Coats-Redfern(Coats)积分法结合的方式进行动力学分析,计算了挥发和热分解的活化能、反应级数和动力学参数,确定了机理函数并建立了热解动力学模型。结果表明生物油水溶性组分的热解可分为三个阶段,即轻组分挥发、重组分裂解和焦炭燃烧,热解段生物油水溶性组分活化能较挥发段的活化能降低了很多;挥发段采用一级反应模型来模拟生物油水溶性组分的热分解,而热解段采用二级模型表示热解反应;第一阶段挥发段反应级数近似为一级,第二阶段热解段反应级数近似为二级,两阶段的相关系数表明反应级数具有较好的线性相关度。
     选择乙酸、丙三醇、苯酚、糠醛作为生物油模型物,以改性海泡石Ni/Mo-MgO-Sepiolite作为催化剂,进行乙酸、丙三醇、苯酚、糠醛水蒸汽重整制氢,获得制氢的基本规律,优化了反应条件,比较了各种催化剂的催化性能。
     选择生物油为原料,在固定床反应器中进行水蒸汽催化重整制氢,考察了反应温度、进料的水碳摩尔比、进料空速、反应器催化长度对生物油水蒸汽催化重整制氢的影响。用浸渍法制备了镍、钼改性的海泡石催化剂,考察了改性海泡石催化活性对重整制氢的影响,海泡石酸化前后的催化效应,结果表明:用酸化后的海泡石改性的催化剂催化重整得到的氢产率67.5%,而用未酸化的海泡石改性后的催化剂催化重整得到的氢产率仅46.2%。
     选择乙酸、丙酮、丙三醇、苯酚、糠醛配成的混合物作为生物油模型物,用吉布斯自由能最小化法对其水蒸汽催化重整制氢过程进行热力学分析,考察了反应温度、碳水比(C/H20)、进料流量对平衡时气体产物的影响,并建立了数学模型。
     对改性海泡石的催化活性进行了研究,酸化后的海泡石经过镍钼改性后,提高了原海泡石品位,使之更具有储存和助催化功能,比原海泡石具有更强的催化性能。对水蒸汽催化重整制氢过程中催化剂催化效应进行分析,推断改性海泡石催化机理,指出催化剂失活的主要原因是催化剂载体孔道及活性金属表面被累积的焦炭堵塞所致。
Hydrogen is an ideal energy carrier that can be used as an essential clean fuel form. However, hydrogen production from fossil fuels will not only bring about environmental pollution, but also requires a complete consumption of the raw materials of the fossil fuel. As a consequence, the development of renewable clean energy-biomass energy will play a large role in China's energy structure adjustment in order to reduce greenhouse gas emissions and protect the ecological environment. Because dispersion level and energy density would determine the transport cost and economic feasibility of one particular fuel form, bio-oil that is well-known for its fast pyrolysis has represented one type of promising new energy forms with easy dispersion and high energy density.
     This paper provided a brief introduction of bio-oil pyrolysis characteristics, carried out kinetics analysis with different reaction conditions considered explicitly based on the basic law of the catalytic steam reforming, and revealed catalytic mechanism in steam reforming of bio-oil for hydrogen production.
     When the Ni transition metal ingredients are divided according to the active group of inexpensive catalyst, the main body of the carrier is sepiolite, and the carrier assistant ingredient consists of MgO and MoO3.A series of Ni base catalyst Ni/Sepiolite was prepared with the impregnation method. Ni/MgO-Sepiolite, Ni/Mo-Sepiolite and Ni/Mo-MgO-Sepiolite are applied to obtain the optimum reaction conditions of catalyst preparation, with XRD, XPS, BET, SEM and TG/DTG attributed to the catalyst.
     The pyrolysis behaviors and kinetics of the water-soluble components of bio-oil were studied by thermogravimetric (TG) analysis. The curves of TG and corresponding DTA were analyzed in the oxygen atmosphere within a fixed bed reactor. Based on the experimental data, activation energies, reaction order and kinetic parameters were calculated using the Achar-Brindley-Sharp-Wendworth differential method and the Coats-Redfern integral method. Also, potential involving mechanisms were explored with thermal kinetic equations ultimately obtained. The results showed that the pyrolysis process of water-soluble components of bio-oil can be divided into three stages, including the evaporation stage of volatile fractions, the decomposition stage of heavy fractions and the char combustion stage. To activate energy forms, the volatilization dynamic is higher than bio-oil obtained directly from the decomposition stage. The first stage was expressed as first order reaction whereas the second stage was expressed as second order reaction. The kinetic reaction order was characterized as first order reaction of the first stage, followed by the second order reaction of the second stage. The correlation coefficient of these two stages showed that the reactions were of well conformity.
     The mixtures of acetic acid, acetone, glycerol urfural and phenol were selected and dubbed as bio-oil model compounds. Studies on the acetic acid, glycerol, phenol, furol and mixed model steam reforming for hydrogen production were carried out within a fixed bed reactor with modified Ni/Mo-MgO-Sepiolite catalyst to optimize reaction conditions and to compare catalytic properties of various catalysts.
     Hydrogen was produced during the catalytic steam reforming process of bio-oil within a fixed bed reactor. Sepiolite catalysts modified with nickel (Ni) and molybdenum (Mo) were prepared using the precipitation method. Influential parameters such as temperature, catalyst, steam to carbon ratio (H2O/C), the feeding space velocity (feeding rate) and reforming reaction length were quantified. The results of this experiment showed that the yield with the acidified sepiolite catalyst was67.5%. In contrast, the yield with the non-acidified sepiolite catalyst was only46.2%.
     The mixtures of acetic acid, glycerol, urfural and phenol were selected and dubbed as bio-oil model compounds. The thermodynamic analysis was carried out to understand the steam catalytic reforming hydrogen production process with the Gibbs energy reduced the least. The effect of reaction temperature, C/H2O and the feeding rate on gasous components of the molecular balance was investigated, with involving mathematical model successfully established.
     The catalytic activity of modified sepiolite, the effect of catalyst on the steam reforming and the associated catalytic mechanisms were analyzed based on the experimental results. Some impurities could be removed from sepiolite after a nickel-molybdenum-modification on sepiolite to improve the original sepiolite grade, to ensure a better storage and catalysis performance, and to have a stronger catalytic performance compared to the circumstances where only original sepiolite was applied. The main reason for catalyst deactivation was due to coke plugging. Both the channels of the carrier and the active metal surfaces were likely to be blocked by the coke.
引文
[1]Zhang L., Xu C., Champagne P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management,2010,51:969-982
    [2]李理,阴秀丽,吴创之,等.生物质热解油气化制备合成气的研究[J].可再生能源,2007,25(1):40-43
    [3]吴创之,马隆龙.中国生物质能产业发展报告2009-2010[R].广州:中国科学院广州能源研究所,2009
    [4]徐建中,严陆光.2011-2020年我国能源科学学科发展战略报告[M].能源科学学科组,2010
    [5]Czernik S, Evans R, French R. Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil[J]. Catal Today,2007,129:265-268
    [6]Yan C., Hu E., Cai C. Hydrogen production from bio-oil aqueous fraction with in situ carbon dioxide capture[J]. International Journal of Hydrogen Energy,2010,35:2612-2616
    [7]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80
    [8]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003
    [9]曾虹燕,蒋丽娟,李昌珠.生物质能源-能源可持续利用之路[J].中国医学生物技术应用,2003(2):30-34
    [10]苏琼,肖波,汪莹莹.纤维素类生物质热解影响因素分析[J].能源研究与信息,2007,23(1):11-15
    [11]Demirbas A, Arin G An overview of biomass pyrolysis[J]. Energy Sources,2002,24 (5): 471-482
    [12]Tan H, Wang S R, Luo Z Y, et al. Pyrolysis behavior of cellulose, xylan and lignin[J]. Journal of Fuel Chemistry and Technology,2006,34(1):61-65
    [13]Gil J, Corella J, Aznar M P, et al. Biomass gasification in atmospheric and bubbling fluidized bed:Effect of the type of gasifying agent on the product distribution[J]. Biomass and Bioenergy,1999,17(5):389-403
    [14]Yan C, Yang W, Johnt R, et al. A novel biomass air gasification process for producing tar free higher heating value fule gas[J]. Fuel Processing Technology,2006(87):343-353
    [15]王凤旵,王君,陈明功,等.生物质热解油的特性及其应用研究进展[J].生物质化学工程,2008,42(1):34-40
    [16]Becidan M, Skreiberg O, Johan E. Hustad. Products distribution and gas release in pyrolysis of thermally thick biomass residues samples[J]. J. Ana. Appl. Pyrolysis,2007, 78(1):207-213
    [17]Dupont C, Commandre J M, Gauthier P, et al. Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073 K and 1273 K[J]. Fuel,2008,87(7): 1155-1164
    [18]Garcia-Perez M, Wang X S, Shen J, et al. Fast Pyrolysis of Oil Mallee Woody Biomass:Effect of Temperature on the Yield and Quality of Pyrolysis Products[J]. Ind. Eng. Chem. Res.,2008,47 (6):1846-1854
    [19]Nam J.Y., Bruce L. E. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cells[J]. International Journal of Hydrogen Energy,2011, 36(23):15105-15110.
    [20]戴先文,吴创之,陈勇,等.自热式循环流化床生物质热解油化装置,中国专利,01242632
    [21]陈明强,颜涌捷,任铮伟,等.生物质快速裂解制备液体燃料的方法,中国专利,02145149
    [22]Pendyala, V., G. Jacobs, J. Mohandas, et al. Fischer-Tropsch synthesis:Attempt to tune FTS and WGS by alkali promoting of iron catalysts[J]. Applied catalysis A:General. 2010,389(1-2):131-139
    [23]Nogueira, L.A.H., Seabra J.E.A., Macedo, et al.. Biomass gasification for production[J]. Biomedical and Life Sciences,2011,1:27-41
    [24]Trane R., Dahl S., Skj(?)th-Rasmussen M.S., et al. Catalytic steam reforming of bio-oil[J]. International Journal of Hydrogen Energy,2012,37,6447-6472
    [25]Qiu M., Li Y., Wang T., et al. Upgrading biomass fuel gas by reforming over Ni-MgO/α-AJ.203 cordierite monolithic catalysts in the lab-scale reactor and pilot-scale multi-tube reformer[J]. Applied Energy,2012,90:3-10
    [26]Chiodo V., Freni S., Galvagno A., et al. Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen[J]. Applied Catalysis A: General,2010,381:1-7
    [27]汪璐,王铁军,张琦,等.两段式固定床反应器上生物油水相部分的重整制氢反应[J].化工学报,2009,8:2054-2059
    [28]Pan C., Chen A., Liu Z., et al. Aqueous-phase reforming of the low-boiling fraction of rice husk pyrolyzed bio-oil in the presence of platinum catalyst for hydrogen production[J]. Bioresource Technology,2012,125:335-339
    [29]蓝平,许庆利,吴层,等.生物油在流化床反应器中催化重整制氢研究[J].太阳能学报2011,9:1327-1332
    [30]Medrano J.A., Oliva M., Ruiz J., et al. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed[J]. Energy,2011,36: 2215-2224
    [31]Amanda L.L., Rohaya M. Z., Valerie D., et al. Biomass pyrolysis oils for hydrogen production using chemical looping reforming[J]. International Journal of Hydrogen Energy,2012,37:2037-2043
    [32]Zheng X., Yan C., Hu R., et al. Hydrogen from acetic acid as themodel compound of biomass fast-pyralysis oil over Ni catalyst supported on ceriaezirconia [J].International Journal of Hydrogen Energy,2012,37:12987-12993
    [33]谢建军,阴秀丽,黄艳琴,等.生物油水溶性组分重整制氢研究进展及关键问题分析[J].石油学报(石油加工),2011,27(5):829-838
    [34]Wu C., Ronghou Liu. Sustainable hydrogen production from steam reforming of bio-oil model compound based on carbon deposition/elimination[J]. International Journal of Hydrogen Energy,2011,36:2860-2868
    [35]Saxena RC, Diptendu Seal, Satinder Kumar, et al. Thermo-chemical routes for hydrogen rich gas from biomass:A review[J]. Renewable and Sustainable Energy Reviews,2008, 12(7):1909-1927
    [36]倪萌,Leung M.K.,Sumathy K.生物质热化学过程制氢技术[J].可再生能源,2004(117):37-39
    [37]马承荣,肖波,杨家宽.生物质热解影响因素研究[J].环境生物技术,2005,(5):10-12
    [38]Fernandez Y, Menendez JA. Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes[J]. Journal of Analytical and Applied Pyrolysis,2011,91(2):316-322
    [39]杜丽娟,李建芬,肖波,等.生物质催化热解制合成气的研究[J].化学工程师,2008,153(6):3-5
    [40]Dufour A, Girods P, Masson P, et al. Synthesis gas production by biomass pyrolysis: Effect of reactor temperature on product distribution[J]. International Journal of Hydrogen Energy,2009,34(4):1726-1734
    [41]潘丽娜.生物质快速热裂解工艺及其影响因素[J].应用能源技术,2004,(4):7-8
    [42]孟光范,赵保峰,张晓东.生物质二次裂解制取氢气的研究[J].太阳能学报,2009,30(6):837-841
    [43]鄢伟,孙绍晖,孙培勤,等.生物质热化学法制氢技术的研究进展[J].化工时刊,2011,25(11):49-58.
    [44]Zhang L., Champagne P., Xu C. Supercritical water gasification of an aqueous by-product from biomass hydrothermal liquefaction with novel Ru modified Ni catalysts[J]. Bio-resource Technology,2011,102(17):8279-8287
    [45]Zhang L., Xu C., Champagne P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management,2010,51:969-982
    [46]Balabin R.M. Near-Infrared (nir) spectroscopy for biodiesel analysis:fractional composition, iodine value, and cold filter plugging point from one vibrational spectrum[J]. Energy Fuels,2011,25:2373-2382
    [47]Tushar P. V. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils[J]. Science,2010,33(26):1222-1227
    [48]Lu J., Fu B., Kung M.C., et al. Coking-and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition[J]. Science,2012,335:1205-1208
    [49]Salehi E, Abedi J, Harding T. Bio-oil from Sawdust:Effect of Operating Parameters on the Yield and Quality of Pyrolysis Products[J]. Energy Fuels,2011,25:4145-4154
    [50]Bridgwater AV. Principles and practice of biomass fast pyrolysis processes for liquids[J]. Journal of Analytical and Applied Pyrolysis,1999,51:3-22
    [51]Mullen CA, Boateng AA. Chemical composition of bio-oils produced by fast pyrolysis of two energy crops[J]. Energy Fuels,2008,22:2104-2109
    [52]Dupont C., Commandre J.M., Gauthier P., et al. Biomass pyrolysis experiments in an analytical entrained flow reactor betwee n 1073 K and 1273 K[J]. Fuel,2008,87: 1155-1164
    [53]Wan Y., Chen P., Zhang B., et al. Microwave-assisted pyrolysis of biomass:Catalysts to improve product selectivity[J]. J. Anal. Appl. Pyrolysis,2009,86.161-167
    [54]Shen J, Wang X S, Garcia-Perez M, et al. Effects of particle size on the fast pyrolysis of oil mallee woody biomass[J]. Fuel,2009,88(10):1810-1817
    [55]Xiao, X., Meng X., Le D.D., et al. Two-stage steam gasification of waste biomass in fluidized bed at low temperature:Parametric investigations and performance optimization[J]. Bioresource Technology,2011,102(2):1975-1981
    [56]Lahijani, P., and Z.A. Zainal. Gasification of palm empty fruit bunch in a bubbling fluidized bed:A performance and agglomeration study [J]. Bioresource Technology,2010, 102(2):2068-2076
    [57]朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究[[J].太阳能学报, 2006,27(12):1285-1289
    [58]刘荣厚.生物质快速热裂解制取生物油技术的研究进展[[J].沈阳农业大学学报,2007-02,38(1):3-7
    [59]Luo N., Fu X., Cao F., et al. Edwards. Glycerol aqueou phase reforming for hydrogen generation over Pt catalyst-Effect of catalyst composition and reaction conditions[J]. Fuel,2008,87:3483-3489
    [60]Wen G., Xu, Ma H., Xu Z., et al. Production of hydrogen by aqueous-phase ref Y.orming of glycerol [J]. International Journal of Hydrogen Energy,2008,33(22):6657-6666
    [61]Cortright R.D., Davda R.R., Dumesic J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature,2002,418:964-967.
    [62]Schmieder H, Abeln J, Boukis N, et al. Hydrothermal gasification of biomass and organic wastes[J]. J Supercritical Fluids,2000,17(2)145-153
    [63]Navarro RM, Pena MA, Fierro JLG, et al. Hydrogen production for fuel cell by oxidative reforming of diesel surrogate:Influence of ceria and/or lanthana over the activity of Pt/Al2O3 catalysts[J]. Fuel,2008,87(12):2502-2511
    [64]Wang H., Wang X., Li M., et al. Thermodynamic analysis of hydrogen production from glycerol autothermal reforming[J]. International journal of hy drogen energy,2009,34: 5683-5690
    [65]Chen H., Ding Y., Cong N. T., et al. A comparative study on hydrogen production from steam-glycerol reforming thermodynamics and experimental [J]. Renewable Energy,2011, 36:779-788
    [66]Zhao B., Zhang X., Sun L., et al. Hydrogen production from biomass combining pyrolysis and the secondary decomposition[J]. International journal of hydrogen energy, 2010,35:2606-2611
    [67]Zhu X., Trung H., Lobban L. L., et al. Low CO content hydrogen production from bio-ethanol using a combined plasma reforming-catalytic water gas shift reactor[J]. Applied Catalysis B:Environmental,2010,94(2):311-317
    [68]Ersan Piitun, Catalytic pyrolysis of biomass:Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst[J]. Energy,2010,35:2761-2766
    [69]Liu S., Chen M., Wang J., et al. Gasification Characteristics of Acetic Acid as a Model Oxygenate of Bio-oil in a Fixed Bed by Microwave Heating[C]. In:Proceedings of the 3nd International Conference on Asian-European Environmental Technology and Knowledge Transfer,Hefei, China,2010,5:786-791
    [70]Liu S., Chen M., Wang J., et al. Gasification of Acetic Acid as a Model Oxygenate from Bio-oil by Microwave Heating [C]. In:2010 International Conference on E-Product E-Service and E -Entertainment, Henan, China,2010,11:5472-5475
    [71]Lee Y. K., Kima K.S., Ahn J. G., et al. Hydrogen production from ethanol over Co/ZnO catalyst in a multi-layered reformer[J]. International journal of hydrogen energy,2010,35: 1147-1151
    [72]Medrano J.A., Oliva M., Ruiz J., et al. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed[J]. Energy,2011, 36:2215-2224
    [73]Ekaterini Ch. Vagia, Angeliki A. Lemonidou. Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction[J]. International journal of hydrogen energy,2008,33:2489-2500
    [74]Wu C., Liu R. Sustainable hydrogen production from steam reforming of bio-oil model compound based on carbon deposition/elimination[J]. International journal of hydrogen energy,2011,36:2860-2868
    [75]Adhikari S., Sandun D, Fernando, et al. Hydrogen production from glycerol:An update[J]. Energy Conversion and Management,2009,50:2600-2604
    [76]Thomas D., Nolven G, Eduard I., et al. Hydrogen production from crude pyrolysis oil by a sequential catalytic process[J]. Applied Catalysis B:Environmental,2007,73:116-127
    [77]Chen S.Q., Li Y.D., Liu Y., et al. Regenerable and durable catalyst for hydrogen production from ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2011,36(10):5849-5856
    [78]Beatriz V., Aingeru R., Andres T. A., et al. Catalysts of Ni/α-Al2O3 and Ni/La2O3-α-Al2O3 for hydrogen production by steam reforming of bio-oil aqueous fraction with pyrolytic lignin retention[J]. International journal of hydrogen energy,2013,38:1307-1318
    [79]Eduard E. I., Marcelo E. D., Thomas D., et al. Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia[J]. Applied Catalysis A:General,2007,323:147-161
    [80]Yan C.F., Cheng F.F., Hu R.R. Hydrogen production from catalytic steam reforming of bio-oil aqueous fraction over Ni/CeO2-ZrO2 catalysts[J]. International journal of hydrogen energy,2010,35:11693-11699
    [81]Courtney A. Fisk, Tonya Morgan, Yaying Ji, et al. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen[J]. Applied Catalysis A:General,2009, 358:150-156
    [82]Takanabe K., Aika K., Inazu K., et al. Steam reforming of acetic acid as a biomass derived oxygenate:Bifunctional pathway for hydrogen formation over Pt/ZrO2 catalysts[J]. J. Catal.,2006,243(2):263-269
    [83]Takanabe K., Aika K., Seshan K., et al. Sustainable hydrogen from bio-oil-Steam reforming of acetic acid as a model oxygenate[J]. J. Catal.,2004,227(1):101-108
    [84 Eduard E. I., Marcelo E. D., Thomas D., et al. Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia[J]. Applied Catalysis A:General,2007,323:147-161
    [85]Courtney A. Fisk, Tonya Morgan, Yaying Ji, et al. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen[J]. Applied Catalysis A:General,2009, 358:150-156
    [86]Medrano J.A., Oliva M., Ruiz J., et al. Catalytic steam reforming of acetic acid in a fluidized bed reactor with oxygen addition[J]. International journal of hydrogen energy, 2008,33:4387-4396
    [87]Goyal N., Pant K.K., Gupta R. Hydrogen production by steam reforming of model bio-oil using structured Ni/Al2O3 catalysts. International Journal of Hydrogen Energy, 2013,38:921-933.
    [88]Amanda L.L., Rohaya M. Z., Valerie D., et al. Biomass pyrolysis oils for hydrogen production using chemical looping reforming[J]. International Journal of Hydrogen Energy,2012,37:2037-2043.
    [89]Chen T., Wu C., Liu R.. Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production[J]. Bioresource Technology,2011,102:9236-9240
    [90]Xie J., Su D., Yin X., et al. Thermodynamic analysis of aqueous phase reforming of three model compounds in bio-oil for hydrogen production[J]. International Journal of-Hydrogen Energy,2011,36:15561-15572
    [91]Ebrahim S., Fakhry S. A., Thomas H., et al. Production of hydrogen by steam reforming of bio-oil over Ni/Al2O3 catalysts:Effect of addition of promoter and preparation procedure[J]. Fuel Processing Technology,2011,92:2203-2210
    [92]Basagiannis A C, Verykios X E. Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts[J]. Catalysis Today,2007,127(1):256-264.
    [93]Medrano J.A., Oliva M., Ruiz J., et al. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed[J]. Energy, (2011), 36(4):2215-2224
    [94]Lin K.H., Wang C.B., Chien S.H., et al. Catalytic performance of steam reforming of ethanol at low temperature over LaNiC>3 perovskite[J]. International Journal of Hydrogen Energy,2013,38(8):3226-3232
    [95]Ma H., Zhang R., Huang S., et al. Ni/Y2O3-Al2O3 catalysts for hydrogen production from steam reforming of ethanol at low temperature[J]. Journal of Rare Earths,2012, 30(7):683-690
    [96]Rioche C, Kulkarni S, Meunier F C, et al. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts[J]. Applied Catalysis (B): Environmental,2005,61:130-139
    [97]Christos M. K., Sofia A., Angelos M. E. "Redox" vs "associative formate with-OH group regeneration" WGS reaction mechanism on Pt/CeO2:Effect of platinum particle size[J]. Journal of Catalysis,2011,279:287-300
    [98]Guell B. M., Babich I.V., Lefferts L., et al. Steam reforming of phenol over Ni-based catalysts-A comparative study[J]. Applied Catalysis B:Environmental,2011,106: 280-286
    [99]Azad F. S., Abedi J., Salehi E., Thomas Harding. Production of hydrogen via steam reforming of bio-oil over Ni-based catalysts:Effect of support[J]. Chemical Engineering Journal,2012,180,145-150
    [100]Somsak T., Vissanu M., Boonyarach K., Hydrogen production by steam reforming of acetic acid over Ni-based catalysts[J]. Catalysis Today,2011,164:257-261
    [101]Chiodo V., Freni S., Galvagno A., et al. Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen[J]. Applied Catalysis A: General,2010,38:11-17
    [102]Rem6n J., Medrano J.A., Bimbela F., et al. Ni/Al-Mg-0 solids modified with Co or Cu for the catalytic steam reforming of bio-oil [J]. Applied Catalysis B:Environmental, 2013,132-133:433-444
    [103]Basagiannis A.C., Verykios X.E. Catalytic steam reforming of acetic acid for hydrogen production[J]. International Journal of Hydrogen Energy,2007,32:3343-3355
    [104]Hu X., Lu G Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO2 emission[J]. International Journal of Hydrogen Energy,2010,35:7169-7176
    [105]Thomas D., Nolven G., Eduard I., et al. Hydrogen production from crude pyrolysis oil by a sequential catalytic process[J]. Applied Catalysis B:Environmental 2007,73:116-127
    [106]Beatriz V., Aingeru R., Andre's T, et al. Catalysts of Ni/α-Al2O3 and Ni/La2O3-α-Al2O3 for hydrogen production by steam reforming of bio-oil aqueous fraction with pyrolytic lignin retention[J]. International Journal of Hydrogen Energy,2013,38:1307-1318
    [107]Eduard E. I., Marcelo E. D., Thomas D., et al. Hydrogen production by sequential cracking of biomass-derived pyrolysis oil over noble metal catalysts supported on ceria-zirconia[J]. Applied Catalysis A:General,2007,323:147-161
    [108]Frusteri F, Freni S, Chiodo V, et al. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts:hydrogen production for MC fuel cell[J]. Applied Catalysis A:General, 2004,270(30):1-7
    [109]Liuye M., Zheng X., Huang C., et al. Reforming of methane with oxygen and carbon dioxide to produce syngas over Pt/CoAl2O4Al2O3 catalyst[J]. J.Molecular Calalyst A-Chemical,2003,193(1-2):177
    [110]Guell B. M., Babich I.V., Lefferts L., et al. Steam reforming of phenol over Ni-based catalysts-A comparative study[J]. Applied Catalysis B:Environmental,2011,106 280-286
    [111]王君.生物质微波裂解制备液体燃料的基础研究[D].安徽:安徽理工大学,2007
    [112]廖艳芬,马晓茜,孙永明.木材热解及金属盐催化热解动力学特性研究[J].林产化学与工业,2008,28(5):45-50
    [113]Scott S A, Dennis J S, Davidson J F, et al. An algorithm for determining the kinetics of devolatilisation of complex solid fuels from thermogravimetric experiments[J]. Chemical Engineering Science,2006,61(8):2339-2348
    [114]王君,陈明强,张明旭,等.三种生物质的热解动力学研究[J].哈尔滨工业大学学报,2009,41(7):180-183
    [115]王君,张明旭,陈明强,等.3种生物质的裂解特性及动力学建模[J].煤炭学报,2007,32(2):194-197
    [116]陈明强,齐雪宜,王君,等.棉秆催化热解特性及动力学建模研究[J].燃料化学学报,2011,7:585-589
    [117]胡松,Andreas Jess,向军,等.基于不同三组分模型解析生物质热解过程[J].化工学报,2007,58(10):2580-2586
    [118]胡松,孙路石,向军,等.非传统动力学分析法解析生物质热解过程[J].太阳能学报,2008,29(8):1038-1044
    [119]Hu S, Jess A, Xu M. H. Kinetic study of Chinese biomass slow pyrolysis:Comparison of different kinetic models[J]. Fuel,2007,86(17-18):2778-2788
    [120]郭晓兰.生物质(海藻)裂解特性及动力学研究[D].安徽:安徽理工大学,2007
    [121]Kastanaki E, Vamvuka D, Grammelis P, et al. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization.Fuel Processing Technology, 2002,77/78:159-166
    [122]文丽华.生物质多组分的热裂解动力学研究[D].浙江:浙江大学,2005
    [123]Manya J J, Velo E, Puigjaner L. Kinetics of biomass pyrolysis:a reformulated three-parallel-reactions model[J]. Ind. Eng. Chem. Res.,2003,42(3):434-441
    [124]张素萍,颜涌捷,李庭琛,等.生物质裂解焦油的燃烧特性及动力学模型[J].华东理工大学学报,2002,28(1):104-106
    [125]郭晓亚,颜涌捷,李庭琛,等.生物质油精制前后热稳定性和热分解动力学研究[J].华东理工大学学报,2004,30(3):270-275
    [126]汪丛伟,阴秀丽,吴创之,等.生物油及其重质组分的热解动力学研究[J].工程热物理学报,2009,30(10):1783-1786
    [127]王贤华,陈汉平,张谋,等.生物油燃烧特性及动力学研究[J].华中科技大学学报,2008,36(4):92-94
    [128]Sanaz S., Gek C. N., Rozita Y. The evaluation of various kinetic models for base-catalyzed ethanolysis of palm oil[J]. Bioresource Technology,2012,104:1-5
    [129]Vagia E.C., Lemonidou A. A. Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction [J]. International Journal of Hydrogen Energy,2007,32:212-223
    [130]Wen G, Xu Y., Ma H., et al. Production of hydrogen by aqueous-phase reforming of glycerol[J]. International Journal of Hydrogen Energy,2008,33(22):6657-6666
    [131]Garcia-perez M, Chaala A, Pakdel H, et al. Characterization of bio-oils in chemical families[J]. Biomass & Bioenergy,2007,31(4):222-242
    [132]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001
    [133]Wang W., Wang Y.Q. Thermodynamic analysis of steam reforming of ethanol for hydrogen generation[J]. Int. J. Energy Res.,2008,32:1432-1443
    [134]Vagia E.C., Lemonidou A.A.Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction[J]. Int. J. Hydrogen Energy, 2007,32(2):212-223
    [135]Semelsberger T.A., Borup R.L. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis[J]. J. Power Sources,2005,152: 87-96
    [136]Semelsberger T.A., Borup R.L. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation[J]. J. Power Sources,2006,155(2):340-352
    [137]Wang X., Li M., Wang M., et al. Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production[J]. Fuel,2009,88:2148-2153
    [138]Sudhakara R.Y., Sunil K. M. Reforming of vegetable oil for production of hydrogen:A thermodynamic analysis[J]. International Journal of Hydrogen Energy,2011, 36:11666-11675
    [139]Ba T., Chaala A., Garci-Perez M., et al. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions[J]. Energy Fuels,2004,18(3):704-712
    [140]张濂,许志美.化学反应器分析[M].上海:华东理工大学出版社,2004.
    [141]朱文涛,邱新平.化学反应平衡系统的热容计算[J].清华大学学报(自然科学版)1999,38(5).25-27
    [142]天津大学物理化学教研室.物理化学[M].北京:高等教育出版社,2001
    [143]程文龙,谢鲲,赵锐,等.生物油气液相平衡与比热容研究[J].工程热物理学报,2010,31(1):24-27
    [144]陈甘棠.多相流反应工程[M].北京:化学工业出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700