用户名: 密码: 验证码:
二进制粒神经网络研究及其在故障诊断中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的发展,人们采集到的数据日益膨胀,这些数据具有维数高、类别多的特征,如何从海量数据中挖掘出有用信息,成为人工智能面临的重要课题。神经网络擅长从数据中找到特定模式,但不能确定哪些特征是冗余的,哪些特征是有用的,难以评估特征的重要性。而新兴提出的粒计算能摆脱繁琐的、不重要的细节,抓住问题的本质,从适当的粒度层来求解问题,降低算法复杂度,快速获得问题的解。将粒计算与神经网络融合研究具有前沿性、科学性及优越性。
     故障诊断可以看做是一个从海量的故障数据中挖掘关键特征,进而对故障样本进行分类识别的过程。本文将粒计算和神经网络结合,并应用于机械的故障诊断,其研究成果为粒计算和神经网络理论增添了新的内涵,拓展了粒计算的应用领域,为工业领域的故障诊断提供了一种新的思路和方法。本文的研究内容属于信息科学、自动化科学、计算机科学等学科的交叉领域。
     本文的主要创新性工作包括:
     (1)提出一种基于粒计算的二进制可辨矩阵属性约简算法。引入粒度层的观点,把二进制可辨矩阵的不同列组合看作不同的粒度层,通过不同列之间的访问实现了不同粒度层的跳转。针对过热器模型参数因工况参数变化而变化的问题,且模型参数与工况参数间的关系复杂,将所提出的约简算法用来挖掘工况参数与模型参数间的关系和影响规律,实现对过热器的建模。实验结果表明该算法计算量少,能够快速挖掘到规则,且易于编程实现。
     (2)提出一种基于粒度混合系统的控制方法。定义了粒度混合自动机的概念,针对倒立摆的强耦合性和自然不稳性的特点,将倒立摆的起摆和稳定过程划分成3个粒度世界,并给出不同粒度世界之间跳转的阈值条件。通过在3个粒度世界间的跳转,实现对倒立摆系统的稳定控制。仿真结果表明基于粒度混合系统的控制方法能够在较短时间内摆起倒立摆,并稳定在目标位置。
     (3)提出一种基于二进制粒矩阵的属性约简算法(Binary Granular Matrix-based Attribute Reduction, BGMAR)。该算法由2个子算法构成:针对决策表存在重复和矛盾对象的情况,提出一种基于二进制粒矩阵的论域约简算法,经过论域约简后的决策表对象数目减少,缩小了进行最优属性约简的样本空间;针对现有的属性约简算法大多无法找到最优约简的现状,提出一种基于二进制粒矩阵最优属性约简算法,在论域约简的基础上,通过计算各个条件属性的重要度,求出属性核;在属性核的基础上,采用决策属性集对条件属性集的依赖度作为启发信息进行搜索,直到得到最优属性集。设计了2个算例对BGMAR算法的有效性进行验证,结果表明该算法不仅对一致决策表的最优属性约简有效,而且还适用于不一致决策表约简,并且能得到其最优属性集。
     (4)提出一个二进制粒神经网络模型框架,并在该框架下提出二进制粒神经网络分类器(Binary Granular Neural Network Classifier, BGNNC)及其算法。将粒计算的降维与约简能力与神经网络固有的并行处理与学习能力相结合,构建粒计算作为神经网络前端处理器的二进制粒神经网络模型,提出一种二进制粒神经网络分类器的7元组模型及其分类算法。利用BGMAR算法约简特征空间,找到最优特征后,采用动量—自适应学习率BP算法训练BGNNC实现模式分类。选取UCI机器学习数据库中的Breast Cancer Wisconsin (Diagnostic)、Iris、Wine、Zoo 4个标准数据集进行测试,将BGNNC算法与标准BP算法进行了分类结果的比较。实验结果表明BGNNC是一种有效的分类算法,具有较好的泛化能力,不仅可以解决2分类问题,在多分类任务上也是可行且正确率较高的一种方法。
     (5)将本文提出的BGNNC算法应用于机械故障诊断。针对往复式机械(内燃机)和旋转式机械部件(滚动轴承)各自的故障机理,利用BGNNC算法对这两类机械设备进行故障诊断。设计了验证BGNNC算法有效性的对比实验,分别采用BP算法、免疫群体网络(Immune Population Network, IPN)算法对上述工程实例进行故障诊断,并比较上述3个算法的诊断结果。仿真实验表明BGNNC算法训练速度快,诊断准确率高,不失为一种可行的、高效的智能诊断方法。
With the development of information technology, the acquired data are sharply increasing, which own the features as high dimension and multiple target classes. It must face for us how to mine the useful information from the mass data. Artificial neural networks are good at find the specific patterns in data, however it cannot know which features are redundant and which are key. On the other hand, GrC latest proposed by T. Y. Lin can get rid of tedious and unimportant details and grasp the essence in data. It solves problem from proper granule levels, which reduces computational complexity and obtains satisfactory solutions to the problem rapidly. It belongs to the preceding research which combines GrC and ANN.
     Fault diagnosis can be regarded as such procedure that mines the key features from the fault data and then finds out the fault patterns hidden in them. This dissertation took GrC as the front-end processor of ANN and set up a framework, namely a binary granular neural network. Under the framework, a binary granular neural network classifier, BGNNC in short, has been modeled and used to solve the mechanical fault diagnosis problem. The achievements in the dissertation add new connotation both to GrC theory and ANN theory, expand application regions of GrC and provide a new idea for fault diagnosis in industry field. The research contents of the dissertation belong to the crossing field of information science, automation science and computer science et al.
     The main innovative works in the dissertation include:
     (1) Designed a granular computing-based binary discernibility matrix attribute reduction algorithm. A granular layer viewpoint was introduced into the binary discernibility matrix. It took the different collums combinations as the different granular layers. The jump between different granular layers was realized by combining different collums. Aiming at the problems which the model parameters of superheater vary with the change of working parameters, the proposed algorithm was used to mine the relation and rules between working parameters and model parameters so as to build the model of the superheater. The simulation results show that the proposed algorithm has less calculation, extracts the ruls fast and is easy to implementation with programme.
     (2) Proposed a granular hybrid system-based control method. The core of it was the definition of granular hybrid automata. Inverted pendulum system is a nonlinear unstable system. According to its strong coupling, the swing and stabilizing procedure can be divied into three granular worlds. The threshold conditions of jumping between different granular worlds were given. It can fulfil the stability control of the inverted pendulum through the jump among the three granular worlds. The control simulation results indicated that the proposed control strategy can swing the inverted pendulum and stabilize it at the goal position in a short time.
     (3) Presented a binary granular matrix-based attribute reduction algorithm (BGMAR in short). BGMAR algorithm consists of two sub-algorithms which are binary granular matrix-based universe reduction (BGM-UR) and binary granular matrix-based minimum reduction (BGM-MR). Due to the repeated or contradictory objects in the universe, the BGM-UR algorithm can delete such objects and shrank the sample space where the BGM-MR will work on. Aiming that the most existing reduction algorithms cannot find the minimum attributes set, the BGM-MR find the core by calculating the wightness of each condition attribute and exploits the dependency degree as heuristic information to search the minimum reduction. The BGMAR algorithm is evaluated effective by two examples. It concludes that BGMAR algorithm is suitable not only to consistent decision table but also to inconsistent decision table, which can get the minimum reduction for both.
     (4) Built a framework of binary granular neural network. It takes GrC as the front-end processor of ANN. A binary granular neural network classifier (BGNNC) was proposed under the framework. It was defined as a septuple. BGNNC algorithm reduces the feature space and can find the key features, and then uses the additional momentum adaptive learning rate adjustment to train BGNNC, finally realizes the pattern classification. Breast Cancer Wisconsin (Diagnostic), Iris, Wine and Zoo datasets from UCI database are chosen to test the effectiveness of BGNNC algorithm. The results were compared with standard BP classification algorithm and shew that BGNNC has higher classification precision and better generalization than standard BP algorithm.
     (5) Applied the BGNNC algorithm to solve the mechanical fault diagnosis problem. In light of respective fault mechanism of the internal combustion engine (as the example of reciprocating machine) and the rolling bearing (as the example part of rotating machine), BGNNC was applied to diagnose the faults in them. The contrast experiment was designed to compare BGNNC algorithm with BP algorithm and Immune Population Network algorithm. The experiment results indicated that BGNNC has fast training speed and high diagnosis accuracy. It is proved that BGNNC is a feasible and efficient intelligent diagnosis method.
引文
[1] T. Y. Lin. Granular computing, announcement of the BISC Special Interest Group on Granular Computing. 1997.
    [2]高平安,蔡自兴,蒙祖强.数据分类中的粒度计算[J].计算机工程, 2007, 33(14): 41-42, 45.
    [3]李道国,苗夺谦,张红云.粒度计算的理论、模型与方法[J].复旦学报, 2004, 43(5): 837-841.
    [4]张铃,张钹.模糊商空间理论(模糊粒度计算方法) [J].软件学报, 2003, 14(4): 770-776.
    [5]李道国,苗夺谦,张东星等.粒度计算研究综述[J].计算机科学, 2005, 32(9): 1-12.
    [6]王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报, 2007, 2(6): 8-26.
    [7]谢克明,逯新红,陈泽华.粒计算的基本问题和研究[J].计算机工程与应用, 2007, 43(16): 41-44.
    [8] L. A. Zadeh. Fuzzy sets and information granularity[J]. Advances in Fuzzy Systems-Applications and Theory, 1979, 6: 3-18.
    [9] Z. Pawlak. Rough sets[J]. International Journal of Information and Computer Science, 1982, 11(5): 341- 356.
    [10] Jerry R. Hobbs. Granularity[C]. In Proc. IJCAI, Los Angeles, 1985: 432-435.
    [11]张钹,张铃.问题求解理论及应用[M].北京:清华大学出版社, 1990.
    [12] Z. Pawlak. Rough Sets: Theoretical aspects of reasoning about data[M]. Boston: Kluwer Academic Publishers, 1991.
    [13] Z. Pawlak. Granularity of knowledge, indiscernibility and rough sets[C]. Proceedings of 1998 IEEE International Conference on Fuzzy Systems, 1998: 106-110.
    [14] L. A. Zadeh. From Computing with Numbers to Computing with Words-From Manipulation of Measurements to Manipulation of Perceptions[J]. Intelligent Systems and Soft Computing, 2000: 3-40.
    [15] L. A. Zadeh. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic[J]. Fuzzy Sets and Systems, 1997, 19(2): 111-127.
    [16] J. T. Yao. A Ten-year Review of Granuluar Computing[C]. Proceedings of 2007 IEEE International Conference on Granular Computing, Silicon Valley, USA, Nov 2-5, 2007: 734-739.
    [17]中国知网——CNKI知识概念元库. http://trend.cnki.net/.
    [18] Thiele H. On Semantic Models for Investigating Computing with words[C]. In: Second Int. Conf. on Knowledge Based Intelligent E1ectronic Systems, Adelaide, 1998: 32-98.
    [19] Fei-Yue Wang, Yue-Tong Lin, James B. Pu. Linguistic dynamic systems and computing with words for complex systems[C]. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Nashville, USA, 2000, 4: 2399-2404.
    [20]王飞跃.词计算和语言动力学系统的基本问题和研究[J].自动化学报, 2005, 31(6): 844-852.
    [21] L. Polkowski, A. Skowron. Rough-Neuro Computing[C]. Proceedings of the Second International Conference on Rough Sts and Current Trends in Computing (RSCTC’2000), October 16-19, 2000,Banff, Canada, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, 2000: 25-32.
    [22] A. Skowron. Toward Intelligent Systems: Calculi of Information Granules[C]. Proceedings of International Workshop on Rough Set Theory and Granular Computing (RSTGC’2001), May, 20-22, 2001, Matsue, Shimane, Japan, 2001: 9-30.
    [23] J. F. Peters, A. Skowron, Z. Suraj, et. al. Measures of Inclusion and Closeness of Information Granules: A Rough Set Approach[C]. Proceedings of the Third International Conference on RSCTC’2002, October 14-16, 2002, Malvern, PA, USA, Springer, 2002: 300-307.
    [24] LIN T Y.. Neighborhood systems and relational database[C]. Proceedings of CSC’88, New York, 1988.
    [25] T. Y. Lin. Granular Computing on Binary Relations I: Data Mining and Neighborhood Systems[C]. In: Rough Sets in Knowledge Discovery, Heidelberg (Germany): Physica-Verlag, 1998: 107-121.
    [26] T. Y. Lin. Granular Computing on Binary Relations II: Rough Set Representations and Belief Functions[C]. Rough Sets in Knowledge Discovery. Heidelberg (Germany): Physica-Verlag, 1998: 121-140.
    [27] L IN T Y. Granular fuzzy sets: a view form rough set and probability theories [J]. International Journal of Fuzzy Systems, 2001, 3(2): 373-381.
    [28] Yao J. T., Yao Y. Y.. Induction of Classification Rules by Granular Computing[C]. Proceedings of the Third International Conference on RSCTC’2002, Springer 2002: 331-338.
    [29]刘斓,刘清.基于粒的二进制运算的关联规则提取方法[J].南昌大学学报, 2003, 27(1): 98-101.
    [30]刘清. Rough集及Rough推理[M].北京:科学出版社, 2001.
    [31]刘清,黄兆华. G-逻辑及其归结推理[J].计算机学报, 2004, 27(7): 865-873.
    [32]庞继芳,梁吉业.不完备决策表中的粒度思想[J].电脑开发与应用, 2006,19(2): 9-11.
    [33]钱宇华,梁吉业,曹付元等.决策表决策规则与知识粒度[J].电脑开发与应用, 2006, 19(3): 27-29.
    [34]苗夺谦,范世栋.知识的粒度计算及其应用[J].系统工程理论与实践, 2002, (1): 48-56.
    [35]胡峰,黄海,王国胤等.不完备信息系统的粒计算方法[J].小型微型计算机系统, 2005, 26(8): 1335-1339.
    [36]陈泽华,谢刚,谢克明.粒矩阵与Rough关系矩阵[J].太原理工大学学报, 2008, 39(4): 379-382.
    [37]阎高伟,谢刚,牛昱光,谢克明. KMEA算法及其在多传感器融合系统中的应用[J].计算机工程与应用, 2008, 44(26): 25-29.
    [38] T. Y. Lin. Data mining: granular computing approach methodologies for knowledge discovery and data mining[C]. Proceedings of PAKDD’99, 1999: 24-33.
    [39] T. Y. Lin, Eric Louie. Data mining using granular computing: fast algorithms for finding association rules[C]. Data mining, rough sets and granular computing, Physica-Verlag, 2002: 23-45.
    [40] T. Y. Lin. Data mining and machine oriented modeling: a granular computing appraoch[J]. Journal of Applied Intelligence, 2000, 13(2): 113-124.
    [41] T. Y. Lin. Granular computing: structures, representations, applications and future directions[C]. TheProceedings of 9th International Conference, RSFDGrC2003, 2003: 16-24.
    [42] T. Y. Lin. A Roadmap from Rough Set Theory to Granular Computing[C]. In: The Proceedings of RSKT2006, LNAI 4062, Springer, 2006, 7: 33-41.
    [43] T. Y. Lin. Granular computing: a problem solving paradigm[C]. The Proceedings of the 2005 IEEE International Conference on Fuzzy Systems, 2005: 132-137.
    [44] Y. Y. Yao. Relational interpretations of neighborhood operators and rough set approximation operators[J]. Information Sciences, 1998, 111: 239-259.
    [45] Y. Y. Yao. Rough sets, neighborhood systems, and granular computing[C]. Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering, 1999: 1553-1558.
    [46] Y. Y. Yao. Granular computing using neighborhood systems, advances in soft computing: engineering design and manufacturing[C]. The 3rd On-line World Conference on Soft Computing (WSC3), London, 1999: 539-553.
    [47] Y. Y. Yao. Granular Computing: Basic Issues and Possible Solutions[C]. Proceedings of the 5th Joint Conference on Information Sciences. Durhan (USA): Association for Intelligent Machinery, 2000, 1: 186-189.
    [48] Y. Y. Yao. Modeling data mining with granular computing[C]. Proceedings of the 25th Annual International Computer Software and Applications Conference (COMPSAC 2001), 2001: 638-643.
    [49]张文修,仇国芳.基于粗糙集的不确定性决策[M].北京:清华大学出版社, 2005.
    [50]仇国芳,陈劲.概念知识系统与概念信息粒格[J].工程数学学报, 2005, 22 (6): 963-969.
    [51]曲开社,翟岩慧.偏序集、包含度与形式概念分析[J].计算机学报, 2006, 29(2): 219-226.
    [52]蒙祖强,史忠植.粒度世界拓扑结构的理论研究[J].控制与决策, 2007, 22(9): 1017-1021, 1026.
    [53]蒙祖强,史忠植.不完备信息系统中基于相容粒度计算的知识获取方法[J].计算机研究与发展, 2008, 45(S1): 264-267.
    [54]李鸿.粒集理论——粒计算的新模型[J].重庆邮电大学学报(自然科学版), 2007, 19(4): 397-404.
    [55] K. Hirota, W. Pedrycz. Fuzzy computing for data mining[C]. Proceedings of the IEEE, 1999, 87(9): 1575-1600.
    [56] W. Pedrycz. Fuzzy equalization in the construction of fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 119(2): 329-335.
    [57] W. Pedrycz, A. Bargiela. Granular clustering: A granular signature of data[J]. IEEE Transactions on Systems, Man and Cybernetics Part B-Cybernetics, 2002, 32(2): 212-224.
    [58]张旻,吴涛.商空间粒度计算理论在数据库和数据仓库中应用[J].计算机工程与应用, 2003, 39(17): 47-49.
    [59]耿志强,朱群雄,李芳.知识粗糙性的粒度原理及其约简[J].系统工程与电子技术, 2004, 26(8): 1112-1116.
    [60]沈亚兰.基于粒度计算的数据挖掘方法的研究[D].沈阳:沈阳工业大学, 2006.
    [61]卜东坡,白硕,李国杰.聚类/分类中的粒度原理[J].计算机学报, 2002(8): 810-816.
    [62] W. Pedrycz, M. H. Smith, A. Bargiela. A Granular Signature of Data[C]. Int. Conf. NAFIPS-2000, Atlanta, June, 2000: 69-73.
    [63] H. Hirota, W. Pedrycz. Fuzzy Relational Compression[J]. IEEE Trans. Syst, Man, Cybern., pt.B, 1999, 29(3): 407- 415.
    [64]修保新,任双桥,张维明.基于模糊信息粒化理论的图像插值方法[J].国防科技大学学报, 2004, 26(3): 34-38.
    [65]刘仁金,黄贤武,孟静等.基于商空间的纹理图像分割[J].计算机应用, 2004, 24(7): 37-39.
    [66]修保新,吴孟达.图像模糊信息粒的适应性度量及其在边缘检测中的应用[J].电子学报, 2004, 32(2): 274-277.
    [67]逯新红.粒计算及其在图像分割中的应用[D].太原:太原理工大学, 2007.
    [68]王军.粒计算及其在图像分类中的应用研究[D].南昌:南昌大学, 2007.
    [69]张向荣,谭山,焦李成.基于商空间粒度计算的SAR图像分类[J].计算机学报, 2007, 30(3): 483-490.
    [70]程兰.粒计算理论研究及其在图像增强中的应用[D].太原:太原理工大学, 2008.
    [71]朱晓然.粒度计算及其在机械故障诊断中的应用[D].兰州:兰州理工大学, 2008.
    [72]江志农,马晋,蔡镇.机械故障诊断中征兆的粒度原理及应用[J].振动工程学报, 2008, 21(6): 630-634.
    [73]连光耀,黄考利,杨锁昌.功能层次分解的建模方法在知识获取中的应用[J].弹箭与制导学报, 2004, 24(2): 196-199.
    [74] Q. Liu, J. Feng, D. Deng. Design and Implement for Diagnosis Systems of Hemorheology on Blood Viscosity Syndrome Based on GrC[C]. RSFDGrC 2009, LANI 2639, Spring-Verlag Berlin Heidelberg, 2003: 413-420.
    [75]张持健,李旸,张铃.商空间理论(粒度计算方法)实现高精度模糊控制[J].计算机工程与应用, 2004, (11): 37-39, 45.
    [76]吴磊,王银乐,胡新欣.高压直流输电系统自适应粒度控制[J].东北电力技术, 2005, (12): 1-3.
    [77]郝晓丽,谢克明.基于粒度计算的二级倒立摆模糊控制策略[J].中北大学学报(自然科学版), 2007, 28(6): 506-511.
    [78]赵权.基于粒度分析原理的模糊聚类算法研究[D].太原:山西大学, 2008.
    [79]何明.一种基于粒度的粗糙聚类分析方法[J].计算机工程, 2008, 34(8): 203-204, 207.
    [80]王兴野.基于商空间粒度计算的信息预测研究[D].太原:中北大学, 2008.
    [81]刘清,刘群.粒与粒计算在逻辑推理中的应用[J].计算机研究与发展, 2004, 41(4): 546-551.
    [82]邓一平.基于粒计算的多智能主体任务分配研究[D].南昌:南昌大学, 2007.
    [83]刘明生.粒计算及其在本体学习中应用的研究[D].南昌:南昌大学, 2007.
    [84] McCulloch W S, Pitts W. A Logical Calculus of the Ideas Immanent in Nervous Activity[J]. Bulletin of Mathematical Biophysics, 1943, 5: 115-133.
    [85] Hebb D O. The Organization of Behavior: A Neuropsychological Theory[M]. New York: Wiley,1949.
    [86] Frank Rosenblatt. The Perceptron: A Probabilistic model for Information Storage and Organization in the Brain[J]. Psychological Review, 1958, (65): 386-408.
    [87] Hopfield J J. Neural Networks and Physical Systems With Emergent Collective Computational Abilities[C]. Proc Natl Acad Scien, USA, 1982, (79): 2445-2558.
    [88] Rumelhart D E, et al. Learning Representation by BP Errors[J]. Nature(London), 1986, (7): 149-154.
    [89]孙光民,张程,王鹏等.基于非线性PCA神经网络的手写体字符识别[J].北京工业大学学报, 2007, 33(9): 915-919.
    [90]吴成东,刘文涵,傅小菲等.基于粗网格神经网络的车牌字符识别方法[J].沈阳建筑大学学报(自然科学版), 2007, 23(4): 693-697.
    [91]韩文静,李海峰,韩纪庆.基于长短时特征融合的语音情感识别方法[J].清华大学学报(自然科学版), 2008, 48(S1): 708-714.
    [92] Christopher M. Bishop. Neural Networks for Pattern Recognition[M]. Oxford: Oxford University Press, 2005.
    [93] Y. Ichikawa, T. Sawa. Neural network application for direct feedback controllers[J]. IEEE Transactions on Neural Networks, 1992, 3(2): 224-231.
    [94] Patton R J, Frank P M, Clark R. Fault diagnosis in dynamic systems theory and application[C]. Prentice Hall, Herfordahire, 1989.
    [95] Frank P M. Analytical and qualitative model-based fault diagnosis-a survey and some new result[J]. European J.of Control, 1996, 2(l):6-28.
    [96] Frank P M. Fault detection in dynamic system using analytical and knowledge-based redundancy - a survey and some new result[J]. Automation, 1990, 26(3): 459-474.
    [97]周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社,1994.
    [98]李渭华,萧德云,方崇智.一种基于自适应滑动窗格形滤波算法的故障检测器[J].自动化学报, 1996, 22(2): 251-253.
    [99]叶昊,王桂增,方崇智等.一种基于小波变化的导弹运输车辆故障诊断方法[J].自动化学报, 1998, 24(3): 301-306.
    [100]胡寿松,周川,王源.基于小波神经网络的组合故障模式识别[J].自动化学报, 2002, 28(4): 540-543.
    [101]窦东阳,赵英凯.基于优先级诊断树的旋转机械故障诊断专家系统[J].中国电机工程学报, 2008, 28(32): 82-88.
    [102]吴宗彦,韩煜,张建军等.基于模糊神经网络的自动生产线故障诊断方法研究[J].中国机械工程, 2008, 19(9): 1072-1075.
    [103]陈果.神经网络规则提取及其在转子故障诊断中的应用研究[J].振动与冲击, 2009, 28(3): 59-62.
    [104]姚鑫骅,徐月同,傅建中等.基于粗糙集理论的数控机床智能故障诊断研究[J].浙江大学学报(工学版), 2008, 42(10): 1719-1724.
    [105] Zhou D H, Frank P M. Fault diagnostics and Fault tolerant control[J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(2): 420-427.
    [106]陈强,郑德玲,李湘萍.基于人工免疫的故障诊断模型及其应用[J].北京科技大学学报, 2007, 29(10): 1041-1045.
    [107]周川,胡寿松.基于神经网络的非线性观测器及在线故障检测[J].数据采集与处理, 1998, 13(3): 206-209.
    [108] Yan-Qing Zhang, Martin D. Fraser, Ross A. Gagliano et al. Granular Neural Networks for Numerical-Linguistic Data Fusion and Knowledge Discovery[J]. IEEE transactions on neural networks, 2000, 11(3): 658-667.
    [109]行小帅,焦李成.粒度神经网络对数字语言的数据融合[J].计算机科学, 2002, 29(11): 40-43.
    [110]丁雪梅,伦立军,李英梅.神经网络中的粒子权重计算[J].计算机工程, 2005, 31(4): 175-177.
    [111] Y. Y. Yao. Perspectives of Granular Computing[C]. Proceedings of 2005 IEEE International Conference on Granular Computing, 2005: 85-90.
    [112]程伟,石扬,张燕平.粒度计算的三种主要方法[J].计算机技术与发展, 2007, 17(3): 91-94.
    [113]李然,林和,李永礼.高效的不完备信息系统知识约简算法研究[J].计算机工程与应用, 2006, 15: 168-170.
    [114]苗夺谦,王国胤,刘清等.粒计算:过去、现在与展望[M].北京:科学出版社, 2007.
    [115] L. A. Zadeh. Fuzzy logic=Computing with words[J]. IEEE Transactions on Fuzzy Systems, 1996, 4(2): 103-111.
    [116]张文修,吴伟志,梁吉业等.粗糙集理论与方法[M].北京:科学出版社, 2001.
    [117]陈泽华.粒计算及人工选择算法理论研究[D].太原:太原理工大学, 2007.
    [118] R. Flex, T. Ushio. Rough Sets-based Machine Learning Using a Binary Discerniblity Matrix[C]. IPMM’99 published, 1999: 299-305.
    [119]王珏,王任,苗夺谦等.基于Rough Set理论的“数据浓缩”[J].计算机学报, 1998, 21(5): 393-400.
    [120] T. Y. Lin, Ping Yin. Finding the Reduct by granular computing using bit maps: decision rules mining[C]. In: Data Mining and Knowledge Discovery: Theory, Tools, and Technology V, B. Dasarathy (ed), 2003: 82-93.
    [121]屈婉玲,耿素云,张立昂.离散数学[M].北京:清华大学出版社, 2005.
    [122]支云天,苗夺谦.二进制可辨矩阵的变换及高效属性约简算法的构造[J].计算机科学, 2002, 29(2): 140-143.
    [123]章臣椒.锅炉动态特性及其数学模型[M].北京:水利电力出版社, 1987.
    [124] Keming Xie, Jing Yang T. Y. Lin. Modeling Analysis for the Temperature System Using Rough Sets[C]. Proceedings of 2000 5th International Conference on Signal Processing (ICSP 2000, WCC2000). Beijing, 2000: 1714-1717.
    [125]李道国,苗夺谦,杜伟林.粒度计算在人工神经网络中的应用[J].同济大学学报(自然科学版), 2006, 34(7): 960-964.
    [126] Witold Pedrycz, George Vukovich. Granular neural networks[J]. Neurocomputing, 2001, (36): 205-224.
    [127] Sung-Kwun Oh, Keon-Jun Park, Witold Pedrycz. Methodological Identification of Information Granules-Based Fuzzy Systems by Means of Genetic Optimization[C]. RSCTC2006, 2006: 467-476.
    [128] Alexander Valishevsky, Arkady Borisov. ANGIE: Adaptive Network for Granular Information and Evidence Processing[C]. Fifth International Conference on Application of Fuzzy Systems and Soft Computing ICAFS-2002, Milan, Italy, 2002, 166-173.
    [129] Vassilis G. Kaburlasos, S.E. Papadakis. Granular self-organizing map (grSOM) for structure identification[J]. Neural Networks, 2006, (19): 623–643.
    [130] Byoung-Jun Park, Witold Pedrycz, Sung-Kwun Oh. An approach to fuzzy granule-based hierarchical polynomial networks for empirical data modeling in software engineering[J]. Information and Software Technology, 2008, (50): 912–923.
    [131] W. Pedrycz, H.S. Park, S.K. Oh. A granular-oriented development of functional radial basis function neural networks[J]. Neurocomputing, 2008, 72(1-3): 420-435.
    [132]徐银,周文江,王伦文.基于构造型神经网络和商空间粒度的聚类方法[J].计算机工程与应用, 2007, 43(29): 165-167, 185.
    [133] UCI benchmark databases, http://www.ics.uci.edu/pub/machine-learning-databases/
    [134] Skowron A. Rauszer C. The Discernibility Matrics and Functions in Information System[J]. Intelligent Decision Support Handbook of Applications and Advances of the Rough Sets Theory Dordrecht, 1992: 331-362.
    [135]金仁杰.神经网络动量—自适应学习率BP算法与BP算法的性能比较及其应用[J].微型电脑应用, 2001, 17(7): 30-32.
    [136]李红芳.基于无量纲免疫检测器的机组并发故障诊断技术的研究[D].太原:太原理工大学, 2008.
    [137]冯志鹏,宋希庚.旋转机械振动故障诊断理论与技术[J].振动与冲击, 2001, 20(4): 36-39.
    [138]杨伟东,李华,李岭森等.机械故障诊断的神经网络技术[J].河北工业大学学报, 2001, 26(4): 10-15.
    [139]高文志.人工神经网络的发展研究内容及应用[J].山东电子, 1998, 4: 5-7.
    [140]郝丽娜,王伟,吴光宇等.粗糙集-神经网络故障诊断方法研究[J].东北大学学报(自然科学版). 2003, 24(3): 252-255.
    [141]张吉先,钟秋海,戴亚平. RBF及模糊神经网络在旋转机械故障诊断中的应用[J].系统仿真学报, 2004, 16(3): 560-563.
    [142]蔡琳,陈家斌,黄远灿等.基于神经网络专家系统的卫星姿态确定系统故障诊断[J].东南大学学报(自然科学版), 2005, 35(S2): 181-184.
    [143]杜剑维,王银燕.基于灰色理论与神经网络的柴油机相继增压系统故障预测与诊断[J].内燃机学报, 2008, 26(6): 543-549.
    [144]赵鹏程,朱焕勤,孟凡芹等.基于小波神经网络的油泵故障诊断[J].西南石油大学学报(自然科学版), 2008, 30(4): 176-180, 28.
    [145]陈果.粗糙集-遗传算法-神经网络集成分类器及其在转子故障诊断中的应用研究[J].中国机械工程, 2008, 19(1): 85-90.
    [146]王仲生.智能容错技术及应用[M].北京:国防工业出版社, 2002.
    [147]黄文虎,夏松波,刘瑞岩等.设备故障诊断原理、技术及应用[M].北京:科学出版社, 1997.
    [148]张晶晶.粗糙集在故障诊断中的应用[D].南京:南京理工大学, 2006.
    [149] Ryszard Nowieki. Evatuation of vibroacoustic diagnostic symptoms by means of the rough sets theory[J]. Computers in Industry, 1992, 20(2): 141-152.
    [150]于海燕,王道平,张霞.基于粒计算的不完备信息系统的规则提取方法[J].计算机工程与应用, 2009, 45(8): 143-145.
    [151]谢珺,郝伟,谢克明.免疫群体网络算法及其在电站风机故障诊断中的应用[J].北京工业大学学报, 2008, 34(11): 1207-1210.
    [152]李海军,王钲旋,王利民等.基于主成分分析提升朴素贝叶斯[J].仪器仪表学报, 2004, 25(4): 384-386.
    [153]莫以为,萧德云.混合动态系统极其应用综述[J].控制理论与应用, 2002, 19(1): 1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700