用户名: 密码: 验证码:
Ⅰ.甾体化合物的合成、杂质分离鉴定以及生物活性研究 Ⅱ.五元环碳糖的立体选择性合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作包括两大部分:第一部分为甾体化合物的合成、杂质分离鉴定以及生物活性研究;第二部分为五元环碳糖的立体选择性合成研究。
     第一部分:甾体化合物的合成、杂质分离鉴定以及生物活性研究,具体又可分为3个方面的工作:
     (1)长期以来,油菜甾醇类化合物因具有极高的植物生长激素活性而备受关注。本文中,我们对其未报导的生物活性进行了研究,并设计合成了一系列的新型衍生物。为研究其新的适应症,我们首先选取部分有代表性的油菜甾醇类化合物,针对抗良性前列腺增生活性进行了体外活性测试,结果表明24-表油菜甾醇内酯(25)具有较好的活性。进一步通过对24-混表油菜甾醇内酯(BR-3)及其主要成分24-表油菜甾醇内酯(25)和(22S,23S)-24-表油菜甾醇内酯(59)分别进行体内试验,发现化合物25对大鼠前列腺增生有一定的特异性抑制作用,而其异构体59则基本无效。由于油菜甾醇类化合物的价格昂贵,来源稀缺,使其在应用特别是新药研发上受到很大的局限性,为此,我们以价格低廉的猪去氧胆酸为原料,设计并合成了一系列A/B环改造和边链简化的衍生物,并针对与前列腺疾病相关的受体靶点进行了活性测试。这些研究,对发现油菜甾醇类化合物的新活性,新用途,及构效关系的进一步探讨与总结提供了参考价值。
     (2)抗早孕甾体药物米非司酮的合成工艺中,环氧化反应是最关键的步骤,提高其立体选择性始终是人们研究的重点,我们结合前人的研究基础,合成了8个金鸡纳碱的季胺盐(PTC A-H)作为相转移催化剂来催化雌甾-△5(10),9(11)-双烯的环氧化反应,结果显示,C8,C9同时为R构型的PTC G和H表现出比较好的催化性能,将a环氧产物的比例从4:1提高到7:1。我们的推测,手性中心的不同使得催化剂具有不同的构象,影响了底物与氧化剂的结合方式,通过在热力学和动力学上的最优过渡态来介导环氧化反应,从而造成了面选择性的差异,提高αα环氧产物的比例。
     (3)根据当前欧美国家GMP要求,所有在欧美国家销售的药品,包括原料药均应有相应的杂质列表,GMP中特别强调对于0.1%以上含量的杂质应进行结构论证及毒理评判。为此我们对坎利酮生产过程(以4-AD作为起始原料)中产生的相关物质进行了分离和结构论证工作。在杂质分离提取过程中,分得并鉴定了11个甾体化合物。超过0.1%的杂质有3个,为化合物CAN-06, CAN-07和CAN-09。共有4个新化合物,分别是CAN-01, CAN-03, CAN-07和CAN-09。我们推测,绝大部分杂质都是Michael-1,6加成反应的结果,某些杂质可能是坎利酮生物转化中的代谢物或中间体。分离鉴定这些合成过程中产生的杂质,不仅可以帮助建立药物的质控标准,对于鉴定一些微量的代谢物和对了解代谢过程也会有所帮助。
     第二部分:五元环碳糖的立体选择性合成研究
     碳糖(carbasugars)是一类呋喃或吡喃糖环中的氧原子被亚甲基取代所形成的糖类似物。这类化合物的性质与母体糖相似,某些多官能团的碳环糖化合物具有特定生物活性,对某些以碳水化合物为底物的酶有一定的亲和力,但与碳水化合物不同,这些碳环糖化合物不会继续发生生化反应。基于这种特性,含特定官能团碳环结构的化合物常作为酶抑制剂而用于抗菌、抗病毒以及癌症、糖尿病、免疫性炎症等多种疾病的治疗。
     碳糖的合成最早可追溯到上世纪60年代,随着碳糖类化合物的生物活性逐渐被发现,众多的化学家开始探索新的立体选择性全合成的方法。为找寻一条较为简洁的五元环碳糖的合成方法,我们从三方面进行了探索,最终以R-甘油醛缩丙酮134为起始原料,利用RCM反应合成了五元碳环化合物148和160,从这两个关键的五元环中间体出发,利用其环上的手性中心以及不饱和双键,可以引入多种不同的官能团,从而有可能合成出其他碳糖衍生物。
This doctoral dissertation is divided into two parts. Part I is Synthesis, Impurities Isolation and elucidation, Biological Activities Research on Steroids. Part II is Stereoselective Synthesis of Five-Membered Ring Carbasugars.
     1. The first part of this dissertation consists of three subparts
     (1) The synthesis of brassinosteroid derivatives and research on biological activities. Brassinosteroid, as a powerful steroidal plant growth regulator, has received much attention. In this subpart, we described the new biological activity and the synthesis of derivatives of brassinosteroid. In the aspect of new biological activity, the anti-prostatic hyperplasia activity was firstly reported. A series of brassinosteroids were tested in vitro, and 24-epibrassinolide (25) exhibited fairly good activity. Furthermore, through the test of the mixture of 24-epibrassinolide (BR-3) and its main components,24-epibrassinolide (25) and (22S, 23S)-24-epibrassinolide (59) in vivo, we found 24-epibrassinolide (25) could specifically inhibit the hyperplasia of prostate, while the isomer 59 was almost ineffective. In the aspect of the synthesis of derivatives, we started from the cheap and commercially available material, hyodeoxycholic acid to synthesize a series of derivatives with modificationon ring A and B. This structurally diverse modification will help us to investigate structure-activity relationship of brassinosteroids on new bioactivities.
     (2) The epoxidation is the key step in the synthesis of antiprogestin drug, mifepristone. People always focus on the enantioselective to improve the desired alpha epoxide. In this subpart, a modified phase-transfer catalysed enantioselective epoxidation of estra-△5(10)9(11)-diene has been determined and investigated. Eight chiral ammonium salts (PTC A-H), used as phase-transfer catalysts, have been synthesized from cinchona alkaloids. Among them, PTC G and PTC H have exhibited satisfying catalytic activity to improve the ratio ofα/βepoxide up to 7:1. We presume that the chiral ammonium salts assembling the oxidant and the estra-△A5(10),9(11)-diene in a specific three-dimensional arrangement may channel epoxidation through an energetically and entropically favored transition state, which exerted an great influence on the ratio ofα/βepoxide. Meanwhile, this modified method significantly expanded the scope of phase-transfer catalysed epoxidation reaction.
     (3) In this subpart, We have clarified the existence of the impurities in canrenone produced by the process starting from androsta-4-ene-3,17-dione (4-AD for short), and four new and seven known impurities have been confirmed. The structures and configurations of these compounds were elucidated by means of ID and 2D (HMQC, HMBC and ROESY) NMR. The discovery of the new and known compounds which have similar chemical structure may be useful in the quality control of the production of canrenone.
     2. The second part is stereoselective synthesis of five member ring carbasugars.
     Carbasugars are a series of derivatives in which the ring oxygen of a monosaccharide are replaced by a methylene group. The synthesis of carbasugars has undergone extensive development during the 20th century. Here, we wish to establish a simple way to construct the cyclopentene intermediate 112, which could be easily converted to entecavir 93, a powerful anti-HBV drug.
     Starting from commercially available (R)-(+)-2,2-Dimethyl-1,3-dioxolane-4-carboxaldehyde 134, we have used ring-closing metathesis as the key step to prepare five-membered ring carbasugars mimics 148 and 160, in which the unsaturated double bonds provide potent reaction site for introducing other functional groups. For example, compound 160 could be recognized as the critical intermediate in the preparation of antiviral agent N-MCT. However, the whole synthetic route of entecavir hasn't completely finished yet. Further research is still in progress.
引文
[1]Grove, M.D.; Spencer, G.F.; Rohwedder, W.K.; Mandava, N.; Worley, J.F.; Warthen Jr, J.D.; Steffens, G.L.; Flippen-anderson, J.L.; Cook Jr, J.C. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. [J] Nature (London), 1979,257:216-217.
    [2]Maugh II, T. H. New Chemicals Promise Larger Crops. [J] Science,1981,212:33-34.
    [3]Cutler, H. G.; Yokota, T.; Adam, G. [M] Brassinasteroids:Chemistry, Bioactivity& Applications (ACS Symp. Ser.474), American Chemical Society,1991.
    [4]Brosa, C.; Parish, E.J [M] Biological effects of brassinosteroids, in Biochemistry and functions of sterols, Auburn University, Alabama, USA; W. David Nes, Texas Tech University,1997,201-220.
    [5]Clouse, S. D. Plant Chromosomes:Brassinosteroids in the spotlight. [J] Curr. Biol, 1996,6:658-661.
    [6]Clouse, S. D. Brassinosteroid Signaling:Novel Downstream Components Emerge. [J] Curr. Biol,2002,12:R485-487.
    [7]He, Z.; Wang, Z. Y.; Li, J.; et. al Perception of Brassinosteroids by the Extracellular Domain of the Receptor Kinase BRI1. [J] Science,2000,288:2360-2363.
    [8]Schumacher, K.; Chory, J.; Brassinosteroid signal transduction:still casting the actors. [JJ Curr. Opin. Plant Biol.,2000,3:79-84.
    [9]Back T. G.; Pharis, R. P. Structure-Activity Studies of Brassinosteroids and the Search for Novel Analogues and Mimetics with Improved Bioactivity. [J] J Plant Growth Regul.,2003,22:350-361.
    [10]Baron, D. L.; Luo, W.; Janzen, L.; Pharis, R. P.; Back, T. G Structure-activity studies of brassinolide B-ring analogues. [J] Phytochemistry,1998,49:1849-1858.
    [11]Brosa, C.; Capdevila, J. M.; Zamora, I. Brassinosteroids:A new way to define the structural requirements. [J] Tetrahedron,1996,52:2435-2448.
    [12]Mandava, N. B. Plant Growth-Promoting Brassinosteroids. [J] Annu. Rev. Plant Physiol. PlantMol. Biol.,1988,39:23-52.
    [13]Thompson, M. J.; Meudt, W. J.; Mandava, N. B.;Dutky, S. R.; Lusby, W. R.; Spaulding, D. W. Synthesis of brassinosteroids and relationship of structure to plant growth-promoting effects. [J] Steroids,1982,39:89-105.
    [14]Carme, B. Synthesis of new brassinosteroids with potential activity as antiecdysteroids. [J] Steroids,1994,59:463-467.
    [15]Massey, A. P.; Pore, V. S.; Hazra, B. G. New Route for the Synthesis of (225,235)-28-Homobrassinolide. [J] Synthesis,2003,3:426-430.
    [16]周维善,姜标,潘鑫复甾体植物生长促进剂的研究Ⅷ:3α-羟基-7-氧-6-酮-B-高-5α-胆烷酸甲酯的区域选择性合成.[J]化学学报,1989,47:182-185.
    [17]Zhou, W. S.; Jiang, B.; Pan, X. F. Studies on steroidal plant-growth regulators. A new route for the efficient synthesis of the 2,3-dihydroxy-7-oxa-6-oxo-B-homo structural unit of brassinolide. [J] J. Chem. Soc, Chem. Commun.,1988,791-792.
    [18]Brosa, C.; Peracaula, R.; Puig, R.; Ventura, M.; Use of dihydroquinidine 9-0-(9'-phenanthryl) ether in osmium-catalyzed asymmetric dihydroxylation in the synthesis of brassinosteroids. [J] Tetrahedron Lett,1992,33:7057-7060.
    [19]Brosa, C.; Capdevila, J. M.; Zamora, I. Brassinosteroids:A new way to define the structural requirements. [J] Tetrahedron,1996,52:2435-2448.
    [20][20] Marino, J. P.; Dios, A.; Anna, L. J.; Pradilla, R. F. Highly Stereocontrolled Formal Synthesis of Brassinolide via Chiral Sulfoxide-Directed SN2'Reactions. [J] J. Org. Chem.,1996,57:109-117.
    [21]Mcmorris, T. C.; Patil, P. A. Improved synthesis of 24-epibrassinolide from ergosterol. [J] J. Org. Chem.,1993,58:2338-2339.
    [22]Sun, L. Q.; Zhou, W. S.; Pan, X. F.; Studies on steroidal plant growth regulators 22. Osmium tetroxide catalyzed asymmetric dihydroxylation of the (22E,24R)-and the (22E,24S)-24-Alkyl steroidal unsaturated side chain. [J] Tetrahedron:Asymmetry,1991, 2:973-976.
    [23]Huang, L. F.; Zhou, W. S.; Sun, L. Q.; Pan, X. F. Studies on steroidal plant-growth regulators. Part 29. Osmium tetroxide-catalysed asymmetric dihydroxylation of the (22E,24R)-and the (22E,24S)-24-alkyl steroidal unsaturated side chain. [J] J. Chem. Soc. Perkin Trans 1,1993,1683-1686.
    [24]Fung, S.; Siddal, J. B. Stereoselective synthesis of brassinolide:a plant growth promoting steroidal lactone. [J] J. Am. Chem. Soc,1980,102:6580-6581.
    [25]Takatsuto, S.; Yazawa, N.; Ishiguro, M.; Morisahi, M.; Ikakawa, N. Stereoselective synthesis of plant growth-prompting steroids, brassinolide, castasterone, typhasterol, and their 28-nor analogues. [J] J. Chem. Soc. Perkin Trans 1,1984,139-146.
    [26]Ishiguro, M.; Takatsuto, S.; Morisahi, M.; Ikakawa, N. Synthesis of brassinolide, a steroidal lactone with plant-growth promoting activity. [J] J. Chem. Soc, Chem. Commun.1980,962-963.
    [27]Khripach, V. A.; Zhabinskii, V. N.; Olkhovick, V. K. Highly stereoselective synthesis of steroidal 22a-allylic alcohols via 22-aldehydes and 1-silyl-l-iodo-l-alkenes:A new efficient route to the side chain construction of brassinolide. [J] Tetrahedron Lett,1990, 31:4937-4940.
    [28]Back, T. G.; Blazecka, P. G.; Krishna, M. V. A concise synthesis of the brassinolide side chain. [J] Tetrahedron Lett.,1991,32:4817-4818.
    [29]Zhou, W. S.; Shen, Z. W. Study on the synthesis of brassinolide and related compounds. Part 15. Formal synthesis of brassinolide via stereoselective sulphenate-sulphoxide transformation. [J] J. Chem. Soc. Perkin Trans 1,1991,2827-2830.
    [30]Back, T. G.; Baron, D. L.; Luo, W.; Nakajima, S. K. Concise, Improved Procedure for the Synthesis of Brassinolide and Some Novel Side-Chain Analogues. [J] J. Org. Chem., 1997,62:1179-1182.
    [31]Shen, Z. W.; Zhou, W. S. Study on the syntheses of brassinolide and related compounds. Part 14. Highly stereoselective construction of the side-chain of brassinosteroids utilizing the-alkylative 1,3-carbonyl transposition of the steroidal 22-en-24-one. [J] J. Chem. Soc. Perkin Trans 1,1990,1765-1768.
    [32]Zhou, W. S.; Huang, L. F. Studies on steroidal plant-growth regulator 25. Concise stereoselective construction of sidechain of brassinosteroid from the intact sidechain of hyodeoxycholic acid:formal syntheses of brassinolide,25-methylbrassinolide,26, 27-bisnorbrassinolide and their related compounds. [J] Tetrahedron,1992,48: 1837-1852.
    [33]Kametani, T.; Kigawa, M.; Tsubuki, M.; Honda, T. Stereocontrolled synthesis of the brassinolide side-chain:formal synthesis of brassinolide. [J] J. Chem. Soc. Perkin Trans 1,1988,1503-1508.
    [34]Donaubauer, J. R.; Greaves, A. W.; McMorris, T. C. A novel synthesis of brassinolide. [J] J. Org. Chem.,1984,49:2833-2834.
    [35]Peng, L. Z.; Li, Y. L.; Li, W. D. A concise and stereoselective synthesis of the brassinolide and related compounds'side chains. [J] Tetrahedron Lett.,2003,44: 3991-3993.
    [36]Peng, L. Z.; Liu, H. W.; Zhang, T.; Zhang, F. Z.; Mei, T. S.; Li, Y.; Li, Y L. Novel construction of the brassinolide side chain. [J] Tetrahedron Lett,2003,44:5107-5108.
    [37]Adam, G.; Porzel, A.; Schmidt, J.; Schneider, B.; Voigt, B. [M] Studies in natural products chemistry (Atta-ur-Rahman), Amsterdam:Elsevier,1996,18:495.
    [38]Adam, G.; Schneider, B. [M] Brassinasteroids:steroidal plant hormones (Sakurai, A.; Yokota, T.; Clouse, S. D.), Tokyo:Springer-Verlag,1999:113.
    [39]Khripach, V. A.; Zhabinskii, V. N.; Groot, A. E. Brassinasteroids:a new class of plant hormones, Academic Press, San Diego, C. A.1999.
    [40]Luo, W.; Janzen, L.; Pharis, R. P.; Back, T. G. Bioactivity of brassinolide methyl ethers. [J] Phytochemistry,1998,49:637-642.
    [41]Back, T. G.; Janzen, L.; Pharis, R. P.; Yan, Z. Synthesis and bioactivity of C-2 and C-3 methyl ether derivatives of brassinolide. [J] Phytochemistry,2002,59:627-634.
    [42]Back, T. G.; Baron, D. L.; Luo, W.; Nakajima, S. K.; Janzen, L.; Pharis, R. P. [M] Proceedings of the 24th Annual Meeting of the Plant Growth Regulation Society of America, Atlanta,1997,107.
    [43]Fujioka, S.; Noguchi, T.; Takatsuto, S.; Yoshida, S. Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. [J] Phytochemistry,1998,49:1841-1848.
    [44]Seto, H.; Hiranuma, S.; Fujioka, S.; Koshino, H.; Suenaga, T.; Yoshida, S. Preparation, conformational analysis, and biological evaluation of 6a-carbabrassinolide and related compounds. [J] Tetrahedron,2002,58:9741-9749.
    [45]Takatsuto, S.; Ikekawa, N.; Morishita, T.; Abe, H. Structure-Activity Relationship of Brassinosteroids with Respect to the A/B-Ring Functional Groups. [J] Chem. Pharm. Bull.,1987,35:211-216.
    [46]Brosa, C.; Soca, L.; Terricabras, E.; Ferrer, J. C.; Alsina, A. New synthetic brassinosteroids:a 5α-hydroxy-6-ketone analog with strong plant growth promoting activity. [J] Tetrahedron,1998,54:12337-12348.
    [47]Ramirez, J. A.; Gros, E. G.; Galagovsky, L. R. Effects on Bioactivity due to C-5 Heteroatom Substituents on Synthetic 28-Homobrassinosteroid Analogs. [J] Tetrahedron,2000,56:6171-6180.
    [48]Mori, K.; Takeuchi, T. Brassinolide and its analogues, Ⅷ. Synthesis of 25-methyldolichosterone,25-methyl-2,3-diepidolichosterone,25-methylcastasterone and 25-methylbrassinolide. [J] LiebigsAnn. Chem.,1988,815-818.
    [49]Takatsuto, S.; Yazawa, N.; Ikekawa, N. Synthesis and biological activity of brassinolide analogues,26,27-bisnorbrassinolide and its 6-oxo analogue. [J] Phytochemistry,1984, 23:525-528.
    [50]Hayashi, S.; Hohjoh, T.; shida, A.; Ikekawa, N. Eur. Pat. Appl. Ep 281,984 (CI. C0J73/00) (Chem. Abstr.,1989,110,95639s).
    [51]Back, T. G.; Janzen, L.; Nakajima, S. K.; Pharis, R. P. Effect of Chain Length and Ring Size of Alkyl and Cycloalkyl Side-Chain Substituents upon the Biological Activity of Brassinosteroids. Preparation of Novel Analogues with Activity Exceeding that of Brassinolide. [J] J. Org. Chem.,2000,65:3047-3052.
    [52]Hai, T.; Schneider, B.; Adam, G. Metabolic conversion of 24-epi-brassinolide into pentahydroxylated brassinosteroid glucosides in tomato cell cultures. [J] Phytochemistry, 1995,40:443-448.
    [53]Hai, T.; Schneider, B.; Porzel, A.; Adam, G. Metabolism of 24-epi-castasterone in cell suspension cultures of Lycopersicon esculeritum. [J] Phytochemistry,1996,41: 197-201.
    [54]Voigt, B.; Porzel, A.; Golsch, D.; Adam, W.; Adam, G. Regioselective oxyfunctionalization of brassinosteroids by methyl(trifluoromethyl)dioxirane:Synthesis of 25-hydroxy-brassinolide and 25-hydroxy-24-epibrassinolide by direct C-H insertion. [J] Tetrahedron,1996,52:10653-10658.
    [55]Seto, H.; Fujioka, S.; Koshino, H.; Yoshida, S.; Tsubuki, M.; Honda, T. Synthesis and biological evaluation of extra-hydroxylated brassinolide analogs. [J] Tetrahedron,1999, 55:8341-8352.
    [56]Back, T. G.; Nakajima, S. K.; Zhu, J. L. Synthesis of 25-Hydroxy-,26-Hydroxy-and 25,26-Dihydroxybrassinolide. [J] Synlett,2000,11:1649-1651.
    [57]Pharis, R. P.; Janzen, L.; Nakajima, S. K.; Zhu, J. L.; Back, T. G. Bioactivity of 25-hydroxy-,26-hydroxy,25,26-dihydroxy-and 25,26-epoxybrassinolide. [J] Phytochemistry,2001,55:1043-1047.
    [58]Back, T. G.; Janzen, L.; Nakajima, S. K.; Pharis, R. P. Synthesis and Biological Activity of 25-Methoxy-,25-Fluoro-, and 25-Azabrassinolide and 25-Fluorocastasterone: Surprising Effects of Heteroatom Substituents at C-25. [J] J. Org. Chem.,1999,64: 5494-5498.
    [59]Wachsman, M.B.; Lopez, E.F.; Ramirez, J.A.; Galagovsky, L.R.; Coto, C.E. Antiviral effect of brassinosteroids against herpes virus and arenaviruses. [J] Antiviral Chemistry & Chemotherapy,2000,11:71-77.
    [60]Wachsman, M.B.; Ramirez, J.A.; Galagovsky, L.R.; Coto, C.E. Antiviral activity of brassinosteroids derivatives against measles virus in cell cultures. [J] Antiviral Chemistry& Chemotherapy,2002,13:61-66.
    [61]Wachsman, M.B.; Castilla, V.; Talarico, L.B.; Ramirez, J.A.; Galagovsky, L.R.; Coto, C.E. Antiherpetic mode of action of (225,23S)-3β-bromo-5a,22,23-trihydroxy-stigmastan-6-one in vitro. [J] International Journal of Antimicrobial Agents,2004,23: 524-526.
    [62]Castilla, V.; Larz'abal, M.; Sgalippa, N.A.; Wachsman, M.B.; Coto, C.E. Antiviral mode of action of a synthetic brassinosteroid against Junin virus replication. [J] Antiviral Research,2005,68:88-95.
    [63]Talarico, L.B.; Castilla, V.; Ramirez, J.A.; Galagovsky, L.R.; Wachsman, M.B. Synergistic in vitro Interactions between (225,235)-3β-Bromo-5a,22,23-Tri hydroxyl-stigmastan-6-one and Acyclovir or Foscarnet against Herpes simplex Virus Type 1. [J] Chemotherapy,2006,52:38-42.
    [64]Romanutti, C; Castilla, V.; Coto, C.E.; Wachsman, M.B. Antiviral effect of a synthetic brassinosteroid on the replication of vesicular stomatitis virus in Vero cells. [J] InternationalJournal of Antimicrobial Agents,2007,29:311-316.
    [65]Wachsman, M.B.; Ramirez, J.A.; Talarico, L.B.; Galagovsky, L.R.; Coto, C.E. Antiviral Activity of Natural and Synthetic Brassinosteroids. [J] Curr. Med. Chem.-Anti-Infective Agents,2004,3:163-179.
    [66]Santoro, M.; Rossi, A.; Amici, C. NF-kappa B and virus infection:who controls whom, EMBO J.2003,22 (11):2552-2560.
    [67]Michelini, F.M.; Alejandro, B.; Alche, L.E. The in vitro immunomodulatory activity of a synthetic brassinosteroid analogue would account for the improvement of herpetic stromal keratitis in mice. [J] Journal of Steroid Biochemistry& Molecular Biology, 2008,108:164-170.
    [68]Michelini, F.M.; Ramirez, J.A.; Alejandro, B.; Galagovsky, L.R.; Alche, L.E. In vitro and in vivo antiherpetic activity of three new synthetic brassinosteroid analogues. [J] Steroids,2004,69:713-720.
    [69]Frantisek, F.; Tomas, E.; Ladislav, K.24-EPIBRASSINOLIDE AT SUBNANOMOLAR CONCENTRATIONS MODULATES GROWTH AND PRODUCTION CHARAC TERISTICS OF A MOUSE HYBRIDOMA+. [J] Collect. Czech. Chem. Commun.,2003, 68:2190-2200.
    [70]Yao-Dong Wu, Yi-Jia Lou. Brassinolide, a plant sterol from pollen of Brassica napus L., induces apoptosis in human prostate cancer PC-3 cells. [J] Pharmazie,2007,62: 392-395.
    [71]Malikova, J.; Swaczynova, J.; Zdenek, K.; Strnad, M. Anticancer and antiproliferative activity of natural brassinosteroids. [J] Phytochemistry,2008,69:418-426.
    [72]Slavikova, B.; Ladislav, K.; Budesinsky, M.; Swaczynova, J.; Alexander, K. Brassinosteroids:Synthesis and Activity of Some Fluoro Analogues. [J] J. Med. Chem., 2008,51 (13):3979-3984.
    [73]Barbara, E.; Slavkov, B.; Budnsk, Milo.; Martin, D.; Blanka, K.E.; Kotora, M. Synthesis of Fluorinated Brassinosteroids Based on Alkene Cross-Metathesis and Preliminary Biological Assessment. [J] J. Med. Chem,2009,52 (18):5753-5757.
    [74]吴阶平,等主编,黄家驷外科学,第4版,北京:人民卫生出版社,1988,1690.
    [75]洪伟平,袁子彦.良性前列腺增生症发病机理和治疗的研究进展.[J]广东医学院学报,2000,18:64-65.
    [76]Peter J. J.; Mahmoud Raeini-Sarjaz. Plant Sterols and Their Derivatives:The Current Spread of Results. [J] NutrRev.,2001,59:21-24.
    [77]Ayesh R.; Hepburnet, P.A. al. Safety evaluation of phytosterol esters. Part 5. Faecal short-chain fatty acid and microflora content, faecal bacterial enzyme activity and serum female sex hormones in healthy normolipidaemic volunteers consuming a controlled diet either with or without a phytosterol ester-enriched margarine. [J] Food Chem. Toxio.,1999,37:1127-1138.
    [78]Berges, R.R.; Kassen, A.; Senge, T. Treatment of symptomatic benign prostatic hyperplasia with P-sitosterol:an 18-month follow-up. [J] BJU International,2000,85: 842-846.
    [79]陈红莉,补骨脂酚、油菜素内酯及其衍生物的活性和合成研究[D]中国科学院上海药物所博士论文,2009.
    [80]雷贞武,汤和平.米非司酮配伍米索前列腺醇药物流产的安全性评价[J]国外医学计划生育分册,2005,24(3):105-106.
    [81]Bygdeman, M.; Swahn, M.L. Progesterone receptor blockage, Effect on uterine contractility and early pregnancy [J] Contraception,1985,32(1):45-51.
    [82]Edwards, D.P.; Altmann, M.; Marzo, A., et al. Progesterone receptor and the mechanism of action of progesterone antiagonists [J] J Steriod Biochem Molec Biol,1995,53(1-6): 449-458.
    [83]Sartor, O.; Figg, W.D. Mifepristone:antineoplastic studies [J] Clin Obstet Gynecol, 1996,39(2):498-505.
    [84]Spitz, I.M. Progesterone antagonists and progesterone receptor modulators:an overview [J] Steroids,2003,68(10-13):981-993.
    [85]杨业洲,曹泽毅,韩字研等.米非司酮对人早孕绒毛细胞增殖和凋亡的影响[J]中华妇产科杂志,1998;33(5):268-270.
    [86]周霞平,黄健,巫世娟,等米非司酮对人胎盘绒毛滋养层细胞周期动力学的影响[J]中国实用妇科与产科杂志,1999;15(4):227-229.
    [87]张鑫圣,肖敦振,姚念米非司酮对人蜕膜及绒毛内基质金属蛋白酶表达影响的初步研究[J]华中科技大学学报(医学版),2002,31(5):570-572
    [88]Cheng, L.; Kelly, R.W.; Thong, K.J., et al. The effect of mifepristone (RU486) on the immunohistochemical distribution of PGE and its metabolite in decidual and chorionic tissue in early pregnancy [J] Clin Endorcrinol Metab,1993,77(3):873-877.
    [89]Vij, U.; Kumar, A.; Sharma, K.; et al. Effect of mifepristone on steroid receptor expression and biotransformation of oestrogen and progesterone in rat uterus and deciduoma [J] Natl Med J India,2006; 19(2):64-69.
    [90]McGill, J.; Shetty, A. Mifepristone and misoprostol in the induction of labor at term [J] Int J Gynaecol Obstet,2007; 96(2):80-84.
    [91]Paul, D.; Chan, M.D.; Susan, M.; et al.Gynecology and Obstetrics [M] 2004 Edition. US:Current Clinical Strategies Publishing,2004:30.
    [92]周萍,邹丽.米非司酮对早孕绒毛、蜕膜组织中胰岛素样生长因子-Ⅱ mRNA表达的影响[J]汕头大学医学院学报2004,17(1):23-25.
    [93]唐薇,王自能.米非司酮终止妊娠的分子免疫机制[J]海南医学,2005,16(3):124-126.
    [94]Raafat, A.M.; Hofseth, L.J.; Haslam, S.Z. Proliferative effects of combination estrogen and progesterone replacement therapy on the normal postmenopausal mammary gland in a murine model [J] Am J Obstet Gynecol,2001,184(3):340-349.
    [95]Schneider, C.C.; Gibb, R.K.; Taylor, D.D.; et al. Inhibition of endometrial cancer cell lines by mifepristone (RU486) [J] JSoc Gynecol Investig.,1998,5:334-338.
    [96]Blankenstein, M.A.; Verheijen, F.M.; Jacobs, J.M.; et al. Occurrence, regulation, and significance of progesterone receptors in human meningioma [J] Steroids,2000, 65(10-11):795-800.
    [97]Li, D.Q.; Wang, Z.B.; Bai, J.; Zhao, J.; Wang, Y.; Hu, K.; Du, Y.H. Effects of mifepristone on invasive and metastatic potential of human gastric adenocarcinoma cell line MKN-45 in vitro and in vivo [J] World JGastroenterol,2004,10(12):1726-1729.
    [98]Liang, Y.; Eid, M.A.; Etreby, E.F.; et al. Mifepristone-induced secretion of transforming growth factor betal-induced apoptosis in prostate cancer cells [J] Int. J. Oncol.,2002, 21(6):1259-1267.
    [99]Spitz, I.M.; Agranat, I. Antiprogestins:modulaters in reproduction [J] Chem Industry. 1995; Feb 6:89-92.
    [100]Nedelec, L. Bull. Soc. Chim. Fr.1970, (7):2548-2556; C.A.73,109958b.
    [101]Werkwijze ter bereiding van op de 10-plaats gesubstitueerde steroiden door in 19-norsteroien op de plaats 10 een van koolwaterstoffen afgeleide substituent in te voeren. [P] Fr.550974,1968; C.A.71,124799c.
    [102]曾庆椭,王宇辉.抗孕酮新药RU-486的合成研究Ⅰ:3,3-乙撑二氧-5α,10α和5β,10β环氧-△9(11)-雌烯-17酮的合成[J]华西药学杂志,1989,4(3):140-142.
    [103]Ralph, R. Stereoselective epoxidation of A5(10),9(11)-estradienes [J] Tetrahedron Lett, 1985; 26:2069-2071.
    [104]高占先,薛勇.酞菁亚铁/亚碘酰苯催化3-(1’,3’-二氧戊环)-△5(10),9(11)-雌甾二烯-17α-(1-丙炔)-17-β-醇的选择环氧化[J]分子催化2001,15(4):304-306.
    [105]Rohde, R.; Neef, G.; Sauer, G.; Wiechert, R. Stereoselective epoxidation of 5(10), 9(11)-estradienes [J] Tetrahedron Lett,1985,26:2069.
    [106]Teutsch, J.G.; Deraedt, R. Novel steroids [P] U.S.4386085,1981; C.A.98,54293q.
    [107]Teutsch, J.G.; Costerousse, G.; Philibert, D.; Deraedt, R. Roussel-Uclaf. Steroid derivatives substituted at 11β-position [P] F.R.2497807, C. A.1983; 98:54293q.
    [108]Adam, W.; Saha-Moller, C.R.; Ganeshpure, P.A. Synthetic Applications of Nonmetal Catalysts for Homogeneous Oxidations [J] Chem. Rev.,2001,101:3499-3548
    [109]Rusinov, M.E.; Chertorizhskii, E.A. Method of synthesis of 17β-hydroxy-11β- [4-(dimethylamino)-phenyl-17α-(prop-1-inyl)-estra-4,9-diene-one [P] RU:2165938 C1, 2001,04-27.
    [110]DehmLow, E.V.; DehmLow, S.S. Phase Transfer Catalysis [M] 3rd ed. Weinheim:VCH, 1993.
    [111]Christensen, J.J.; Eatough, D.J.; Izatt, R.M. The Synthesis and Ion Bindings of Synthetic Multidentate Macrocyclic Compounds [J] Chem. Rev.,1974,74:351-384.
    [112]Maruoka, K. Enantioselective amino acid synthesis by chiral phase-transfer catalysis [J] Chem. Rev.,2003,103:3013-3028.
    [113]Dolling, U.H.; Davis, P. Efficient Catalytic Asymmetric Alkylations. Enantio-selective Synthesis of (+)-Indacrinone via Chiral Phase-Transfer Catalysis [J] J. Am. Chem. Soc, 1984,106(2):446-447.
    [114]O'Donnell, M.J.; Wu S.; Huffman, J.C. A new active catalyst species for enantioselective alkylation by phase-transfer catalysis [J] Tetrahedron,1994,50: 4507-4518.
    [115]Lygo, B.; To Daniel, C.M. Asymmetric epoxidation via phase-transfer catalysis:direct conversion of allylic alcohols into α,β-epoxyketones [J] Chem. Commun.,2002, 2360-2361.
    [116]Corey E.J.; Zhang F.Y. Mechanism and Conditions for Highly Enantioselective Epoxidation of α,β-Enones Using Charge-Accelerated Catalysis by a Rigid Quaternary Ammonium Salt [J] Org. Lett,1999,1:1287-1290.
    [117]Mariola, Z.B.; Malgorzata, K.; Skarzewski, J. Simple Enantiospecific Synthesis of Sulfides of Cinchona Alkaloids. [J] Synthesis,2006,7:1176-1182.
    [118][Wilfried, M.B.; Holzgrefe, J.; Wartchow, R.; Hoffmann, M.R. Structure and Mechanism in Cinchona Alkaloid Chemistry:Aqueous Hydrolysis Proceeds with Complete Inversion or Complete Retention of Configuration. [J] Angew. Chem. Int. Ed, 2000,39:2085-2087.
    [119]Gerard, D.H.; Richard, M.K.; Wynberg, H. Conformational Study of Cinchona Alkaloids. A Combined NMR and Molecular Orbital Approach. [J] J. Org. Chem.,1990, 55:6121-6131.
    [120]Gerard, D.H.; Richard, M.K.; Svendsen, J.S.; Sharpless, K.B. Conformational Study of Cinchona Alkaloids. A Combined NMR, Molecular Mechanics, and X-ray Approach. [J] J. Am. Chem. Soc,1989,111:8069-8076.
    [121]Sadee, W.; Dagcioglu, M.; Schroder, R. Pharmacokinetics of spironolactone, canrenone and canrenoate-K in humans [J] J. Pharmacol. Exp. Ther,1973,185:686-695.
    [122]Jackson, E.K. Goodman and Gilman's The Pharmacological Basis of Therapeutics [M] McGraw-Hill:New York, U.S.A.,2006; Vol.11, p 737.
    [123]Spark, R.F.; Melby, J.C. Hypertension and Low Plasma Renin Activity:Presumptive Evidence for Mineralocorticoid Excess [J]Ann. Intern. Med,1971,75:831-836.
    [124]Gasparo, M.; Joss, U.; Schmidlin, J. Three new epoxy-spirolactone derivatives: characterization in vivo and in vitro [J] J. Pharmacol. Exp. Ther.,1987,240:650-656.
    [125]Ruth, B.; Jeremy, Q.; Peter, K. Fresh from the pipeline:eplerenone [J] Nat. Rev. Drug. Dis.,2003,2(3):177-178.
    [126]Rabasseda, X.; Silvestre, J.; Castaner, J. Eplerenone:anti-hypertensive, treatment of heart failure, aldosterone antagonist [J] Drugs. Fut.,1999,24(5):488-501.
    [127]Wuts. P.G.M., Ritter. A.R. A novel synthesis of spironolactone.An application of the hydroformylation reaction [J] J. Org. Chem.,1989,54:5180-5182.
    [128]Zhang, Y.H.; Xiong, Z.G. Improved synthesis of canrenone, theintermediate of eplerenone [J] Chinese Journal of Medicinal Chemistry,2005,15:241-243.
    [129]Karim, A., Brown, E.A. Isolation and identification of novel sulfur-containing metabolites of spironolactone (Aldactone) [J] Steroids,1972,20:41-62.
    [130]陈华,两种甾体药物的杂质分离与鉴定[D]中国科学院上海药物所博士论文,2004,P22.
    [131]Shunsaku, N. et al. Reaction of Steroid-17a-hydroxy-17-carboxylic Acids with Carbodiimides. Synthesis of Steroid-17-spiro-5'-[2'-imino-4'-oxazolidinones] and 17-Spiro-5'-[2',4'-oxazolidinediones] [J] Chem. Pharm. Bull, (TOKYO) 1994,42(8): 1567-1570.
    [132]Fieser, L.; Fieser, M. Steroids [M] Reinhold Publishing Corp; New York, U.S.A.,1959, p530.
    [133]David, L.; Raginald, L. [P] WO 9428904,1994.
    [134]Dieter, L.; Roberts, J.D. Nuclear magnetic resonance spectroscopy, Carbonl3 spectra of cholic acids and hydrocarbons included in sodium desoxycholate solutions [J] J. Am. Chem. Soc,1973; 95(15):4996-5003.
    [135]杨中铎,两种植物化学成分及三种甾体药物的质控标准的研究[D]中国科学院上海药物所博士论文,2004,P60.
    [136]James, R.H.; Michael, S.13C nuclear magnetic resonance spectra of some steroidal unsaturated ketones [J] J. Chem. SocPerkin Ⅰ,1975,1956-1958.
    [137]Daniel, M.T.6,7-Dihydroxy-6,7-dihydrocanrenone isomers:Improved synthesis and proton NMR study [J] Steroids,1989,54:113-122.
    [138]Palem-Vliers, M.; Genard, P.; Hacha, R. Binding of natural spirolactone derivatives to mineralo-and glucocorticoid receptors of the rat kidney. [J] Archives Internationales de Physiologie et de Biochimi,1987,95:373-374.
    [139]Sears, P.; Wong, C.H. Carbohydrate Mimetics:A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition [J] Angew. Chem. Int. Ed, 1999,38(16):2300-2324.
    [140]Foxall, C; Watson, S.R.; Dowbenko, D. et al, The Three Members of the Selectin Family Recognize a Common Carbohydrate Epitope, the Sialyl Lewis X Oligosaccharides [J] J. Cell. Biol.,1992,117:895-902.
    [141]Driguez, H.; Thiem, J. [M] Glycoscience:Synthesis of Substrate Analogs and Mimetics, Berlin; Springer,1999:157-186.
    [142]Fraser-Reid, B.O.; Tatsuta, K.; Them, J. [M] Glycoscience:Chemistry and Chemical Biology, Vol.3, Berlin:Springer,2001:2541-2594.
    [143]Anzeveno, P.B.; Creemer, L.J.; Daniel, J.K.; King, C.H.; Liu, P. S. A facile, practical synthesis of 2,6-dideoxy-2,6-imino-7-O-(3-D-glucopyranosyl-D-glycero-L-gulo-heptitol (MDL 25,637) [J] J. Org.Chem.,1989,54:2539, and refs cited therein.
    [144]a). Postema, M.D. C-Glycosides Synthesis [M] Boca Raton, CRC Press Inc.:London, UK,1995. b). Du, Y.; Linhardt, R.J.; Vlahov, I.R. Recent Advances in Stereoselective C-Glycoside Synthesis [J] Tetrahedron,1998,54:9913-9957.
    [145]a). Jay, M. in J. B. Harborne (Ed.). The Flavonoids:Advances in Research Since 1986, Chapman and Hall, London,1994,57-93. b). Jay, M.; Viricel, M.R.; Gonnet, J.F. in: O.M. Andersen, K.R. Markham (Eds.), Flavonoids:Chemistry, Biochemistry and Applications, CRC Press, Boca Raton,2006,875-915.
    [146]a). Cutrone, J.Q.; Kolb, J.M.; McBrien, K. et al. Quanolirones I and II, Two New Human Cytomegalovirus Protease Inhibitors Produced by Streptomyces sp. WC76535 [J] J. Nat. Prod.,1998,61:1379-1382. b). Ford, P.; Gadepalli, W.M.; Davidson, B.S.; Halawanones, A.D. New Polycyclic Quinones from a Marine-Derived Streptomycete [J] J. Nat. Prod.,1998,61:1232-1236.
    [147]McCasland, G.E.; Furuta, S.;. Durham, L.J. Alicyclic Carbohydrates. XXIX. The Synthesis of a Pseudo-Hexose (2,3,4,5-Tetrahydroxycyclohexanemethanol) [J] J. Org. Chem.,1966,31(5):1516-1521.
    [148]Mahmud, T. The C7N aminocyclitol family of natural products [J] Nat. Prod. Rep., 2003,20(1):137-166.
    [149]Berecibar, A.; Grandjean, C.; Siriwardena, A. Synthesis and Biological Activity of Natural Aminocyclopentitol Glycosidase Inhibitors:Mannostatins, Trehazolin, Allosamidins, and Their Analogues [J] Chem. Rev.,1999,99(3):779-784.
    [150]Clercq, D.E. Antiviral agents active against influenza A viruses [J] Nat. Rev. Drug. Discov.,2006,5:1015-25.
    [151]Hendrix, M.; Priestley, E.S.; Wong, C.H. Direct Observation of Aminoglycoside-RNA Interactions by Surface Plasmon Resonance [J] J. Am. Chem. Soc,1997,119(16): 3641-3648.
    [152]Wang, H.; Yitzhak, T. Electrostatic Interaction in RNA Aminoglycosides Binding [J] J. Am. Chem. Soc,1997,119(37):8734-8735.
    [153]Alper, P.; Hendrix, M.; Wong. C.H. et al. Probe the Specificity of Amino-glycoside Ribosomal RNA Interactions with Designed synthetic Analogs [J] J. Am.. Chem. Soc, 1998,120(9):1965-1978.
    [154]Micheal, T.; Crimmins, B. New Developments in the Enantioselective Synthesis of Cyclopentyl Carbocyelic Nucleosides [J] Tetrahedron,1998,54(32):9229-9272.
    [155][155] Schlorke, O.; Krastel, P.; Zeeck, A. et al. Structure and Biosynthesis of Cetoniacytone A, a Cytotoxic Aminocarba Sugar Produced by an Endosymbiontic Actinomyces [J] J. Antibiot,2002,55(7):635-642.
    [156]Matsumoto, N.; Iinuma, H.; Sawa, T.; et al. Epoxyouinomicins A, B, C and D.New Antibiotics from Amycolatopsis II. Effect on Type Ⅱ Collagen-induced Arthritis in Mice [J] J. Antibiot.,1997,50(12):906-911.
    [157]Tsunoda, H.; Ogawa, S. Synthesis of 5a-Carba-β-D-glycosylceramide Analogs Linked by Amino, Ether and Sulfide Bridges [J] Liebigs Ann. Chem.,1995,2:267-277.
    [158]Shealy, Y.F.; Clayton, J.D.9-[β-DL-2,3-Dihydroxy-4β-(hydroxymethyl)-cyclo-pentyl] adenine, the Carbocyclic Analog of Adenosine [J] J. Am.Chem. Soc,1966,88(16): 3885-3887.
    [159]Ferrier, R.J., Middleton, S. The Conversion of Carbohydrate Derivatives into Functionalized Cyclohexanes and Cyclopentanes [J] Chem. Rev.,1993,93:2779-2831.
    [160]Gomez, A.M.; Mantecon, S.; Valverde, S. Carbohydrates to Carbocycles:Regio and Stereoselectivity in the Intramolecular [2+2] Photocycloaddition of Dienic 2-Enono-8-lactones. [J] Synlett,1998,1402.
    [161]Kitahara, T.; Koseki, K. Synthesis of (-)-Allosamizoline, the Pseudoaminosugar Moiety of Allosamidin, a Chitinase Inhibitor. [J] Bioscience, biotechnology, and biochemistry, 1993,57(11):1906-1909.
    [162]Borcherding, D.R.; Scholtz, S.A.; Borchardt, R.T. Synthesis of Analogues of Neplanocin A:Utilization of Optically Active Dihydroxycyclopentenones Derived from Carbohydrates [J] J. Org. Chem.,1987,52:5457-5461.
    [163]Tadano, K.; Maeda, H.; Masahide, H.; Youichi I. A novel transformation of four aldoses to some optically pure pseudohexopyranoses and a pseudopentofuranose, carbocyelic analogs of hexopyranoses and pentofuranose. [J] J. Org. Chem.,1987,52: 1946-1956.
    [164]Jones, M.F.; Roberts, S.M. Synthesis of carbocyclic nucleosides:preparation of (-)-5'-homoaristeromycin and analogues. [J] J. Chem. Soc, Perkin Trans.1,1988, 2927-2932.
    [165]Boss,O.; Leroy, E.; Reymond, J.L. Synthesis and Evaluation of Amino-cyclopentitol Inhibitors of p-Glucosidases. [J] Org. Lett.,2000,2:151-154.
    [166]Marco-Contelles, J.; Destabel, C.; Gallego, P.; Chiara, J.L. A New Synthetic Approach to the Carbocyclic Core of Cyclopentane-Type Glycosidase Inhibitors:Asymmetric Synthesis of Aminocyclopentitols via Free Radical Cyclo-isomerization of Enantiomerically Pure Alkyne-Tethered Oxime Ethers Derived from Carbohydrates [J] J. Org. Chem.,1996,61:1354-1362.
    [167]Chenede, A.; Pothier, P.; Sollogoub, M.; Sinay, P. Samarium(II) iodide promoted ring contraction of carbohydrate derivatives:an expeditious synthesis of functionalised cyclopentanes [J] J. Chem. Soc., Chem. Commun.,1995,1373-1374.
    [168]Chauder, B. A. Metathesis. The Schrock and Grubbs Catalysts [J] synlett,1999,267.
    [169]Schrock, R. R. Olefin Metathesis by Molybdenum lmido Alkylidene Catalysts [J] Tetrahedron,1999,55:8141-8153.
    [170]Lee, K.; Cass, C.; Jacobson, K.A. Synthesis Using Ring Closure Metathesis and Effect on Nucleoside Transport of a (N)-Methanocarba S-(4-Nitrobenzyl)thioinosine Derivative [J] Org. Lett.,2001,3:597-599.
    [171]Kim, J.H.; Jeong, L.S. Asymmetric synthesis of homo-apioneplanocin A from D-ribose. [J] Tetrahedron,2006,62:6339-6342.
    [172]Callam, C.S.; Lowary, T.L. Synthesis and Conformational Investigation of Methyl 4a-Carba-d-arabinofuranosides [J] J. Org. Chem.,2001,66:8961-8972.
    [173]Shoberu, K.A.; Roberts, S.M. Synthesis of pseudo-ribofuranoses by stereo-controlled reactions on 4-hydroxycyclopent-2-enylmethanol derivatives [J] J. Chem. Soc, Perkin Trans.1,1992,2419-2425.
    [174]S. B. King, B. Ganem, Enantioselective synthesis of mannostatin A:a new glycoprotein processing inhibitor [J] J. Am. Chem. Soc,1991,113(13):5089-5090.
    [175]Marschner, C.; Penn, G.; Griengl, H. Synthesis of a-and β-D-carbaribofuranose from (+)-norborn-5-en-2-one. [J] Tetrahedron Lett.,1990,31:2873-2874.
    [176]Eichberger, G.; Penn, G.; Faber, H.; Griengl, H. Large scale preparation of (+)-and (-)-endo-norbornenol by enzymatic hydrolysis [J] Tetrahedron Lett,1986,27: 2843-2844.
    [177]Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. The Vinylogous Aldol Reaction:A Valuable, Yet Understated Carbon-Carbon Bond-Forming Maneuver [J] Chem. Rev., 2000,100:1929-1972.
    [178]Caddick, S.; Khan, S.; Frost, L. M.; Smith, N, J.; Cheung, S.; Pairaudeau, G. Studies Toward the Synthesis of Natural and Unnatural Dienediynes. Part 2:A Practical
    Approach to Functionalised Cyclopentenones [J] Tetrahedron,2000,56:8953-8958.
    [179]a). Zhi Jie Xue, Ping Chen, Shu Ying Peng, Yuan Chao Li. Synthesis and determination of absolute configuration of tetracetate 4a-carba-d-xylofuranoside. [J] Tetrahedron, 2006,62:199-204. b). Barlow, J.S.; Dixon, D.J.; Ley, S.V. New building blocks for efficient and highly diastereoselective polyol production-synthesis and utility of (R,R ,S,S) and (S,S,R,R)-2,3-butane diacetal protected butane tetrol derivatives [J] J. Chem. Soc, Perkin Trans.1,1999,12:1627-1630.
    [180]Yakura, T.; Ueki, A.; Kitamura, T.; Tanaka, K.; Nameki, M.; Ikeda, M. Chemo-and stereoselective dirhodium(II)-catalyzed C-H insertion reaction of 5,6-dioxygenated 2-diazo-3-oxohexanoates:Synthesis of an optically active highly functionalized cyclopentane [J] Tetrahedron,1999,55:7461-7470.
    [181]Graul, J.C., BMS-200475. Anti-HBV. [J] Drugs of the Future,1999,24(11):1173-1177.
    [182]Lai, C.J.; Rosmawati, M.; Lao, J.; et al. Entecavir is superior to lamivudine in reducing hepatitis B virus DNA in patients with chronic hepatitis B infection. [J] Gastroenterology,2002,123:1831-1838.
    [183]Innaimo, S.F.; Seifer, M.; Bisacchi, G.S.; et al. Identification of BMS-200475 as a potent and selective inhibitor of hepatitis B virus [J] Antimicrob. Agents& Chemother, 1997,47:1444-1448.
    [184]Bisacchi, G.S.; Zahler, R.; et al. BMS-200475, A Novel Carbocyclic 2'-Deoxyguansine analog with Potent and Selective anti-Hepatitis B virus activity in vitro. [J] Bioorganic & Medicinal Chemistry Letters,1997,7:127-132.
    [185]John, J.P.; Naresh, K.C. Asymmetric Synthesis of Loganin. Stereospecific Formation of (1R,2R)-and (1S,2S)-2-Methyl-3-cyclopenten-1-ol and (2R)-and (2S)-2-Methyl-cyclo pentanone [J] J. Am. Chem. Soc,1973,95:532-540.
    [186]Li-Wei, GUO; Yuan-Jing, XIAO; Li-Ping, YANG. A New Route for Synthesis of Entecavir. [J] Chinese Chemical Letters.,2006,17:907-910.
    [187]Frederick, E.; Ziegler, M.A. Sarpong. Radical cyclization studies directed toward the synthesis of BMS-200475'entecavir':the carbocyclic core [J] Tetrahedron,2003,59: 9013-9018.
    [188]Smith, A.B.; Malamas, M.S.; Jatrophone analogs:synthesis of cis-and trans-normethyljatropholactones. [J] J. Org. Chem.,1982,47:3442-3447.
    [189]Kabat, M.M.; Kiegiel, J.; Uskokovic, M.R.; Convergent Synthesis of Vitamin D3 Metabolites. Control of the Stereoselectivity in Samarium-Induced Cyclopropanations of Cyclopentenes. [J] J. Org. Chem.,1996,61:118-124.
    [190]Amos B.; Bruce D.; Michael S.M. Preparation, reactivity, and spectral properties of 1,3-dioxin vinylogous esters:versatile beta-ketovinyl cation equivalents. [J] J. Org. Chem.,1988,53:4314-4325
    [191]Li, Y. C.; Zuo, J. P.; Zhang, F.; Zhou, R.; Ding, J. "Triptolide derivatives and their use" [P] WO 2004/058770,2004-07-15.
    [192]Li, Y.C.; Zheng, Y.H. Novel Stereoselective Synthesis of 7β-Methyl-Substituted 5-Androstene Derivatives. [J] J. Org. Chem.,2003,68:1603-1606.
    [193]Tony, K.M.; Pak, L.S. Mild Manganese (III) Acetate Catalyzed Allylic Oxidation: Application to Simple and Complex Alkenes. [J] Org. Lett.,2006,8:3149-3151.
    [194]Jung, M.J. Wickramaratne, M.; Hepperle, M. "Triptolide derivatives useful in the treatment of autoimmune diseases" [P] US Pat:6004999,1999-12-21.
    [195]Molander, G.A.; Hahn, G. Lanthanides in organic synthesis.4. Reduction of alpha, beta-epoxy ketones with samarium diiodide. A route to chiral, non-racemic aldols" [J] J. Org. Chem.,1986,57:2596-2599.
    [196]Miyashita, M.; Suzuki, T.; Hoshino, M. The Organoselenium-Mediated Reduction of a, β-Epoxy Ketones, a, P-Epoxy Esters and Their Congeners to α, β-Epoxy Hydroxy Carbonyl Compounds:Novel Methodologies for the Synthesis of Aldols and Their Analogues. [J] Tetrahedron,1997,53:12469-12486.
    [197]Cihangir, T.; Akhmedov, I.M. Chemoenzymatic synthesis of a'-and a-acetoxylated cyclic ketones. [J] Tetrahedron:Asymmetry,2004,75:1729-1733.
    [198]Turutal, A.M.; Kamernitskiil, A.V.; Korobovl, A.A.; Bogdanovl, V.S. Transformed steroids.172. Reaction of 16-methyl-20-ketosteroids with iodobenzene diacetate. [J] Russian Chemical Bulletin,1988,37:2352-2356.
    [199]Siham, E.F.; Alexandre, G.; Jean-Pierre; Thierry, D.A. Flexible Synthesis of the Phytoprostanes B1 Type I and II. [J] J. Org. Chem.,2005,70:989-997.
    [200]Edith P.; Alexandre G.; Ann-Laure, Guyon; Thierry D. Enzymatic kinetic resolution of a functionalized 4-hydroxy-cyclopentenone:synthesis of the key intermediates in the total synthesis of isoprostanes. [J] Tetrahedron:Asymmetry,2005,16:1893-1895.
    [201]Esen, B.; Helmar, G.; Peter, L. Regioselective Synthesis of Functionalized Furans by Cyclization of 1,3-Bis-Silyl Enol Ethers with 1-Chloro-2,2-dimethoxyethane. [J] Eur. J. Org. Chem.,2005,2074-2090.
    [202]Esen, B.; Peter, L. Efficient Synthesis of Furan-2-ylacetates,7-(Alkoxy carbonyl) benzofurans, and 7-(Alkoxycarbonyl)-2,3-dihydrobenzofurans Based on Cyclization Reactions of Free and Masked Dianions:A "Cyclization/Dehydro-genation" Strategy. [J] J. Org. Chem.,2005,70:10013-10029.
    [203]Joseph, D.P.; Stephen, P.W. Enantioselective Formal Total Synthesis of (+)-Aspergillide C. [J] Org. Lett.,2009,11:5086-5088.
    [204]Angshuman, C. (R)-2,3-O-Cyclohexylideneglyceraldehyde, a Versatile Intermediate for Asymmetric Synthesis of Homoallyl and Homopropargyl Alcohols in Aqueous Medium. [J] J. Org. Chem.,1996,61:6104-6107.
    [205]Gopishetti, B.; Anchoori, R.K.; Errabelli, R.; Batchu, V.R. Synthesis of a Hydroxy-ethylene Dipeptide Isostere, a Core Unit of the HIV Protease Inhibitors Ritonavir and Lopinavir, and Its C-5 Epimer Synthesis of a Hydroxyethylene Dipeptide Isostere and Its C-5 Epimer. [J] Synthesis,2008,19:3061-3064.
    [206]Lee, H.W.; Lee, Y.C. Synthesis of the C14-C27 Fragment of Tetronasin. [J] Synlett, 1991:871-872.
    [207]Marquez, V.E.; Russ, P.; George, C.; et al. Synthesis of Conformationally Restricted Carbocyclic Nucleosides:The Role of the O(4')-Atom in the Key Hydration Step of Adenosine Deaminase. [J] Helvetica Chimica Acta,1999,82:2119-2129.
    [208]Ludek, O.R.; Marquez, V.E. A greener enantioselective synthesis of the antiviral agent North-methanocarbathymidine (N-MCT) from 2-deoxy-D-ribose. [J] Tetrahedron,2009, 65:8461-8467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700