用户名: 密码: 验证码:
以Rho/ROCK信号通路为靶点探讨麻杏芎葶合剂干预低氧性肺动脉高压大鼠模型的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过建立低氧性肺动脉高压(HPH)大鼠模型,探讨HPH形成的病理机制,观察具有宣肺逐瘀化痰法的麻杏芎葶合剂对HPH大鼠肺动脉压增高和血管结构重建的干预作用。并通过观察rock-1基因及蛋白在HPH大鼠肺组织中的表达水平,探讨Rho/ROCK信号传导通路对低氧性肺动脉高压的调控作用及麻杏芎葶台剂对低氧性肺动脉高压干预的分子机制。
     方法:Sprague-Dawley大鼠50只,雌雄各半,随机均分为正常组、HPH模型组和法舒地尔对照组、中药中剂量组、中药高剂量组。采用常压间断低氧法:(10±0.5)%O2,每天间断低氧6-8小时,每周缺氧6天,持续3周,建立大鼠HPH模型。每日放入低氧舱前给药:法舒地尔组腹腔注射10mg/(kg·d)盐酸法舒地尔注射液;中药中剂量组给予10g/kg-d麻杏芎葶合剂药液灌胃;中药高剂量组给予20g/kg·d麻杏芎葶合剂药液灌胃;正常组、HPH模型组按每100g体重1ml的生理盐水灌胃。在第21天测定各组大鼠平均肺动脉压力(mean pulmonary artery pressure, mPAP)、平均颈动脉压力(mean cervical arterial pressure, mCAP)、右心肥厚指数(right ventricular hypertrophy index, RVHI);观察光镜下肺小动脉的形态学改变,利用图像分析计算血管壁厚度占外径的百分比(WT%)、管壁面积占血管总面积的百分比(WA%)及管腔面积与管总面积的百分比(LA%)。测定肌型动脉、部分肌型动脉和非肌型血管所占比例及肌型肺小动脉中膜细胞核密度,观察肺血管结构重建情况。在证实HPH建模成功后,应用Real time PCR、Westen bolt等技术,以分子生物学方法测定各组大鼠肺组织中Rho激酶ROCK-1基因及蛋白的表达量,并测定各组大鼠肺组织中Rho激酶底物——MBS Thr-697位的磷酸化的表达情况。
     结果:(1)低氧21天后,HPH模型组大鼠mPAP、RVHI、WT%、WA%。LA%、肌型动脉、部分肌型动脉和非肌型血管所占比例、肌型肺小动脉中膜细胞核密度分别为(30.27±1.47)mmHg、(41.41±3.71)%、(55.23±3.07)%、(83.12±5.90)%、(16.88±1.74)%、(57.26±0.26)%、(17.46±2.78)%、(25.28±3.07)%、(9.41±1.90),与正常组(16.14±0.38)mmHg、(24.65±1.85)%、(33.41±3.65)%、(54.23±4.61)%、(45.76±3.23)%、(7.88±0.83)%、(25.76±2.05)%、(66.36±3.65)%、(7.05±1.37)比较均有差异(P均<0.05)。(2)低氧21天后大鼠mPAP、RVHI、WT%、WA%、LA%、肌型动脉、部分肌型动脉和非肌型血管所占比例、肌型肺小动脉中膜细胞核密度,法舒地尔组大鼠分别为(18.85±0.65) mmHg、(30.24±1.82)%、(38.15±2.96)%、(68.49±4.16)%、(31.50±3.53)%、(12.49±0.65)%、(36.58±2.55)%、(50.94±2.96)%、(13.13±2.61);中药中剂量组大鼠分别为(21.61±0.38)mmHg、(28.19±1.67)%、(43.12±3.61)%、(65.49±4.15)%、(34.51±3.38)%、(20.71±0.21)%、(30.86±2.03)%、(48.43±3.61)%、(11.28±1.08);中药高剂量组大鼠分别为(23.25±1.19)mmHg、(27.6411.55)%、(44.5313.76)%、(69.9014.22)%、(30.10±3.37)%、(20.77±0.19)%、(29.08±2.57)%、(50.15±3.76)%、(7.26±1.68):以上三组分别与HPH模型组(30.27±1.47)mmHg、(41.41±3.71)%、(55.2313.07)%±(83.12±5.90)%、(16.88±1.74)%、(57.26±0.26)%、(17.46±2.78)%、(25.28±3.07)%、(9.41±1.90)比较均有差异性(P均<0.05)。(3)各组间mCAP比较未见显著性差异(P均>0.05)。(4)HPH模型组大鼠肺小血管管壁明显增厚;出现明显肺小动脉重构特征:内皮细胞连续性破坏,血管内皮呈立方形或柱状突向血管腔,甚至坏死脱落,中膜平滑肌细胞肥大、增生,管腔变小。与HPH模型组比较,法舒地尔干预组、中药中、高剂量组大鼠肺小血管管壁较薄,管腔变宽,血管平滑肌细胞的肥大、增生程度以及内膜的增厚明显减轻。(5)经低氧干预三周(21天)后,HPH模型组大鼠Rho激酶ROCK-1mRNA (2.680±0.061)与正常组大鼠(1.094±0.051)比较增高,差别有统计学意义(P<0.05)。法舒地尔组、中药中、高剂量组大鼠Rho激酶ROCK-1mRNA(1.66110.0.90)、(2.03510.078)、(1.96210.066)较正常组(1.094±0.051)均增高,差别有统计学意义(P<0.05),较HPH模型组大鼠(2.680±0.061)均降低,差别亦有统计学意义(P均<0.05)。(6)应用Western印迹法检测,HPH模型组ROCK-1蛋白表达较正常组增加(P<0.05),经法舒地尔、麻杏芎葶合剂干预过的法舒地尔组、中药中、高剂量组ROCK-1蛋白表达较正常组升高(P<0.05),较HPH模型组有不同程度降低(P<0.05)。(7)免疫印迹结果显示,HPH模型组P-MYPT1蛋白表达较正常组增加(P<0.05),经法舒地尔、麻杏芎葶合剂干预过的法舒地尔组、中药中、高剂量组P-MYPT1蛋白表达较正常组升高(P<0.05),而较HPH模型组有所降低(P<0.05)。
     结论:(1)麻杏芎葶合剂可以减轻低氧引起的肺动脉压力的增加,改善右心室肥厚,肺血管结构重建,对低氧性肺动脉高压有明确防治、干预作用。(2) Rho/ROCK信号传导通路与HPH的发生、发展密切相关。麻杏芎葶合剂对低氧性肺动脉高压的干预作用,与其能调控Rho/ROCK信号传导通路,抑制肺血管Rho激酶的合成和表达有关。(3)按照传统中医理论,麻杏芎葶合剂的立方、配伍及药理分析,可知麻杏芎葶合剂具有宣肺、肃肺、泻肺、化痰、利水、活血之功效,全方将宣肺逐瘀化痰法融为一体,切中低氧性肺动脉高压的中医辨证病机,有确切疗效。
Objective: through the establishment of hypoxic pulmonary hypertension (HPH) rat model, to explore the HPH pathological mechanism, observe the intervention effects for Ma Xing Xiong Ting He Ji (admixture) in releasing lung, removing blood stasis and dissolving phlegm pattern on pulmonary artery pressure increase and vascular structure reconstruction of intervention effects of HPH rats. And through the observation the expression level of rock-1gene and protein in HPH rats lung tissue, explore the control function of Rho/rock signaling pathways on hypoxic pulmonary hypertension and the intervention of molecular mechanism of hypoxic pulmonary hypertension by Ma Xing Xiong Ting He Ji (admixture) in releasing lung, removing blood stasis and dissolving phlegm pattern.
     Methods:50Sprague wrote-Dawley rats, half male and half female, randomly divided into normal group, the HPH model group and fasduil control group, medium dosage Chinese medicine group, high dosage Chinese medicine group. Atmospheric intermittent hypoxia method:(10±0.5)%for02, intermittent hypoxia for six to eight hours a day, anoxic for6days a week,4weeks, to establish HPH rats model. Put them in a low oxygen tank before medicine delivery, For fasudil group, intraperitoneal injection,10mg/kg, with hydroxyfasudil infection; For medium dosage Chinese medicine group,10g/kg of Ma Xing Xiong Ting He Ji(mixture) gavage; For high dosage Chinese medicine group,20g/kg of Ma Xing Xiong Ting He Ji(mixture) gavage; For normal group and the HPH model group,1ml saline lavage for every100g of body weigh. At21th day determine their mean pulmonary artery pressure (mPAP), average carotid artery pressure (mean cervical arterial pressure, mCAP), right heart hypertrophy index (right ventricular hypertrophy index, RVHI); Observe morphology changes of pulmonary arterioles under light microscopy, calculate the percentage of the thickness of vessel wall over the external diameter (WT%), the percentage of the wall area over the total area of blood vessel (WA%), the percentage of the lumen area over total area of the tube (LA%) by picture analysis. Determine the percentage of muscular arteries,partial muscular artery non muscular arteries,and muscular pulmonary arterioles and density of membrane nucleus,observe the reconstruction of pulmonary vascular structure.After confirming the successful modeling of HPH, apply Real time PCR,Westen bolt and other techniques,to determine the amount of the expression of Rho kinase gene and protein of lung tissue of the rats in each group by molecular biology method and determine Rho kinase substrate of lung tissue of the rats in each group the phosphorylated expression of MBS Thr-697.
     Results:(1)After21days of hypoxia,mPAP, RVHI,WT%,WA%,LA%and the portion of muscular arteries,partial muscular arteries,non-musclar arteries,and density of membrane nucleus in muscular pulmonary arterioles of rats in HPH model group are as follows respectively:(30.27±1.47mmHg,,(41.41±3.71)%,(55.23±3.07)%,(83.12±5.90)%,(16.88±1.74)%,(57.26±0.26)%,(17.46±2.78)%,(25.28±3.07)%,(9.41±1.90),and rormal group(16.14±0.38)mmHg,(24.65±1.85)%,(33.41±3.65)%,(54.23±4.61)%,(45.76±3.23)%,(7.88±0.83)%,(25.76±2.05)%,(66.36±3.65)%,(7.05±1.37).The comparison exists a dofference.(P<0.05).(2) After21days of hypoxia,mPAP, RVHI,WT%,WA%,LA%and the portion of muscular arteries,partial muscular arteries,non-muscular arteries,and density of membrane nucleus in muscular pulmonary arterioles of rats in Fasudi group are as follows respectively:(18.85±0.65)mmHg,(30.24±1.82)%,(38.15±2.96)%,(68.49±4.16)%,(31,50±3.53)%,(12.49±0.65)%,(36.58±2.55)%,(50.94±2.96)%,(13.13±2.61);For medium dosage Chinese medicine group are:(21.61±0.38)mmHg,(28.19±1.67)%,(43.12±3.61)%,(65.49±4.15)%,(34.51±3.38)%,(20.71±0.21)%,(30.86±2.03)%,(48.43±3.61)%,(11.28±1.08);For high dosage Chinese medicine group are(23.25±1.19)mmHg,(27.64±1.55)%,(44.53±3.76)%,(69.90±4.22)%,(30.10±3.37)%,(20.77±0.19)%,(29.08±2.57)%,(50.15±3.76)%,(7.26±1.68);The three groups above all have comparison difference(P<0.05) respectively with HPH model group(30.27±1.47mmHg),(41.41±3.71)%,(55.23±3.07)%,(83.12±5.90)%,(16.88±1.74)%,(57.26±0.26)%,(17.46±2.78)%,(25.28±3.07)%,(9.41±1.90).(3)mCAP has no significant difference among groups(P>0.05).(4)It is obvious that the vessel wall of rats' pulmonary arterioles in HPH model group is thicker; and there are significant remodeling of pulmonary arterioles: continuous damage on endothelial cells and vascular endothelial is generating cuboidally or columnarly to the lumen, even has necrosis and falls off, smooth muscle cells on nunica media has hypertrophy, hyperplasia and the lumen decreases. Compared with HPH model group, Fasudi intervention group, medium and high dosage Traditional Chinese medicine (TCM) group, rats' pulmonary arterioles are with thinner walls and lumen with wider and the degree of hypertrophy and hyperplasia of vascular muscle cells and thickening of the tunica intima is reduced obviously.(5)After three weeks of hypoxia (21days) intervention, rats' Rho kinase ROCK-1mRNA (2.680±0.061) and normal group (1.094±0.051) are increased in HPH model group, the difference was statistically significant (P<0.05). Method of shu in Bristol, in traditional Chinese medicine (TCM) and high dose group rats' Rho kinase (ROCK-1mRNA (1.661±0.0.90),(2.035±0.078),(1.962±0.066)(1.094±0.051) in Fasudi group, medium and high dosage TCM group are higher than normal group, the difference was statistically significant (P<0.05), compared with the HPH model group (2.680±0.061),they are lower, and the difference has statistical significance (P<0.05).(6) By applying Western imprinting detection method, ROCK-1protein expression in HPH model group is increased than the normal group (P<0.05), the ROCK-1protein expression in Fasudi group, medium and high dosage TCM group, after the intervention of Ma Xing Xiong Ting He Ji(mixture),is increased than the normal group (P<0.05), compared with HPH model group there is a reduction in different degrees (P<0.05).(7) According to the results of western blot, P-MYPT1protein expression in HPH model group is increased than the normal group (P<0.05), P-MYPT1protein expression in Fasudi group, medium and high dosage TCM group, after the intervention of Ma Xing Xiong Ting He Ji(mixture), is increased than the normal group (P<0.05), while decreased compared the HPH model group (P<0.05).
     Conclusion:(1) Ma Xing Xiong Ting He Ji(mixture), with its lung-releasing-and-blood stasis-removing-phlegm-dissolving effect can reduce the increase of pulmonary artery pressure caused by hypoxia, improve the right ventricular hypertrophy, reconstruct pulmonary vascular structure, has specific prevention and intervention for hypoxic pulmonary hypertension.(2) the Rho/ROCK signaling pathways are closely associated with the occurrence and development of HPH.The intervention effect of Ma Xing Xiong Ting He Ji(mixture), with its lung-releasing-and-blood stasis-removing-phlegm-dissolving effect,for hypoxic pulmonary hypertension, is related to its ability to regulate the Rho/ROCK signaling pathways, inhibit the synthesis and expression of pulmonary vascular Rho kinase.(3) According to basic theory of TCM, the formula, compatibility and pharmacological analysis of Ma Xing Xiong Ting He Ji(mixture), we can declare that it can disperse the lung, astringe the lung, and reduce the lung, dissolve the phlegm, promote water, and activate the blood. This formula combine lung-releasing and blood stasis-removing and phlegm-dissolving all together, fcous on the TCM pathogenesis and syndrome differentiation of hypoxic pulmonary hypertension to achieve and exactly curative effect.
引文
[1]Galie N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension[J].Eur Heart J,2009,30:2493-2537.
    [2]McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension[J].J Am Coll Cardiol,2009,53: 1573-1619.
    [3]Fayngersh V, Drakopanagiotakis F, Dennis McCool F, et al. Pulmonary hypertension in a stable community-based COPD population[J].Lung.2011 Oct; 189(5):377-82.
    [4]Mannino DM. COPD:epidemiology, prevalence, morbidity and mortality, and disease heterogeneity [J].Chest,2002,121(5):121-126.
    [5]Rubin LJ; American College of Chest Physicians. Diagnosis and management of pulmonary arterial hypertension:ACCP evidencebased clinical practice guidelines[J].Chest,2004,126:1-92.
    [6]Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease:current theories of pathogenesis and their implications for treatment[J]. Thorax,2005,60(7):605-609.
    [7]Shimokawa H. Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models[J]. Jpn Circ J,2000,64(1):1-12.
    [8]Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine[J]. Arte-riosclerThromb Vasc Biol,2005,25(9):1767-1775.
    [9]Vanderpool RR, Kim AR, Molthen R, Chesler NC. Effects of acute Rho kinase inhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function.[J].Appl Physiol,2011,110(1):188-198.
    [10]Vallenius T, Vaahtomeri K, Kovac B, et al. An association between NUAK2 and MRIP reveals a novel mechanism for regulation of actin stress fibers[J].J Cell Sci,2011, 124(3):384-393.
    [11]Fernandez-Tenorio M, Porras-Gonzalez C, Castellano A, et al. Circ Res. Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+channels: new mechanism for depolarization-evoked mammalian arterial contraction[J].2011 May 27; 108(11):1348-57.
    [12]Xu EZ, Kantores C, Ivanovska J, Engelberts D, et al. Rescue treatment with a Rho-kinase inhibitor normalizes right ventricular function and reverses remodeling in juvenile rats with chronic pulmonary hypertension[J]. Am J Physiol Heart Circ Physiol,2010,299(6):854-864.
    [13]Baliga RS, MacAllister RJ, Hobbs AJ. New perspectives for the treatment of pulmonary hypertension[J]. Br J Pharmacol.2011 May; 163(1):125-40.
    [14]Dai ZK, Wu BN, Chen IC, Chai CY, Wu JR, et al. Attenuation of pulmonary hypertension secondary to left ventricular dysfunction in the rat by Rho-kinase inhibitor fasudil[J]. Pediatr Pulmonol,2011.46(1):45-59.
    [15]Zhang Z. Wang M, Xue SJ. Liu DH, Tang YB. Simvastatin Ameliorates Angiotensin II-Induced Endothelial Dysfunction Through Restoration of Rho-BH4-eNOS-NO Pathway[J]. Cardiovasc Drugs Ther.2012 Feb; 26(1):31-40.
    [16]Mouchaers KT, Schalij I, de Boer MA, et al. Fasudil reduces monocrotaline-induced pulmonary arterial hypertension:comparison with bosentan and sildenafil[J]. Eur RespirJ,2010.36(4):800-807.
    [17]张旗.三拗芎葶合剂治疗。陧性阻塞性肺疾病继发低氧性肺动脉高压急性发作期的临床研究[D]成都中医药大学.2005年4月.
    [18]杨明高,范俊德.三拗芎葶汤治疗COPD急性发作108例临床观察[J].湖北中医杂志,2004,26(11):28-29.
    [19]杨仁旭,杨明高,范俊德,等.宣肺逐瘀化痰法对低氧性肺动脉高压血管活性物质的影响[J].四川中医,2006,24(4):10-13.
    [20]杨仁旭,常生杰,卢小龙.麻杏芎葶合剂对低氧性肺动脉高压大鼠血浆C型利钠肽和心钠肽的影响[J],中华现代中西医杂志,2007,(5):326-329.
    [21]杨仁旭,卢小龙,杜建霖.麻杏芎葶合剂对低氧性肺动脉高压大鼠血清超氧化歧化酶/丙二醇影响的实验研究[J].中华医学研究杂志,2007,(8):683-687.
    [22]Ogo T, Chowdhury HM, Yang J, Long L, et al.Inhibition of Overactive TGF-beta Signaling by Prostacyclin Analogues in Pulmonary Arterial Hypertension (PAH)[J]. Am J Respir Cell Mol Biol.,2013,2(15):361-362.
    [23]Firth AL, Choi IW, Park WS.Animal models of pulmonary hypertension:Rho kinase inhibition [J]. Prog Biophys Mol Biol.2012,8,109(3):67-75.
    [24]Connolly MJ, Aaronson PI.Key role of the RhoA/Rho kinase system in pulmonary hypertension [J]. Pulm Pharmacol Ther.2011 Feb; 24(1):1-14.
    [25]薛全福,谢剑呜,胡长贵,等.常压缺氧性大鼠肺动脉高压模型的建立[J].中华结核和呼吸杂志,1989,(6)12:350-352.
    [26]Barman SA, Zhu S, White RE.RhoA/Rho-kinase signaling:a therapeutic target in pulmonary hypertension [J]. Vasc Health Risk Manag.2009,5:663-671.
    [27]孙波,刘文利.右心导管法测定大鼠高压的试验方法[J].中国医学科学院学报,1984,6(6):465-466.
    [28]Widimsky J, Herget Jeds. Pulmonary Blood vessels in Lung Disease[J]. Prog Respir Res Basel Karger,1990,26(1):29-38.
    [29]杜军保.缺氧性肺动脉高压[M].北京:北京医科大学中国协和医科大学联合出版社,1994:193-217.
    [30]Eddahibi S, Chaouat A, Morrell N, et al. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease[J].Circulation,2003,108(15):1839-1844.
    [31]Sasayama S, Kunieda T, Tomoike H, et al. Effects of the endothelin receptor antagonist bosentan on hemodynamics, symptoms and functional capacity in Japanese patients with severe pulmonary hypertension[J]. Circ J,2005,69(2): 131-137.
    [32]张颖,刘双,朱光发,等.西地那非治疗肺动脉高压的临床疗效观察[J].心肺血管病杂,2011,30(1):21-24.
    [33]Galie N, Torbicki A, Barst R, et al. ESC guidelines:guidelines on the diagnosis and treatment of pulmonary arterial hypertension[J]. Eur Heart J,2004, 25:2243-2278.
    [34]Yeh DY, Kao SJ, Feng NH, et al. Increased nitric oxide production accompanies blunted hypoxic pulmonary vasoconstriction in hyperoxic rat lung[J].2006,12,49 (6): 305-312.
    [35]李尚师,李素芝,郑必海.高原性心脏病与肺血管结构重建的研究进展[J].《华南国防医学杂志》2012,4(12):233-234.
    [36]Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease:current theories of pathogenesis and their implications for treatment[J]. Thorax,2005,60(7):605-609.
    [37]杨莉,程德云,陈小菊,等.Rho激酶在低氧大鼠肺小动脉表达的研究[J].四川大学学报(医学版),2006,37(3):395-398.
    [38]Martin KB, Klinger JR, Rounds SI. Pulmonary arterial hypertension:new insights and new hope[J].Respirology,2006,11(1):6-17.
    [39]李娟,孙新,毕辉,等.低氧低氧性大鼠肺动脉高压模型建立[J].临床心血管病杂志,2008,24(4)297.
    [40]Maggiorini M. Cardio-pulmonary interactions at high altitude. Pulmonary hypertension as a common denominator[J]. Adv Exp Med Biol.2003,5(43):177-189.
    [41]国伟,孟建中,陈宇,等.Rho/Rho激酶信号通路与血管内皮通透性的研究[J].生物医学工程研究,2009,28(2):154-158.
    [42]Ishikura K, Yamada N, Ito M, et al. Beneficial acute effects of Rho Kinase inhibitor in patients with pulmonary arterial hypertension.[J]. Circ J,2006,70(2):174-178.
    [43]宋为,蔡英年,邓希贤,等.慢性缺氧时肺腺泡内动脉结构变化与血流动力学变化的关系[J].1993,9(1):53-58.
    [44]陈文彬,莫晓能,颜浩,等.Ⅰ型胶原在低氧性肺动脉高压大鼠肺内分布的改变[J].华西医科大学报,2000,31(1):34-36.
    [45]真娟,华树成.西地那非治疗COPD合并肺动脉高压30例临床分析[J].吉林医学,2011,32(1):75-77.
    [46]Held M, Jany B. Pulmonary Hypertension in COPD[J]. Respir Care.2012,12(18): 532-535.
    [47]Loirand G, Guefin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology[J].Circ Res,2006,98(3):322-334.
    [48]Shimokawa H, Takeshita A.Rho-kinase is an important therapeutic target in cardiovascular medicine[J].Arte-riosclerThromb Vasc Biol,2005,25(9):1767-1775.
    [49]史记,郎宏鑫,赵晓宇.TXA2与肺动脉高压关系的研究进展[J].中国当代医药,2011,18(7):78-80.
    [50]Abolmaali N, Seitz U, Esmaeili A., et al. Evaluation of a resistance-based model for the quantification of pulmonary arterial hypertension using MR flow measurements[J].J Magn Reson Imaging.,2007,26(3):646-653.
    [51]Hesselstrand R, Ekman R, Eskilsson J, et al. Screening for pulmonary hypertension in systemic sclerosis:the longitudinal development of tricuspid gradient in 227 consecutive patients,1992-2001[J]. Rheumatology(Oxford),2005, 44(3):366-71.
    [52]Firth AL, Choi IW, Park WS. Animal models of pulmonary hypertension:Rho kinase inhibition[J]. Prog Biophys Mol Biol,2012,109(8):67-75.
    [53]Haudek SB, Gupta D, Dewald O, et al. Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation [J]. Cardiovasc Res,2009, 83(9):511-518.
    [54]Schwenke DO, Pearson JT, Sonobe T, et al. Role of Rho-kinase signaling and endothelial dysfunction in modulating blood flow distribution in pulmonary hypertension[J].J Appl Physiol,2011,110(4):901-908.
    [55]Courboulin A, Barrier M, et al. Plumbagin reverses proliferation and resistance to apoptosis in experimental PAH[J]. Eur Respir J,2012,40(9):618-629.
    [56]Vanderpool RR, Kim AR, Molthen R, et al. Effects of acute Rho kinase inhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function[J]. J Appl Physiol,2011,110(1):188-198.
    [57]Seto M. Development of Rho kinase inhibitors for pulmonary arterial hypertension[J]. Nihon Yakurigaku Zasshi,2012,139(6):251-255.
    [58]Oka M, Homma N, Taraseviciene-Stewart L, et al. Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats[J].Circ Res,2007,100(6):923-929.
    [59]郭传勇,宋爱荚,韩波,等.三子养亲汤治疗肺心病肺动脉高压30侧临床观察[J].实用中西医结合杂志,1994,8:501-503.
    [60]刘建秋,郭淑文,李竹英,瓜蒌薤白半夏汤对肺动脉高压氧自由基的影响[J].中医药学报,1997,15(2):55-56.
    [61]景华,熊旭东.复方莘苈注射液治疗肺心病肺动脉高压症临床观察[J].中医杂志,1999,4:225-226.
    [62]李洪成,姬郁林,程南芳,等.肺压舒颗粒剂治疗肺心病肺动脉高压症37例临床观察[J].中医杂志,2000,41(2):87-89.
    [63]刘青,杨毅,周惠香,等.肺动脉高压中医辨证分型的研究[J].中国中医急症,1997,32[1):32-33.
    [64]谢少龙.中药复方治疗慢性阻塞性肺疾病肺动脉高压研究纂要[J].实用中医内科杂志,2008,22(1):72-74.
    [65]王晓岩,王孝成.补肺益肾活血法对慢性低氧性肺动脉高压大鼠血管活性物质的影响[J].中国老年学杂志,2009,29(3):516-518.
    [66]张宇.川芎嗪和膏霉胺对大鼠慢性实验性肺动脉高压的影响[J].中国循环杂志,1992,17(6):576-578.
    [67]席思川,车东媛,张婉蓉,等.丹参对低氧性腺泡内肿动脉构型重组的阻抑效应[J].同济医科大学学报,1994,23(2):81-83.
    [68]安昌善,柳济成.黄芪对低氧性肺动脉高压大鼠肺血管结构重建干预作用及机制的研究[J].中国心血管病研究杂志,2003,1(2):146.
    [69]张颡,张涛,石风如等.葛根素对血管平滑肌细胞凋亡的影响[J].中国药理学通报,2001,17(6):717-718.
    [70]叶江枫,杜志强葛根素对兔肺心病模型肺动脉高压的影响中国中医药科技[J].2001,8(5):312.
    [71]程德云,陈文彬.银杏苦内酯B对大鼠常压低氧性肺动脉高压的影响[J].中华结核和呼吸杂志,1995,118(2):120.
    [72]白敬华,王惠兰.益气活血对慢性阻塞性肺疾病血液流变学及血瘀证的影响[J].甘肃中医学院学报,1996,13(4):4.
    [73]熊旭东,王左.复方葶苈注射液治疗老年肺心病急性发作期60例[J].陕西中医,1997,18(12):57.
    [74]王晓岩,王孝成,等.补肺益肾活血法对慢性低氧性肺动脉高压大鼠血管活 性物质的影响[J].中国老年学杂志,2009,29(3):516-518.
    [75]蒋明,曹世宏,奚兆庆,等.薤葶合剂对改善慢阻肺患者右心收缩问期及肺动脉高压的临床观察[J].中国实验方剂学杂志,2000,6(4):55-56.
    [76]黎恩兰.葶苈大黄汤治疗慢性肺心病3I例分析[J].蚌埠医学院学报,1997,22(3):197.
    [77]景华,熊旭东.复方莘苈注射液治疗肺心病肺动脉高压症临床观察[J].中医杂志,1999,4:225-226.
    [78]熊旭东,王左,景华.复方葶苈注射液对野百合碱诱发大鼠肺动脉高压的动脉血气影响[J].陕西中医,1996,17(12):563-564.
    [79]王左,熊旭东,赵辉.内皮素、一氧化氮在复方葶苈注射液治疗肺心病急性发作期中的含量变化分析[J].中国中医急症,1999,8(8):100-101.
    [80]郭传勇,宋爱荚,韩波,等.三子养亲汤治疗肺心病肺动脉高压30侧临床观察[J].实用中西医结合杂志,1994,8:501-503.
    [81]李立,李光来.麦合剂对缺氧动物耗氧量、动脉血氧分压与肺动脉压的影响[J].中国中药杂志,1990,15(8):50-52.
    [82]庞辉群.泻肺化痰祛瘀法对肺动脉高压大鼠的影响[J].中国中西医结合急救杂志,2006,13(3):153-156.
    [83]刘建秋,郭淑文,李竹英,等.瓜蒌薤白半夏汤对肺动脉高压氧自由基的影响[J].中医药学报,1997,15(2):55-56.
    [84]郭书文,王国华,石克华,等.瓜萎薤自半夏汤降肺动脉高压的实验研究[J].中国中西医结合杂志,1997,17:23-24.
    [85]丁丽丽,施松善,崔健.麻黄化学成分与药理作用研究进展[J].中国中药杂志,2006,31(20):1661-1664.
    [86]王道芳.浅述桃仁与苦杏仁的药理及临床应用[J].基层中药杂志,2002,16(6):61-62.
    [87]吉宁飞.川芎嗪治疗支气管哮喘的研究进展[J].中国厂学医学.2006,19(3):270-271.
    [88]刘忠,李永春.川芎嗪对慢性阻塞性肺疾病模型大鼠肺泡中肿瘤坏死因子-a的影响[J].中国老年学杂志,2009,29(5):1092-1094.
    [89]柏正平,郑兵,献春,等.复方葶苈子胶囊止咳祛痰作用的实验研究[J].湖南中医药导报,2000,6(5):53.
    [90]郭娟,陈长勋,沈云辉.葶苈子水提液对动物实验性心室重构的影响[J].中草药,2007,38(10):1519-1523.
    [91]Enomoto M, Gosal K, Cubells E, et al. Sex-dependent changes in the pulmonary vasoconstriction potential of newborn rats following short-term oxygen exposure [J]. Pediatr Res.2012,72(5):468-478.
    [1]McLaughlin W, Archer SL, Badesch DB, et al. ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension[J].J Am Coll Cardiol,2009,53: 1573-1619.
    [2]Mannino DM. COPD:epidemiology, prevalence, morbidity and mortality, and disease heterogeneity.[J].Chest,2002,121(5):121-126.
    [3]Lopez AD, Shibuya K, Rao C, Mathers CD, et al. Chronic obstructive pulmonary disease: current burden and future projections. [J]. Eur Respir,2006, 27(2):397-412.
    [4]Chaouat A, Bugnet AS, Kadaoui N, et al. Severe pulmonary hypertension and chronic obstructive pulmonary disease. [J]. Am J Respir Crit Care Med,2005,172(2): 189-194.
    [5]Lim GB. Hypertension:Treprostinil therapy for PAH[J].Nat Rev Cardiol.,2013, 29(1):1038-1040.
    [6]Nicolls MR, Mizuno S, Taraseviciene-Stewart L, et al. New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis[J].Pulm Circ.,2012,12(4):434-442.
    [7]Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine.[J]. Arte-riosclerThromb Vasc Biol,2005,25(9):1767-1775.
    [8]Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases[J]. J Cardiovasc Pharmacol,2002,39(3):319-327.
    [9]Vanderpool RR, Kim AR, Molthen R, Chesler NC.Effects of acute Rho kinase nhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function.[J]. Appl Physiol,2011,110(1):188-198.
    [10]Burridge K, Wennerberg K. Rho and Rac take center stage[J].Cell,2004,116(7): L67-179.
    [11]Jaffe AB, Hall A. Rho GTPases:biochemistry and biology [J]. An nu Rev Cell Dev Biol,2005,21(9):247-269.
    12] Alvira CM, Sukovich DJ, Lyu SC, Cornfield DN. Rho kinase modulates postnatal adaptation of the pulmonary circulation through separate effects on pulmonary artery endothelial and smooth muscle cells[J]. Am J Physiol Lung Cell Mol Physiol,2010,299(6):872-878.
    [13]Yasuda T, Tada Y, Tanabe N, et al. Rho-kinase inhibition alleviates pulmonary hypertension in transgenic mice expressing a dominant-negative type Ⅱ bone morphogenetic protein receptor gene[J].Am J Physiol Lung Cell Mol Physiol,2011, 301(5):667-674.
    [14]Fukumoto Y, Shimokawa H. Recent progress in the management of pulmonary hypertension[J].Circ J.,2011,75(8):1801-1810.
    [15]Schwenke DO, Pearson JT, Sonobe T, et al. Role of Rho-kinase signaling and endothelial dysfunction in modulating blood flow distribution in pulmonary hypertension[J].J Appl Physiol,2011,110(4):901-908.
    [16]Do e Z, Fukumoto Y, Takaki A, et al. Evidence for Rho-kinase activation in patients with pulmonary arterial hypertension [J].Circ J,2009,73(9):1731-1739.
    [17]Morrell NW, Adnot S, Archer SL, et al. Cellular and molecular basis of pulmonary arterial hypertension[J].J Am Coll Cardiol,2009,30(6):20-31.
    [18]Duong-Quy S, Bei Y, Liu Z, Dinh-Xuan AT. Role of Rho-kinase and its inhibitors in pulmonary hypertension[J].Pharmacol Ther.,2012,137(3):352-364.
    [19]McNeish AJ, Jimenez-Altayo F, Cottrell GS, et al. Statins and selective inhibition of Rho kinase protect small conductance calcium-activated potassium channel function (K(Ca)2.3) in cerebral arteries[J]. PLoS One,2012,7(10):1371-1374.
    [20]Vanderpool RR, Kim AR, Molthen R, et al.Effects of acute Rho kinase inhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function[J].J Appl Physiol,2011,110(1):188-198.
    [21]Loirand G, Pacaud P. The role of Rho protein signaling in hypertension [J]. Nat Rev Cardiol,2010,7(11):637-647.
    [22]Antoniu SA. Targeting RhoA/ROCK pathway in pulmonary arterial hypertension[J]. Expert Opin Ther Targets.,2012,16(4):355-363.
    [23]Ohuchi N, Koike K, Sano M, et al. Proliferative effects of angiotensin Ⅱ and endothelin-1 on guinea pig gingival fibroblast cells in culture[J].Comp Biochem Physiol C Toxicol Pharmacol,2002,132(4):451-460.
    [24]Grisk 0, Schluter T, Reimer N, et al. The Rho kinase inhibitor SAR407899 potently inhibits endothelin-1-induced constriction of renal resistance arteries[J].J Hypertens.2012,30(5):980-989.
    [25]Weigand L, Foxson J, Wang J, et al. Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels[J].Am J Physiol Lung Cell Mol Physiol,2005,289(1):5-13.
    [26]Wang HM, Wang Y, Liu M, et al. Fluoxetine inhibits monocrotaline-induced pulmonary arterial remodeling involved in inhibition of RhoA-Rho kinase and Akt signalling pathways in rats[J]. Can J Physiol Pharmacol,2012,90(11):1506-1515.
    [27]陈雪彦,刘焕龙,潘振华,苗庆峰等Rho/Rho(?)酶通路在5-羟色胺诱导的大鼠肺动脉平滑肌细胞增殖中的作用[J].细胞生物学杂志,2009,38(6):853-858.
    [28]Takemoto M, Sun J, Hiroki J, et al. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase[J].Circulation,2002,106(1): 57-62.
    [29]Kafka P, Vajnerova O, Herget J, et al. Rho-kinase inhibition attenuates acute hypoxic fetoplacental vasoconstriction in the rat[J]. Physiol Res,2012,61(2):43-48.
    [30]Blood AB, Terry MH, Merritt TA, et al. Effect of chronic perinatal hypoxia on the role of rho-kinase in pulmonary artery contraction in newborn lambs[J]. Am J Physiol Regul Integr Comp Physiol,2013,304(2):136-146.
    [31]Martinsen A, Yerna X, Rath G, et al. Different effect of Rho kinase inhibition on calcium signaling in rat isolated large and small arteries[J].J Vasc Res,2012,49(6): 522-533.
    [32]Firth AL, Choi IW, Park WS. Animal models of pulmonary hypertension:Rho kinase inhibition[J]. Prog Biophys Mol Biol,2012,109(8):67-75.
    [33]Wojciak-Stothard B, Zhao L, Oliver E, er al. Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia[J].Circ Res.2012, 110(11):1423-1434.
    [34]Xu EZ, Kantores C, Ivanovska J, et al. Rescue treatment with a Rho-kinase inhibitor normalizes right ventricular function and reverses remodeling in juvenile rats with chronic pulmonary hypertension[J].Am J Physiol Heart Circ Physiol,2010, 299(6):1854-1864.
    [35]Zhang X, Urbieta-Caceres VH, Eirin A, et al. Humanin prevents intra-renal microvascular remodeling and inflammation in hypercholesterolemic ApoE deficient mice[J].Life Sci.2012,91(5):199-206.
    [36]Hyvelin JM, Howell K, Nichol A, et al. Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation[J]. Circ Res.2005,97(2): 185-191.
    [37]Abe K, Nakashima H, Ishida M, et al. Angiotensin II-induced osteopontin expression in vascular smooth muscle cells involves Gq/11, Ras, ERK, Src and Ets-1[J]. Hypertens Res,2008,31(5):987-998.
    [38]Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling:cellular and molecular mechanisms[J]. Circ Res.2006,99(7):675-691.
    [39]Xing XQ, Gan Y, Wu SJ, et al. Rho-kinase as a potential therapeutic target for the treatment of pulmonary hypertension[J]. Drug News Perspect,2006,19(9): 517-522.
    [40]Dong M, Yan BP, Liao JK, et al. Rho-kinase inhibition:a novel therapeutic target for the treatment of cardiovascular diseases[J].Drug Discov Today,2010,15(8): 622-629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700