用户名: 密码: 验证码:
烟草花叶病毒的修饰和调控及其与安托芬类似物的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草花叶病毒(Tobacco mosaic virus, TMV)作为一种模式病毒,人们对它的研究已经有一百五十年的历史了,它是一种对农业生产有极大危害的植物病毒病原体,同时也是植物病毒中研究的最为详细的一种,在形态、粒体结构、化学组成、组装、外壳、亚基组成、基因组结构、核酸复制、蛋白翻译、病毒在细胞间的运动等方面常作为病毒学研究的经典范例,几乎所有关于病毒的研究都是从烟草花叶病毒起步的。由于烟草花叶病毒独特的组装性质及其处于纳米尺度的天然优势,近年来它已经成为了一种良好的植物病毒载体,并且在纳米科学领域也有日益广泛的应用,可以说,对烟草花叶病毒的研究不仅具有重大的理论价值和现实意义,同时具有十分广阔的应用前景。
     本文从两大方面关注烟草花叶病毒:第一方面是抗烟草花叶病毒的研究,主要集中于安托芬(Antofine)与烟草花叶病毒之间的相互作用。以Antofine为生物活性探针,研究它发挥生物功能的靶标和作用模式,在前人工作的基础上,进一步揭示Antofine抑制烟草花叶病毒的机制,探索抗病毒药物开发的新途径和新思路;另一方面,以烟草花叶病毒为靶标,对其进行颗粒修饰和粒度调控,在加深对烟草花叶病毒自身性质认识的同时,实现人为调控病毒的表面特征和颗粒大小,为进一步利用它作为基因药物载体和制备可调控生物纳米材料奠定基础。
     本文的工作分为以下四个部分:
     一、烟草花叶病毒与Antofine及其类似物的相互作用研究。Antofine是一种具有显著抗烟草花叶病毒活性的天然产物,这种天然产物具有潜在的细胞毒性和抗癌活性,因此,一直以来都受到科学家们的关注。Antofine是个具有近似平面结构的分子,本课题组过去的研究发现Antofine与带有凸起结构的DNA具有特异性相互作用。本文利用荧光光谱、紫外可见光谱等方法,进一步确定了Antofine与带有凸起结构DNA之间的作用模式,并设计合成了一系列具有更细微结构和序列特征的DNA,测定了它们与Antofine相互作用的解离常数,获得了更完整的结论。
     Antofine具有良好的抗烟草花叶病毒性质,但是关于它作用靶标的研究却十分有限。本课题组张偌瑜博士已经证实Antofine与TMV RNA之间存在强的相互作用(表观解离常数在nM级别)。本文在此工作基础上测定了Antofine与TMV壳蛋白之间的解离常数,通过荧光滴定的方法测定了一系列Antofine的类似物与TMV RNA之间的相互作用常数以及通过核酸酶抗性实验测定了它们抑制烟草花叶病毒组装的百分比。我们发现,Antofine与TMV壳蛋白的解离常数较之与TMV RNA的解离常数高了四个数量级,说明在抑制TMV组装的过程中,Antofine与TMV RNA之间的结合具有绝对的竞争力。Antofine类似物和核酸之间的结合能力与它们抑制病毒组装的能力呈现正相关关系,从而进一步确认TMV RNA是Antofine抑制病毒的靶标,Antofine及其类似物通过与TMV RNA相互作用抑制病毒组装,实现抗病毒活性。
     二、体外筛选TMV起始组装序列文库的结果分析。烟草花叶病毒起始组装位点在病毒组装过程中具有重要的作用,Antofine对TMV组装的抑制很大程度上都来源于对起始组装位点的识别。为了更深入的了解起始组装位点的组装特性,本课题组利用SELEX技术,对含有~109种不同序列的起始组装位点文库进行了筛选。本文将筛选得到的全部序列进行了测序,并对测序结果进行了分析和归纳,总结了其中的规律。我们发现:顶端loop结构“NNG”的特征并不明显,但N具有嘌呤碱基偏好且对于C碱基的排斥很明显;apex最顶端的G碱基对于组装有重要的作用;靠近茎环顶部stem区域碱基对的熔链能力对于组装至关重要;G-U wobble碱基配对对于OriRNA和壳蛋白的识别可能具有重要作用。从序列出现的丰度来看,野生型序列出现的次数最多,说明人工进化和自然选择得到了相同的结果。
     三、烟草花叶病毒的颗粒修饰与粒度调控。近年的研究趋势表明,越来越多的关注集中于烟草花叶病毒本身极其规律的螺旋堆积方式。很多科学家利用烟草花叶病毒作为氧化物、金属附着的模板,通过修饰病毒内外表面壳蛋白上特殊的氨基酸,使病毒带有诸如导电性,聚合性等特征。因此,烟草花叶病毒在纳米科学领域有着广泛的应用前景,另外,由于病毒可以利用宿主细胞表达外源蛋白,使它成为了良好的植物病毒载体。TMV在其他科学领域的应用日益广泛,要想更好的拓展TMV的应用,最基本的还是要增强对其本身特性的了解。无论在纳米科技领域还是生物医药领域,对TMV的应用都离不开对其表面性质以及组装与解组装过程的认识。本文采用光化学交联法对病毒颗粒表面的酪氨酸进行了交联,测定了交联对于病毒颗粒稳定性、完整性和侵染性的影响。利用锍盐烷基化结合"Click"反应的方法对烟草花叶病毒进行了荧光标记,开辟了一种新的生物连接途径,对实时监测烟草花叶病毒在细胞内的定位提供了有效的手段。
     烟草花叶病毒具有简单而规律的组装特性,它的组装只需要起始组装位点与壳蛋白的识别,对延伸的RNA链并没有序列和长度的限制,这一特性使它成为了植物病毒载体,同时,也使其具备了构建生物纳米材料的可能。但是,天然病毒的尺度固定在300nm,极大的限制了它的可利用范围,我们希望能够人为的控制它的长度。本文采取两种方法进行病毒颗粒的调控:(1)尝试利用起始组装位点来引导DNA的组装。DNA分子在自然界分布广泛,相比于RNA分子,DNA分子更稳定,也更容易得到任意长度的核酸链。我们利用T4 RNA连接酶将RNA片段和DNA片段连接在一起,构建了153个核苷酸的杂合链,并检测了它们被TMV壳蛋白包裹的能力。(2)通过控制体外重组的RNA的长度来实现精确控制病毒颗粒的粒度。我们通过PCR得到不同长度的DNA分子,利用体外转录的方法得到其对应的RNA片段,这些片段都含有起始组装位点序列,进一步与壳蛋白进行体外组装,形成具有均一长度的纳米颗粒,实现对颗粒粒度的精确调控。
     四、烟草花叶病毒壳蛋白的体外表达。TMV的表面修饰手段多种多样,但是无论通过酶法还是化学法都很难实现定点修饰。我们考虑在大肠杆菌中对烟草花叶病毒的壳蛋白进行体外表达。利用表达出来的壳蛋白进行组装,能够实现多方面,多位点的修饰,这对于TMV组装机制的研究有极大的促进作用。我们成功的在大肠杆菌中表达了TMV壳蛋白,并检测了它组装核酸的能力。
     研究Antofine与烟草花叶病毒的作用模式,对病毒进行表面修饰和粒度的精确控制以及实现壳蛋白的体外表达,开拓了开发抗病毒药物的思路,加深了对其特性的认识,丰富了调控它的手段。总而言之,病毒防治是医药和农药研发领域中极其重要的课题,对Antofine抑制TMV组装靶点的寻找、对烟草花叶病毒组装机制的了解以及对于TMV表面修饰和粒度调控的深入研究和广泛利用能够促进多个科学和技术领域的发展。
Research on tobacco mosaic virus (TMV) has played a leading role in the development of virology for more than a century. TMV is one of the most harmful plant virus found worldwide, meanwhile, also the most deeply studied on the configuration, structure, chemical composition, assembly, subunit, DNA replication, protein translation, and cell to cell movement, et al. TMV exhibits most of its popularity as a model virus to the investigation on regular assembly mode and nano-dimension character. Studies on TMV have been last for a long period, and its prominent position in both fundamental and applied research will still continue to occupy. Our study interests focused on two major aspects:one, prevention and inhibition of TMV, which is a hot subject with practical significance in the field of research and development of new pesticides. Based on our previous work, we wondered the exact interaction model between TMV and Antofine; another, regulation of TMV. We hope to increase the understanding of the character and application of TMV, by means of its modification and length control.
     This article is mainly focus on the following four parts:
     First:Antofine is reported to have shown remarkable inhibition on TMV, and its analogs have pronounced activities including cytotoxicity, antitumor activity et al, which attracts many attentions. Our group has reported that high order of molecular recognition to bulged hairpin DNA afforded by Antofine, also got some deduction on Antofine's basic mode of its interaction with DNA by means of fluorescence and UV-Vis spectroscopy. On the basis of these work, herein, we designed and synthesized a series of bulged DNA containing much more subtle differences in comparison with HT3AGT which has the best affinity with Antofine in previous study. We ascertained the exact interaction mode between Antofine and bulged hairpin DNA.
     Antofine is a well-known inhibitor for TMV, but its target is still unknown. Dr. Ruoyu Zhang has found the strong affinity between Antofine and TMV RNA. Herein, we determined the Kd value of Antofine and TMV CP by equilibrium dialysis. Combined with the determination of affinity with TMV RNA and assembly inhibition ability of Antofine analogs, we found that the activities of antofine and its analogs to inhibit TMV assembly may correlate with their binding affinity to TMV RNA. So we deduced antofine analogs inhibit TMV assembly mostly by virtue of interacting with TMV RNA.
     Second:OriRNA plays a dominate role in TMV lifecycle and total assembly inhibition, thus, our group using SELEX, constructed a library of-109 different RNA sequences with 16 random sites. We sequenced all the members in the final library after 7 cycles'selection, and conclusions could be drawn from the analysis of the mutations:results from the statistical point of view, it is not obvious of the feature that the apex contains the specific trinucleotide 'NNG', but N prefer A and G, while C is dislike; G in the second 'NNG' of the apex maybe important to the assembly ability; the melting ability of the base pair closed to the apex is crucial to the assembly; G-U wobble pair may play a certain role in the recognition between OriRNA and TMV CP. From the view of the abundance of sequence, we found that wild-type OriRNA has the maximum frequency of its appearance, which indicated that both artificial evolution and natural selection got the same result.
     Third:TMV has a hollow cylindrical structure with a high aspect ratio and formed through the periodical self-assembly of the TMV CP and TMV RNA. Because of its well-characterized nanosacle structure, TMV has been utilized as a template for functionalization with inorganic and organic molecules both in the inner cavity and on the exterior surface. TMV has also been used in the biotechnological sphere:as the source of transgenic sequences conferring virus resistance, in vaccines consisting of TMV particles genetically and in systems for expressing foreign genes. In order to better understanding these applications of TMV, we need to get much more information on its assembly mechanism while the character of TMV surface. We described the application of photochemical crosslinking of coat protein of TMV particle and its effect on infectivity and stability of TMV. Compared to native TMV, the crosslinked TMV showed lower thermostability and resistance to dilute alkaline, though it remains physical integrity; crosslinked TMV nearly lost its infectivity on tobacco leaves. On the other hand, Alkylsulfonium salts (ASS) have been reported as powerful alkylation agents. We use a tandem method of sulfonium alkylation and "click" chemistry (CuAAC) for TMV modification. This facile modification should be useful in bionanoscience.
     Although TMV has such promising features for its application to nanoscale materials, the length of wild-type TMV rod which is limited to 300nm restricts its further application. We may replace the rod structure by other different lengths of RNA or DNA using suitable methods to realize length control and functional reconstruction. We adopted two methods as follow:first, we wondered whether the OriRNA can lead the assembly of DNA. If it works, we can be free to control the rod length, so we constructed a 153nt RNA-DNA hybrid in which the RNA part comprised the OriRNA of TMV, then determined the assembly ability of this hybrid; second, using PCR and transcription in vitro to construct different lengths of TMV RNA strands, during assembly procedure with TMV CP, we may get different lengths of virus rod evenly, to realize precise controlling of nano-scale particles of TMV.
     Finally:people try many methods to achieve the modification of TMV, but neither by enzyme nor by chemistry can realize site-directed modification. So we considered to express TMV coat protein in E.coli, then assemble reconstituted or modified CP with TMV RNA into particles. Herein we successfully expressed the TMV CP in E. coli and checked its assembly ability at the same time.
     Research on the interaction mode of Antofine and tobacco mosaic virus has opened up our thinking about the development of new antiviral strategies. Modification of TMV surface has deepened our understanding of its properties. Precise control of nano-scale particles of TMV has laid the foundation for TMV as a drug carrier. In vitro expression of TMV CP has enriched our means to control it. Virus infection is a severe public health problem related to serious personal, social, and economical consequences, herein, we ascertained the target of Antofine, developed some methods to modify TMV surface, which can be beneficial to the anti-viral research and application of TMV.
引文
[1]秦世荣.宁南霉素用于烟草花叶病毒TMV侵染机理的研究:[硕士学位论文].四川:四川大学,2004.
    [2]许良忠,郭玉晶,张书圣.植物病毒病化学防治研究进展.青岛化工学院学报,2000,21:293-297.
    [3]Harrison B D, Wilson T M A. Milestones in the research on tobacco mosaic virus. Phil Trans R Soc Lond B,1999. p.521-529.
    [4]Bernal J D. An attempt at a molecular theory of liquid structure. Trans Faraday Soc,1937, 33:0027-0039.
    [5]Stanley W M. Chemical studies on the virus of tobacco mosaic VI. The isolation from diseased turkish tobacco plants of a crystalline potein possessing the properties of tobacco-mosaic virus. Phytopathology,1936,26:305-320.
    [6]Bawden F C, Pirie N W. The isolation and some properties of liquid crystalline substances from solanaceous plants infected with three strains of tobacco mosaic virus. Proc Roy Soc Lond B Biol Sci,1937,123:274-320.
    [7]Bawden F C, Pirie N W, Bernal J D, et al. Liquid crystalline substances from virusinfected plants. Nature,1936,138:1051-1052.
    [8]Gregory J, Holmes K C. Methods of preparing orientated tobacco mosaic virus sols for x-ray diffraction. J Mol Biol,1965,13:796-796.
    [9]Barrett A N, Sengbusc.P V, Leberman R, et al. Electron-density map of tobacco mosaic virus at 10A resolution. Cold Spring Harbor Symposia on Quantitative Biology,1971,36: 433-433.
    [10]Kausche G A, Pfankuch E, Ruska H. The visualisation of herbal viruses in surface microscopes. Naturwissenschaften,1939,27:292-299.
    [11]Watson J D. The structure of tobacco mosaic virus.1. X-ray evidence of a helical arrangement of sub-units around the longitudinal axis. Biochim Biophys Acta,1954,13: 10-19.
    [12]Franklin R E. Location of the ribonucleic acid in the tobacco mosaic virus particle. Nature,1956,177:929-930.
    [13]Franklin R E, Holmes K C. Tobacco mosaic virus-application of the method of isomorphous replacement to the determination of the helical parameters and radial density distribution. Acta Crystallographica,1958,11:213-213.
    [14]Green D W, Ingram V M, Perutz M F. The structure of haemoglobin.4. Sign determination by the isomorphous replacement method. Proc Roy Soc Lond A Math. Phy. Sci,1954,225:287-307.
    [15]Caspar D L D. Structure of tobacco mosaic virus-radial density distribution in the tobacco mosaic virus particle. Nature,1956,177:928-928.
    [16]Namba K, Pattanayek R, Stubbs G. Visualization of protein-nucleic acid interactions in a virus-refined structure of intact tobacco mosaic-virus at 2.9-A resolution by X-ray fiber diffraction. J Mol Biol,1989,208:307-325.
    [17]Sachse C, Chen J Z, Coureux P D, et al. High-resolution electron microscopy of helical specimens:A fresh look at tobacco mosaic virus. J Mol Biol,2007,371:812-835.
    [18]Goelet P, Karn J. Tobacco mosaic-virus induces the synthesis of a family of 3'coterminal messenger-RNAs and their complements. J Mol Biol,1982,154:541-550.
    [19]Zimmern D.5'end group of tobacco mosaic-virus RNA is m7G5' ppp5'Gp. Nucleic Acids Res,1975,2:1189-1201.
    [20]Dawson W O, Beck D L, Knorr D A, et al. CDNA cloning of the complete genome of tobacco mosaic-virus and production of infectious transcripts. Proc Natl Acad Sci U S A, 1986,83:1832-1836.
    [21]Meshi T, Ishikawa M, Takamatsu N, et al. The 5'-terminal sequence of TMV RNA-question on the polymorphism found in Vulgare strain. FEBS L,1983,162:282-285.
    [22]Holt C A, Hodgson R A J, Coker F A, et al. Characterization of the masked strain of tobacco mosaic-virus-identification of the region responsible for symptom attenuation by analysis of an infectious cDNA clone. Mol Plant Microbe Interact,1990,3:417-423.
    [23]Nishiguchi M, Kikuchi S, Kiho Y, et al. Molecular-basis of plant viral virulence-the complete nucleotide-sequence of an attenuated strain of tobacco mosaic-virus. Nucleic Acids Res,1985,13:5585-5590.
    [24]Meshi T, Motoyoshi F, Adachi A, et al. 2 concomitant base substitutions in the putative replicase genes of tobacco mosaic-virus confer the ability to overcome the effects of a tomato resistance gene, tm-1. EMBO J,1988,7:1575-1581.
    [25]Meshi T, Motoyoshi F, Maeda T, et al. Mutations in the tobacco mosaic-virus 30-KD protein gene overcome tm-2 resistance in tomato. Plant Cell,1989,1:515-522.
    [26]Ugaki M, Tomiyama M, Kakutani T, et al. The complete nucleotide-sequence of cucumber green mottle mosaic-virus (SH-strain) genomic RNA. J Gen Virol,1991,72: 1487-1495.
    [27]Solis I, Garciaarenal F. The complete nucleotide-sequence of the genomic RNA of the tobamovirus tobacco mild green mosaic-virus. Virology,1990,177:553-558.
    [28]Alonso E, Garcialuque I, Delacruz A, et al. Nucleotide-sequence of the genomic RNA of pepper mild mottle virus, a resistance-breaking tobamovirus in pepper. J Gen Virol,1991, 72:2875-2884.
    [29]Kirita M, Akutsu K, watanabe Y, et al. Nucleotide sequence of the Japanese isolate of pepper mild tobamovirus RNA. Ann Phytopathol Soc Japan,1997,63:373-376.
    [30]Lartey R T, Lane L C, Melcher U. Electron-microscopic and molecular characterization of turnip vein-clearing virus. Arch Virol,1994,138:287-298.
    [31]Ikeda R, Watanabe E, Watanabe Y, et al. Nucleotide-sequence of tobamovirus ob which can spread systemically in N-gene tobacco. J Gen Virol,1993,74:1939-1944.
    [32]Padgett H S, Beachy R N. Analysis of a tobacco mosaic-virus strain capable of overcoming n gene-mediated resistance. Plant Cell,1993,5:577-586.
    [33]Chen J, Watanabe Y, Sako N, et al. Complete nucleotide sequence and synthesis of infectious in vitro transcripts from a full-length cDNA clone of a Rakkyo strain of tobacco mosaic virus. Arch Virol,1996,141:885-900.
    [34]Dorokhov Y L, Ivanov P A, Novikov V K, et al. Complete nucleotide-sequence and genome organization of a tobamovirus infecting cruciferae plants. FEBS L,1994,350: 5-8.
    [35]Aguilar I, Sanchez F, Martin A M, et al. Nucleotide sequence of chinese rape mosaic virus (oilseed rape mosaic virus), a crucifer tobamovirus infectious on arabidopsis thaliana. Plant Mol Biol,1996,30:191-197.
    [36]Belenovich E V, Novikov V K, Zavriev S K. Biological properties and genome structure of the kazakh isolate k1 of tobacco mosaic virus. Mol Biol,2000,34:152-155.
    [37]Yamanaka T, Komatani H, Meshi T, et al. Complete nucleotide sequence of the genomic rna of tobacco mosaic virus strain cg. Virus Genes,1998,16:173-176.
    [38]Yoon J Y, Min B E, Choi S H, et al. Completion of nucleotide sequence and generation of highly infectious transcripts to cucurbits from full-length cdna clone of kyuri green mottle mosaic virus. Arch Virol,2001,146:2085-2096.
    [39]Zhu H, Hong J, Ye R, et al. Sequence analysis shows that ribgrass mosaic virus shanghai isolate (RNA-SH) is closely related to youcai mosaic virus. Arch Virol,2001,146: 1231-1238.
    [40]Jung H W, Yun W S, Hahm Y I, et al. Characterization of tobacco mosaic virus isolated from potato showing yellow leaf mosaic and stunting symptoms in korea. Plant Dis,2002, 86:112-117.
    [41]Hagiwara K, Ichiki T U, Ogawa Y, et al. A single amino acid substitution in 126-kDa protein of pepper mild mottle virus associates with symptom attenuation in pepper; the complete nucleotide sequence of an attenuated strain, c-1421. Arch Virol,2002,147: 833-840.
    [42]Klug A. Assembly of tobacco mosaic virus. Fed Proc,1971,30:1034-1034.
    [43]Ohno T, Nozu Y, Okada Y. Polar reconstitution of tobacco mosaic virus (TMV). Virology, 1971,44:510-516.
    [44]Guilley H, Stussi C, Hirth M L. Influence of phosphodiesterase of pig spleen on reconstitution in-vitro of tobacco mosaic virus. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie D,1971,272:1181-1184.
    [45]Keith J, Fraenkelconrat H. Tobacco mosaic-virus rna carries 5'-terminal triphosphorylated guanosine blocked by 5'-linked 7-methylguanosine. FEBS L,1975,57: 31-33.
    [46]Guilley H, Jonard G, Hirth L. TMV RNA nucleotide-sequence specifically recognized by TMV protein. Biochimie,1974,56:181-185.
    [47]Guilley H, Jonard G, Richards K E, et al. Sequence of a specifically encapsidated RNA fragment originating from tobacco-mosaic-virus coat-protein cistron. Eur J Biochem, 1975,54:135-144.
    [48]Zimmern D, Butler P J G. Isolation of tobacco mosaic-virus rna fragments containing origin for viral assembly. Cell,1977,11:455-462.
    [49]Lebeurier G, Nicolaieff A, Richards K E. Inside-out model for self-assembly of tobacco mosaic-virus. Proc Natl Acad Sci U S A,1977,74:149-153.
    [50]Otsuki Y, Takebe I, Ohno T, et al. Reconstitution of tobacco mosaic-virus rods occurs bidirectionally from an internal initiation region-demonstration by electron-microscopic serology. Proc Natl Acad Sci U S A,1977,74:1913-1917.
    [51]Zimmern D, Wilson T M A. Location of origin for viral reassembly on tobacco mosaic-virus RNA and its relation to stable fragment. FEBS L,1976,71:294-298.
    [52]Guilley H, Jonard G, Kukla B, et al. Sequence of 1000 nucleotides at the 3'end of tobacco mosaic-virus RNA. Nucleic Acids Res,1979,6:1287-1308.
    [53]Ohno T, Sumita M, Okada Y. Location of initiation site on tobacco mosaic-virus RNA involved in assembly of virus invitro. Virology,1977,78:407-414.
    [54]Guilley H, Jonard G, Hirth L. Sequence of 71 nucleotides at 3'-end of tobacco mosaic-virus RNA. Proc Natl Acad Sci U S A,1975,72:864-868.
    [55]Ahlquist P, Janda M. CDNA cloning and invitro transcription of the complete brome mosaic-virus genome. Mol Cell Biol,1984,4:2876-2882.
    [56]Meshi T, Ishikawa M, Motoyoshi F, et al. Invitro transcription of infectious RNAs from full-length cdnas of tobacco mosaic-virus. Proc Natl Acad Sci U S A,1986,83: 5043-5047.
    [57]Zerfass K, Beier H. The leaky uga termination codon of tobacco rattle virus-RNA is suppressed by tobacco chloroplast and cytoplasmic transfer rnas(Trp) with cmca anticodon. EMBO J,1992,11:4167-4173.
    [58]Meshi T, Watanabe Y, Saito T, et al. Function of the 30-KD protein of tobacco mosaic-virus-involvement in cell-to-cell movement and dispensability for replication. EMBO J,1987,6:2557-2563.
    [59]Watanabe Y, Morita N, Nishiguchi M, et al. Attenuated strains of tobacco mosaic-virus-reduced synthesis of a cell-to-cell movement function. J Mol Biol,1987,194:699-704.
    [60]Hirashima K, Watanabe Y. Tobamovirus replicase coding region is involved in cell-to-cell movement. J Virol,2001,75:8831-8836.
    [61]Goregaoker S P, Eckhardt L G, Culver J N. Tobacco mosaic virus replicase-mediated cross-protection:Contributions of RNA and protein-derived mechanisms. Virology,2000, 273:267-275.
    [62]Nishiguchi M, Motoyoshi F, Oshima N. Behavior of a temperature sensitive strain of tobacco mosaic-virus in tomato leaves and protoplasts. J Gen Virol,1978,39:53-61.
    [63]Takanami Y, Fraenkelconrat H. Comparative studies on ribonucleic-acid dependent RNA-polymerases in cucumber mosaic-virus infected cucumber and tobacco and uninfected tobacco plants. Biochemistry,1982,21:3161-3167.
    [64]Leonard D A, Zaitlin M. A temperature-sensitive strain of tobacco mosaic-virus defective in cell-to-cell movement generates an altered viral-coded protein. Virology,1982,117: 416-424.
    [65]Beier H, Mundry K W, Issinger O G. Invivo and invitro translation of the rnas of 4 tobamoviruses. Intervirology,1980,14:292-299.
    [66]Joshi S, Pleij C W A, Haenni A L, et al. Properties of the tobacco mosaic-virus intermediate length RNA-2 and its translation. Virology,1983,127:100-111.
    [67]Ohno T, Takamatsu N, Meshi T, et al. Single amino-acid substitution in 30K protein of tmv defective in virus transport function. Virology,1983,131:255-258.
    [68]Deom C M, Oliver M J, Beachy R N. The 30-kilodalton gene-product of tobacco mosaic-virus potentiates virus movement. Science,1987,237:389-394.
    [69]Takamatsu N, Ishikawa M, Meshi T, et al. Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J,1987,6: 307-311.
    [70]Bendahmane M, Szecsi J, Chen I, et al. Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement. Proc Natl Acad Sci U S A, 2002,99:3645-3650.
    [71]Fedorkin O N, Solovyev A G, Yelina N E, et al. Cell-to-cell movement of potato virus X involves distinct functions of the coat protein. J Gen Virol,2001,82:449-458.
    [72]Ryabov E V, Robinson D J, Taliansky M E. A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proc Natl Acad Sci U S A,1999,96: 1212-1217.
    [73]Saito T, Yamanaka K, Okada Y. Long-distance movement and viral assembly of tobacco mosaic-virus mutants. Virology,1990,176:329-336.
    [74]Durham A C H, Finch J T, Klug A. States of aggregation of tobacco mosaic virus protein. Nature-New Biology,1971,229:37-42.
    [75]Schramm G, Zillig W. Uber die struktur des tabakmosaikvirus.4. Die reaggregation des nucleinsaure-freien proteins. Zeitschrift Fur Naturforschung Part B-Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete,1955,10:493-499.
    [76]Durham A C H, Finch J T. Structures and roles of polymorphic forms of tobacco mosaic virus protein.2. Electron-microscope observations of larger polymers. J Mol Biol,1972, 67:307-308.
    [77]Durham A C H. Structures and roles of polymorphic forms of tobacco mosaic virus protein.1. Sedimentation studies. J Mol Biol,1972,67:289-289.
    [78]Durham A C H, Klug A. Polymerization of tobacco mosaic virus protein and its control. Nat New Biol,1971,229:42-46.
    [79]Sulzinski M A, Gabard K A, Palukaitis P, et al. Replication of tobacco mosaic-virus.8. Characterization of a 3rd subgenomic tmv RNA. Virology,1985,145:132-140.
    [80]Saito T, Watanabe Y, Meshi T, et al. Preparation of antibodies that react with the large nonstructural proteins of tobacco mosaic-virus by using escherichia-coli expressed fragments. Mol Gen Gen,1986,205:82-89.
    [81]Osman T A M, Buck K W. The tobacco mosaic virus rna polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eif-3. J Virol,1997,71: 6075-6082.
    [82]Golemboski D B, Lomonossoff G P, Zaitlin M. Plants transformed with a tobacco mosaic-virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci U SA,1990,87:6311-6315.
    [83]Morozov S Y, Denisenko O N, Zelenina D A, et al. A novel open reading frame in tobacco mosaic-virus genome coding for a putative small, positively charged protein. Biochimie,1993,75:659-665.
    [84]Fedorkin O N, Denisenko O N, Sitkov A S, et al. The tomato mosaic-virus small gene-product forms stable complex with translation elongation-factor ef-1-alpha. Doklady Akademii Nauk,1995,343:703-704.
    [85]Butler P J G. Assembly of tobacco mosaic-virus. Proc Trans Roy Soc Lond B Biol Sci, 1976,276:151-163.
    [86]Butler P J G, Finch J T, Zimmern D. Configuration of tobacco mosaic-virus RNA during virus assembly. Nature,1977,265:217-219.
    [87]Perham R N, Wilson T M A. Polarity of stripping of coat protein subunits from RNA in tobacco mosaic-virus under alkaline conditions. FEBS L,1976,62:11-15.
    [88]Drygin Y F, Bordunova O A, Gallyamov M O, et al. Atomic force microscopy examination of tobacco mosaic virus and virion RNA. FEBS L,1998,425:217-221.
    [89]Champness J N, Bloomer A C, Bricogne G, et al. Structure of protein disk of tobacco mosaic-virus to 5A resolution. Nature,1976,259:20-24.
    [90]Bloomer A C, Champness J N, Bricogne G, et al. Protein disk of tobacco mosaic-virus at 2.8-A resolution showing interactions within and between subunits. Nature,1978,276: 362-368.
    [91]Butler P J G. The current picture of the structure and assembly of tobacco mosaic-virus. J Gen Virol,1984,65:253-279.
    [92]Zimmern D. Region of tobacco mosaic-virus rna involved in nucleation of assembly. Phil Trans Roy Soc Lon B Biol Sci,1976,276:189-204.
    [93]Fukuda M, Okada Y. Bidirectional assembly of tobacco mosaic-virus invitro. Proc Natl Acad Sci U S A,1987,84:4035-4038.
    [94]Butler P J G, Klug A. Assembly of particle of tobacco mosaic virus from rna and disks of protein. Nat New Biol,1971,229:47-50.
    [95]Butler P J G. Structures and roles of polymorphic forms of tobacco mosaic virus protein.6. Assembly of nucleoprotein rods of tobacco mosaic virus from protein disks and RNA. J Mol Biol,1972,72:25-35.
    [96]Ohno T, Inoue H, Okada Y. Assembly of rod-shaped virus in-vitro-reconstitution with cucumber green mottle mosaic-virus protein and tobacco mosaic-virus RNA. Proc Natl Acad Sci U S A,1972,69:3680-3683.
    [97]Okada Y, Ohno T, Inoue H, et al. Participation of tyrosine residue at position 139 of tobacco mosaic virus protein in reconstitution reaction. Virology,1972,47:838-838.
    [98]Richards K E, Williams R C. Assembly of tobacco mosaic virus in-vitro-effect of state of polymerization of protein component. Proc Natl Acad Sci U S A,1972,69: 1121-1124.
    [99]Richards K E, Williams R C. Assembly of tobacco mosaic-virus rods in-vitro elongation of partially assembled rods. Biochemistry,1973,12:4574-4581.
    [100]Butler P J G. Structures and roles of polymorphic forms of tobacco mosaic-virus protein.9. Initial-stages of assembly of nucleoprotein rods from virus-RNA and protein disks. J Mol Biol,1974,82:343-353.
    [101]Schuster T M, Scheele R B, Adams M L, et al. Studies on the mechanism of assembly of tobacco mosaic-virus. Biophy J,1980,32:313-329.
    [102]Shire S J, Steckert J J, Schuster T M. Mechanism of tobacco mosaic-virus assembly incorporation of 4s and 20s protein at pH 7.0 and 20-degrees-c. Proc Natl Acad Sci U S A-Biological Sciences,1981,78:256-260.
    [103]Lomonossoff G P, Butler P J G. Location and encapsidation of the coat protein cistron of tobacco mosaic-virus-bidirectional elongation of the nucleoprotein rod. Eur J Biochem, 1979,93:157-164.
    [104]Turner D R, McGuigan C J, Butler P J G. Assembly of hybrid RNAs with tobacco mosaic-virus coat protein-evidence for incorporation of disks in 5'-elongation along the major RNA tail. J Mol Biol,1989,209:407-422.
    [105]Schon A, Mundry K W. Coordinated 2-disk nucleation, growth and properties, of virus-like particles assembled from tobacco-mosaic-virus capsid protein with poly(A) or oligo(A) of different length. Eur J Biochem,1984,140:119-127.
    [106]Fukuda M, Okada Y. Elongation in the major direction of tobacco mosaic-virus assembly. Proc Natl Acad Sci U S A,1985,82:3631-3634.
    [107]Lomonossoff G P, Butler P J G. Assembly of tobacco mosaic-virus-elongation towards the 3'-hydroxyl terminus of the RNA. FEBS L,1980,113:271-274.
    [108]Butler P J G. Self-assembly of tobacco mosaic virus:The role of an intermediate aggregate in generating both specificity and speed. Phil Trans Roy Soc Lond B Biol Sci, 1999,354:537-550.
    [109]Wang Q G, Xie L, Zhai J J. Tylophorine B benzene solvate. Acta Crystallogr C Cryst Comm,2000,56:197-198.
    [110]Tripathi A K, Singh D, Jain D C. Persistency of tylophorine as an insect antifeedant against spilosoma-obliqua walker. Phytother Res,1990,4:144-147.
    [111]Ferenczy L, Zsolt J, Haznagy A, et al. Antifungal compounds of cynanchum vincetoxicum (L) pers.1. Quantitative antifungal spectrum of substance C-1. Acta Microbiol Hung,1965,12:337-344.
    [112]Staerk D, Lykkeberg A K, Christensen J, et al. In vitro cytotoxic activity of phenanthroindolizidine alkaloids from Cynanchum Vincetoxicum and tylophora tanakae against drug-sensitive and multidrug-resistant cancer cells. J Nat Prod,2002, 65:1299-1302.
    [113]Fu Y, Lee S K, Min H Y, et al. Synthesis and structure-activity studies of antofine analogues as potential anticancer agents. Bioorg Med Chem Lett,2007,17:97-100.
    [114]Gao W L, Lam W, Zhong S B, et al. Novel mode of action of tylophorine analogs as antitumor compounds. Cancer Res,2004,64:678-688.
    [115]Li Z G, Jin Z, Huang R Q. Isolation, total synthesis and biological activity of phenanthroindolizidine and phenanthroquinolizidine alkaloids. J Syn Org Chem,2001: 2365-2378.
    [116]金钟.天然抗植物病毒药物-菲并吲哚里西啶生物碱的全合成与生物活性研究:[博士学位论文].大津:南开大学,2003.
    [117]Michael J P. Indolizidine and quinolizidine alkaloids. Natural Product Reports,2001,18: 520-542.
    [118]Michael J P. Indolizidine and quinolizidine alkaloids. Nat Prod Rep,2002,19:719-741.
    [119]Michael J P. Indolizidine and quinolizidine alkaloids. Nat Prod Rep,2003,20:458-475.
    [120]Michael J P. Indolizidine and quinolizidine alkaloids. Nat Prod Rep,2004,21:625-649.
    [121]Michael J P. Indolizidine and quinolizidine alkaloids. Nat Prod Rep,2005,22:603-626.
    [122]Lee S K, Nam K A, Heo Y H. Cytotoxic activity and g2/m cell cycle arrest mediated by antofine, a phenanthroindolizidine alkaloid isolated from cynanchum paniculatum. Planta Med,2003,69:21-25.
    [123]Huang Z Q, Liu Y X, Fan Z J, et al. Antiviral activity of alkaloids from Cynanchum Komarovii. Fine Chemical Intermediates,2007,37:20-24.
    [124]姚宇澄,杨火召,高俊.牛心朴子草抗植物病毒组分的生物活性研究.内蒙古工业大学学报,2002,21:1-4.
    [125]Wang Q M, Yao Y C, Huang R Q, et al. Antfiviral activity of antofine from Cynanchum Komarovii. Agrochemicals,2007,46:425-427.
    [126]Lebrun S, Couture A, Deniau E, et al. Total syntheses of (+/-)-cryptopleurine, (+/-)-antofine and (+/-)-deoxypergularinine. Tetrahedron,1999,55:2659-2670.
    [127]Kim S, Lee J, Lee T, et al. First asymmetric total synthesis of (-)-antofine by using an enantioselective catalytic phase transfer alkylation. Org Lett,2003,5:2703-2706.
    [128]Camacho-Davila A, Herndon J W. Total synthesis of antofine using the net 5+5-cycloaddition of gamma, delta-unsaturated carbene complexes and 2-alkynylphenyl ketones as a key step. J Org Chem,2006,71:6682-6685.
    [129]Furstner A, Kennedy J W J. Total syntheses of the tylophora alkaloids cryptopleurine, (-)-antofine, (-)-tylophorine, and (-)-ficuseptine c. Chem-A Eur J,2006,12:7398-7410.
    [130]Kim S, Lee T, Lee E, et al. Asymmetric total syntheses of (-)-antofine and (-)-cryptopleurine using (r)-(e)-4-(tributylstannyl)but-3-en-2-ol. J Org Chem,2004,69: 3144-3149.
    [131]Kim S, Lee Y M, Lee J, et al. Expedient syntheses of antofine and cryptopleurine via intramolecular 1,3-dipolar cycloaddition. J Org Chem,2007,72:4886-4891.
    [132]Su C R, Damu A G, Chiang P C, et al. Total synthesis of phenanthroindolizidine alkaloids (+/-)-antofine, (+/-)-deoxypergularinine, and their dehydro congeners and evaluation of their cytotoxic activity. Bioorg Med Chem,2008,16:6233-6241.
    [133]Wang K, Su B, Wang Z, et al. Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives. J Agric Food Chem,2010,58:2703-2709.
    [134]Wang K L, Su B, Wang Z W, et al. Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives. J Agric Food Chem,2010,58: 2703-2709.
    [135]Ashby J, Boutant E, Seemanpillai M, et al. Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol,2006,80:8329-8344.
    [136]Fujiki M, Kawakami S, Kim R W, et al. Domains of tobacco mosaic virus movement protein essential for its membrane association. J Gen Virol,2006,87:2699-2707.
    [137]Sambade A, Heinlein M. Approaching the cellular mechanism that supports the intercellular spread of tobacco mosaic virus. Plant Signal Behav,2009,4:35-38.
    [138]Christensen N, Tilsner J, Bell K, et al. The 5'cap of tobacco mosaic virus (TMV) is required for virion attachment to the actin/endoplasmic reticulum network during early infection. Traffic,2009,10:536-551.
    [139]Barabanova A O, Yermak I M, Reunov A V, et al. Carrageenans-sulphated polysaccharides of red algae as inhibitors of tobacco mosaic virus. Rastitel'nye Resursy, 2006,42:80-86.
    [140]Lapshina L A, Reunov A V, Nagorskaya V P, et al. Inhibitory effect of fucoidan from brown alga fucus evanescens on the spread of infection induced by tobacco mosaic virus in tobacco leaves of two cultivars. Russian J Plant Physiol,2006,53:246-251.
    [141]Chen J, Yan X H, Dong J H, et al. Tobacco mosaic virus (TMV) inhibitors from Picrasma Quassioides Benn. J Agric Food Chem,2009,57:6590-6595.
    [142]Long N, Cai X J, Song B A, et al. Synthesis and antiviral activities of cyanoacrylate derivatives containing an alpha-aminophosphonate moiety. J Agric Food Chem,2008,56: 5242-5246.
    [143]Wang Z N, Hu D Y, Song B A, et al. Synthesis and biological activity of 1,5-bis(substituted pyrazol-4-yl)-1,4-pentadien-3-one derivatives. Chin J Org Chem, 2009,29:1412-1418.
    [144]Yang J Q, Song B A, Bhadury P S, et al. Synthesis and antiviral bioactivities of 2-cyano-3-substituted-amino(phenyl) methylphosphonylacrylates (acrylamides) contain-ing alkoxyethyl moieties. J Agric Food Chem,2010,58:2730-2735.
    [145]Li H, Hu T S, Wang K L, et al. Total synthesis and antiviral activity of enantioenriched (+)-deoxytylophorinine. Lett Org Chem,2006,3:806-810.
    [146]Abel P P, Nelson, R. S. De B, et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science,1986,232:738-743.
    [147]Nelson R S, Abel P P, Beachy R N. Lesions and virus accumulation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic-virus. Virology,1987,158:126-132.
    [148]Wu X J, Beachy R N, Wilson T M A, et al. Inhibition of uncoating of tobacco mosaic-virus particles in protoplasts from transgenic tobacco plants that express the viral coat protein gene. Virology,1990,179:893-895.
    [149]Cooper B, Dodds J A. Differences in the subcellular-localization of tobacco mosaic-virus and cucumber mosaic-virus movement proteins in infected and transgenic plants. J Gen Virol,1995,76:3217-3221.
    [150]Carr J P, Zaitlin M. Resistance in transgenic tobacco plants expressing a nonstructural gene sequence of tobacco mosaic-virus is a consequence of markedly reduced virus-replication. Mol Plant Microbe Interact,1991,4:579-585.
    [151]Zhu C X, Song Y Z, Yin G H, et al. Induction of RNA-mediated multiple virus resistance to potato virus y, tobacco mosaic virus and cucumber mosaic virus. J Phytopathol,2009, 157:101-107.
    [152]Bajrovic K, Erdag B, Atalay E O, et al. Full resistance to tobacco mosaic virus infection conferred by the transgenic expression of a recombinant antibody in tobacco. Biotechnol Biotechnol Equip,2001,15:21-27.
    [153]Schillberg S, Zimmermann S, Findlay K, et al. Plasma membrane display of anti-viral single chain fv fragments confers resistance to tobacco mosaic virus. Mol Breeding,2000, 6:317-326.
    [154]Schillberg S, Zimmermann S, Voss A, et al. Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana Tabacum. Transgenic Res,1999, 8:255-263.
    [155]Truve E, Kelve M, Aaspollu A, et al. Principles and background for the construction of transgenic plants displaying multiple virus resistance. Arch Virol Suppl,1994,9:41-50.
    [156]Choi S B, Kim K, Lim J H, et al. Novel capsicum annuum basic transcription factor 3 gene useful for improving disease resistance in plants against pathogenic microorganisms such as tobacco mosaic virus and for promoting growth and flowering of plants. Univ Korea Ind & Academic Collaboration; Univ Korea Res & Business Found,2009.
    [157]Jiang L B, Li Q L, Li M M, et al. A modified TMV-based vector facilitates the expression of longer foreign epitopes in tobacco. Vaccine,2006,24:109-115.
    [158]Fujiyama K, Saejung W, Yanagihara I, et al. In planta production of immunogenic poliovirus peptide using tobacco mosaic virus-based vector system. J Biosci Bioeng, 2006,101:398-402.
    [159]Niu Z W, Bruckman M A, Li S Q, et al. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization. Langmuir, 2007,23:6719-6724.
    [160]Yonezawa T, Onoue S Y, Kimizuka N. Adsorption-induced self-fusion of cationic gold nanoparticles on tobacco mosaic virus (TMV). Chem Lett,2005,34:1498-1499.
    [161]Yi H M, Nisar S, Lee S Y, et al. Patterned assembly of genetically modified viral nanotemplates via nucleic acid hybridization. Nano Lett,2005,5:1931-1936.
    [162]Schlick T L, Ding Z B, Kovacs E W, et al. Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc,2005,127:3718-3723.
    [163]Chow C S, Bogdan F M. A structural basis for RNA-ligand interactions. Chem Rev,1997, 97:1489-1513.
    [164]郭蒙.核酸与药物分子相互作用模式及研究进展.潍坊学院学报,2007,7:87-91.
    [165]Charies J B, Waring M J. Drug-Nucleic Acid Interaction. Methods Enzymol Vlo.349. 1-100.
    [166]Kumar C V, Tolosa L M. New charge-transfer probe for solvent polarity-fluorescent hydrogen-bonding switch. J Chem Soc Chem Comm,1993:722-724.
    [167]Carvlin M J, Mark E, Fiel R, et al. Intercalative and nonintercalative binding of large cationic porphyrin ligands to polynucleotides. Nucleic Acids Res,1983,11:6141-6154.
    [168]Moser H E, Dervan P B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science,1987,238:645-650.
    [169]Remeta D P, Mudd C P, Berger R L, et al. Thermodynamic characterization of daunomycin DNA interactions-microcalorimetric measurements of daunomycin DNA-binding enthalpies. Biochemistry,1991,30:9799-9809.
    [170]Aboulela F, Murchie A I H, Lilley D M J. NMR-study of parallel-stranded tetraplex formation by the hexadeoxynucleotide d(TG4T). Nature,1992,360:280-282.
    [171]Trotta E, Dambrosio E, Ravagnan G, et al. Evidence for dapi intercalation in CG sites of DNA oligomer d(CGACGTCG) (2)-a H-1-NMR study. Nucleic Acids Res,1995,23: 1333-1340.
    [172]Wu Y B, Chen H L, Yang P, et al. Racemic D,L-[co(phen)(2)dpq](3+)-DNA interactions: Investigation into the basis for minor-groove binding and recognition. J Inorg Biochem, 2005,99:1126-1134.
    [173]wyatt J R T.I..
    [174]Bogdan F M, Chow C S. The synthesis of allyl- and allyloxycarbonyl-protected RNA posphoramidites. Useful reagents for solid-phase synthesis of rnas with base-labile modifications. Tetrahedron Lett,1998,39:1897-1900.
    [175]Xi Z, Zhang R Y, Yu Z H, et al. Selective interaction between tylophorine B and bulged DNA. Bioorg Med Chem Lett,2005,15:2673-2677.
    [176]Streisin.G, Okada Y, Emrich J, et al. Frameshift mutations and genetic code. Cold Spring Harbor Symposia on Quantitative Biology,1966,31:77-84.
    [177]Ripley L S. Model for the participation of quasi-palindromic DNA-sequences in frameshift mutation. Proc Natl Acad Sci U S A-Biol Sci,1982,79:4128-4132.
    [178]Kleff S, Kemper B. Initiation of heteroduplex-loop repair by t4-encoded endonuclease Ⅶ invitro. EMBO J,1988,7:1527-1535.
    [179]Wells R D. Molecular basis of genetic instability of triplet repeats. J Biol Chem 1996, 271:2875-2878.
    [180]Harvey S C. Slipped structures in DNA triplet repeat sequences:Entropic contributions to genetic instabilities. Biochemistry,1997,36:3047-3049.
    [181]Fourmy D, Recht M I, Blanchard S C, et al. Structure of the a site of escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science,1996,274: 1367-1371.
    [182]Barre-Sinoussi F, Chermann J C, Rey F, et al. Isolation of a t-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Revista De Investig Clin,2004,56:126-129.
    [183]Popovic M, Sarngadharan M G, Read E, et al. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-Ⅲ) from patients with aids and pre-aids. Science,1984,224:497-500.
    [184]Kingsman S M, Kingsman A J. The regulation of human immunodeficiency virus type-1 gene expression. Eur J Biochem,1996,240:491-507.
    [185]Mestre B, Arzumanov A, Singh M, et al. Oligonucleotide inhibition of the interaction of HIV-1 tat protein with the trans-activation responsive region (TAR) of HIV RNA. Biochim Biophys Acta-Gene Struc. Exp.1999,1445:86-98.
    [186]Roy S, Delling U, Chen C H, et al. A bulge structure in hiv-1 tar rna is required for tat binding and tat-mediated transactivation. Gen Dev,1990,4:1365-1373.
    [187]Cordingley M G, Lafemina R L, Callahan P L, et al. Sequence-specific interaction of tat protein and tat peptides with the transactivation-responsive sequence element of human-immunodeficiency-virus type-1 invitro. Proc Natl Acad Sci U S A,1990,87: 8985-8989.
    [188]Felber B K, Pavlakis G N. Molecular-biology of HIV-1-positive and negative regulatory elements important for virus expression. AIDS,1993,7:S51-S62.
    [189]Marciniak R A, Sharp P A. HIV-1 tat protein promotes formation of more-processive elongation complexes. EMBO J,1991,10:4189-4196.
    [190]张偌瑜.安托芬(Antofine)与核酸相互作用及抑制烟草花叶病毒机理的研究:[博士学位论文],天津:南开大学,2008.
    [191]Leberman.R. Isolation of plant viruses by means of simple coacervates. Virology,1966, 30:341-347.
    [192]Long E C, Barton J K. On demonstrating DNA intercalation. Acc Chem Res,1990,23: 271-273.
    [193]Xi Z, Jones G B, Qabaja G, et al. Synthesis and DNA binding of spirocyclic model compounds related to the neocarzinostatin chromophore. Org Lett,1999,1:1375-1377.
    [194]Antony T, Thomas T, Sigal L H, et al. A molecular beacon strategy for the thermodynamic characterization of triplex DNA:Triplex formation at the promoter region of cyclin d1. Biochemistry,2001,40:9387-9395.
    [195]Zacharias M, Sklenar H. Analysis of the stability of looped-out and stacked-in conformations of an adenine bulge in DNA using a continuum model for solvent and ions. Biophy J,1997,73:2990-3003.
    [196]Kalnik M W, Norman D G, Li B F, et al. Conformational transitions in thymidine bulge-containing deoxytridecanucleotide duplexes-role of flanking sequence and temperature in modulating the equilibrium between looped out and stacked thymidine bulge states. J Biol Chem 1990,265:636-647.
    [197]Kwon Y, Xi Z, Kappen L S, et al. New complex of post-activated neocarzinostatin chromophore with DNA:Bulged DNA binding from the minor groove. Biochemistry, 2003,31:9269-9278.
    [198]Ozer I, Tacal O. Method dependence of apparent stoichiometry in the binding of salicylate ion to human serum albumin:A comparison between equilibrium dialysis and fluorescence titration. Anal Biochem,2001,294:1-6.
    [199]Ream J E, Yuen H K, Frazier R B, et al. EPSP synthase:Binding studies using isothermal titration microcalorimetry and equilibrium dialysis and their implications for ligand recognition and kinetic mechanism. Biochemistry,1992,31:5528-5534.
    [200]J. W N, Jones R, Williams G, et al. Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J Pharmaceut Sci,2008,97:4586-4595.
    [201]Ellington A D, Szostak J W. In vitro selection of rna molecules that bind specific ligands. Nature,1990,346:818-822.
    [202]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:Rna ligands to bacteriophage t4 DNA polymerase. Science,1990,249:505-510.
    [203]Beaudry A A, Joyce G F. Directed evolution of an RNA enzyme. Science,1992, 257:635-641.
    [204]Kehoe J W, Velappan N, M. W, et al. Using phage display to select antibodies recognizing post-traslational modifications independently of sequence context. Mol and Cell Proteomics,2007:2350-2363.
    [205]Zahnd C, Amstutz P, Pluckthum A. Ribosome display:Seleting and evolving proteins in vitro that specifically bind to a target. Nat Methods,2007,4:269-279.
    [206]Turner D R, Joyce L E, Butler P J G. The tobacco mosaic-virus assembly origin RNA-functional-characteristics defined by directed mutagenesis. J Mol Biol,1988,203: 531-547.
    [207]Xu D R, Landon T, Greenbaum N L, et al. The electrostatic characteristics of G-U wobble base pairs. Nucleic Acids Res,2007,35:3836-3847.
    [208]Mcclain W H, Gabriel K, Schneider J. Specific function of a G-U wobble pair from an adjacent helical site in trnaala during recognition by alanyl-tRNA synthetase. RNA,1996, 2:105-109.
    [209]Culver J N, Dawson W O. Tobacco mosaic-virus coat protein-an elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in nicotiana-sylvestris. Virology,1989,173:755-758.
    [210]Fancy D A, Kodadek T. Chemistry for the analysis of protein-protein interactions:Rapid and efficient cross-linking triggered by long wavelength light. Proc Natl Acad Sci U S A, 1999,96:6020-6024.
    [211]Fancy D A, Denison C, Kim K, et al. Scope, limitations and mechanistic aspects of the photo-induced cross-linking of proteins by water-soluble metal complexes. Chem Biol, 2000,7:697-708.
    [212]Fancy D A, Kodadek T. Chemistry for the analysis of protein-protein interactions:Rapid and efficient cross-linking triggered by long wavelength light. Proc Natl Acad Sci U S A, 2000,97:1317-1317.
    [213]Wilson T M A. Cotranslational disassembly of tobacco mosaic-virus invitro. Virology, 1984,137:255-265.
    [214]Cantoni G L. Biological methylation selected aspects. Annu Rev Biochem,1975,44: 435-451.
    [215]Knipe J O, coward J K. Role of buffers in a methylase model reaction-general base catalysis by oxyanions vs nucleophilic dealkylation by amines. J Am Chem Soc,1979, 101:4339-4348.
    [216]Mihel 1, Knipe J O, Coward J K, et al. Alpha-deuterium isotope effects and transition-state structure in an intra-molecular model system for methyl-transfer enzymes. J Am Chem Soc,1979,101:4349-4351.
    [217]Badet B, Julia M. Simple preparation of sulfonoum salts. Tet Lett,1979,20:1101-1104.
    [218]Prakash G K S, Weber C, Chacko S, et al. A new electrophilic difluoromethylating reagent. Org Lett,2007,9:1863-1866.
    [219]Rostovtsev V V, Green L G, Fokin V V, et al. A stepwise huisgen cycloaddition process: Copper(Ⅰ)-catalyzed regioselective "Ligation" Of azides and terminal alkynes. Angew Chem Int Edit,2002,41:2596-2599.
    [220]O'Reilly R K, Hawker C J, Wooley K L. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility. Chem Soc Rev,2006,35: 1068-1083.
    [221]Vundyala N, Sun C, Sidime F, et al. Biotin-functional oligo(p-phenylene vinylene)s synthesized using click chemistry. Tetrahedron Lett,2008,49:6386-6389.
    [222]Kolb H C, Sharpless K B. The growing impact of click chemistry on drug discovery. Drug Discov Today,2003,8:1128-1137.
    [223]Wang Q, Chan T R, Hilgraf R, et al. Bioconjugation by copper(Ⅰ)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc,2003,125:3192-3193.
    [224]Wang Y, Xiao Y, Tan T T Y, et al. Click chemistry for facile immobilization of cyclodextrin derivatives onto silica as chiral stationary phases. Tetrahedron Lett,2008, 49:5190-5191.
    [225]Paul K J V, Loganathan D. Synthesis of novel glycolipids derived from glycopyranosyl azides and n-(beta-glycopyiranosyl)azidoacetamides. Tetrahedron Lett,2008,49: 6356-6359.
    [226]Bruckman M A, Kaur G, Lee L A, et al. Surface modification of tobacco mosaic virus with "Click" Chemistry. Chembiochem,2008,9:519-523.
    [227]Last J A, Anderson W F. Purification and properties of bacteriophage t4-induced rna ligase. Arch Biochem Biophy,1976,174:167-176.
    [228]Tessier D C, Brousseau R, Vernet T. Ligation of single-stranded oligodeoxyribonucleotides by t4 rna ligase. Anal Biochem,1986,158:171-178.
    [229]Nishigaki K, Taguchi K, Kinoshita Y, et al. Y-ligation:An efficient method for ligating single-stranded dnas and rnas with t4 rna ligase. Mol Divers,1998,4:187-190.
    [230]Wang L X, Ruffner D E. Oligoribonucleotide circularization by'template-mediated' ligation with t4 RNA ligase:Synthesis of circular hammerhead ribozymes. Nucleic Acids Res,1998,26:2502-2504.
    [231]Stark M R, Pleiss J A, Deras M, et al. An rna ligase-mediated method for the efficient creation of large, synthetic RNAs. RNA-A Publication of the RNA Society,2006,12: 2014-2019.
    [232]Nielsen D A, Shapiro D J. Preparation of capped RNA transcripts using T7 RNA polymerase. Nucleic Acid Res,1986,14:5936-5936.
    [233]Fraenkelconrat H, Williams R C. Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc Natl Acad Sci U S A,1955,41: 690-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700