用户名: 密码: 验证码:
锌指蛋白转录活化因子治疗下肢缺血及对骨骼肌肌纤维重塑的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分体外制备锌指蛋白转录活化因子
     目的:合成与血管内皮生长因子(VEGF)的启动子结合的锌指蛋白转录活化因子(ZFP-ATF).方法:利用锌指蛋白(ZFP)软件工具根据VEGF启动子序列合成ZFP结合区,通过基因克隆实验将合成的ZFP结合区及P65激活区的目的基因克隆到PVAX1质粒中,采用双酶切及DNA测序方法进行目的基因检测。结果:ZFP软件合成的ZFP含有6个锌指基序,酶切方法证实克隆构建的位点在BamHl和Xholl间。测序的目的基因的长度是1100bP,PVAX1是3.0KB。结论:成功合成了PVAX1-ZFP-P65质粒;ZFP-ATF结构包括DNA的特异性结合区及转录激活区,可以特异性的与VEGF启动子结合并激活内源性VEGF基因表达。
     第二部分体外细胞实验检测ZFP-ATF对VEGF的作用
     目的:在体外细胞水平检测ZFP-ATF对VEGF基因的作用。方法:通过细胞转染的方法将ZFP-ATF、VEGF165转染入Hy926细胞内,之后检测VEGF剪接体形式及蛋白的相对表达浓度。结果:ZFP-ATF主要促进VEGF的主要三种剪接体形式的产生,同时VEGF的蛋白相对浓度要显著高于VEGF165组和对照组(P<0.05)。结论:通过体外细胞实验证实ZFP-ATF可以促进VEGF主要剪接体的生成及更高浓度的VEGF蛋白产生,这种显著的促VEGF作用可能在体内的治疗性血管生成方面会成为有潜力的治疗作用。
     第三部分大鼠肠系膜血管生成实验
     目的:研究ZFP-ATF在体内对新生血管生成及血管成熟度的作用。方法:将ICR大鼠随机分组(n=8)。在体式显微镜下将大鼠的部分肠系膜取出并拍摄。之后在肠系膜脂肪层内分别注入ZFP-ATF、VEGF165及0.9%的生理盐水,14天后在体式显微镜下对同部位肠系膜血管拍照观察。之后将肠系膜切下进行肠系膜免疫荧光实验,观察新生血管的成熟度。结果:ZFP-ATF组的新生毛细血管数量和功能性血管要显示高于VEGF165、空白组(P<0.05)。在肠系膜免疫荧光实验中,ZFP-ATF组的新生血管为少分支、有完整的外膜覆盖率且直径粗;而VEGF165组的新生血管是分支多、外膜覆盖率不完整且直径细。结论:ZFP-ATF可以促进更多的新生血管的形成,且生成血管因有完整的外膜细胞覆盖而成熟度更佳。
     第四部分:构建小鼠缺血模型后构建PLGA优化载体以及对ZFP-ATF在小鼠下肢缺血中的治疗性血管生成作用及对骨骼肌肌纤维类型研究。
     目的:研究聚乳酸羟基乙酸共聚物(PLGA)纳米粒子包封肝素优化质粒载体,并检测ZFP-ATF对缺血下肢的促血管生成及对骨骼肌纤维类型的影响。方法:通过单侧股动脉结扎构建小鼠缺血模型。采用高速乳化搅拌法制备PLGA-肝素,检测纳米粒子粒径大小、体外释放时间并对其促血管生成效果进行研究。之后将缺血小鼠随机分成三组(n=8),术后7天在缺血肌肉内注入ZFP-ATF, VEGF165及生理盐水。注入后7天取肌肉组织检测VEGF蛋白,14天后取肌肉组织行免疫组化实验,在21天后取肌肉组织行肌球蛋白重链(MHC)mRNA Real-time实验及肌纤维ATPase染色。
     结果:PLGA作为一种优化的纳米粒子载体粒径大小在298nm,体外释放时间长达14天,且在缺血肌肉中发现可以促进侧枝血管的生成。ZFP-ATF中检测到的VEGF蛋白相对表达量明显高于VEGF165、对照组(P<0.05); ZFP-ATF的CD31染色的血管密度要多于其他组(P<0.05);Real-time PCR显示ZFP-ATF. VEGF165组的腓肠肌和比目鱼肌中的MHC-I型增多, MHC-Iib减少(P<0.05),且ATPase染色显示相同的转变。结论:PLGA与质粒相比是一种良好的体外载体,可以优化载体的转染效率,具有良好的促血管生成效果。且ZFP-ATF的VEGF蛋白高表达和毛细血管浓度增加显示ZFP-ATF在缺血疾病中可能有更强的治疗性血管生成作用;同时骨骼肌肌纤维二型向一型的重塑可能对肌肉的耐久性改善有潜在的临床意义。
Part I Construct the Engineered Zinc Finger Protein-Activating Transcription Factor
     Objective:To synthesize the Zinc Finger Protein-Activating Transcription Factor (ZFP-ATF) combining with the Vascular Endothelial Growth Factor (VEGF) promoter. Methods:Firstly, the purposed genes of ZFP binding domain were constructed according to the VEGF promoter sequences with ZFP tools and were cloned into the PVAXI plasmid with P65activating domain. After that, the accuracy and validity were verified with the Endonuclease digestion method and the DNA sequence. Results:The structure of ZFP-ATF contained the DNA binding and activation domain, of which the DNA binding domain was the genes of six ZFP binding domains; the transcription activation domain was from p65unit of the NF-κB in human nuclear factor. Besides, endonuclease digestion results showed the multiple cloning site located between the BamHI and XholI; mealwhile, the DNA sequence results suggested the length of the purposed gene of purposed gene was1000bp, the plasmid was about3.0kb. Conclusion:It is important to choose the correct DNA binding domain and activation domain when constructing the engineered ZFP transcription factor successfully. The innovative and potential point in ZFP-ATF was the specificity of combining with VEGF promoter to stimulate the endogenous VEGF expression.
     Part II The effect of ZFP-ATF stimulating the VEGF expression with cell experiment in vitro
     Objective:To test the effect of ZFP-ATF influencing the VEGF gene expression with cell experiment in vitro. Methods:the relative amount of VEGF mRNA and VEGF protein were tested after.transfecting the ZFP-ATF and VEGF165into the HY926cells. Results:ZFP-ATF mainly stimulated the main VEGF isoforms, m(?)reover, the relative amount of VEGF protein in ZFP-ATF group was dramatically higher than the sole VEGF165and control groups (P<0.05).Conclusion:ZFP-ATF can promote the main VEGF splice variants and higher VEGF protein with the HY926cell experiment, which illustrated that the powerful effect in endogenous VEGF expression may promote potential and effective therapeutic angiogenesis.
     PartⅢ The rat mesenteric angiogenesis experiment
     Objective:To research the capillary density and maturity of angiogenesis in ZFP-ATF group in vivo with mesentery. Methods:The ICR rats were randomly divided into three groups(N=8). The mesentery were taken out from abdominal cavity and photoed under stereomicroscope, which was performed again after14days when injected the ZFP-ATF, VEGF165and saline, respectively. In addition to, the same mesenteric artery beds were resected and stained with fluorescence antibody (NG2and Ki-67) to observe the maturity of the neovessels. Results:the capillary density and fractional vessel area in ZFP-ATF group were obviously higher than the VEGF165, saline groups (P<0.05).In mesenteric immunofluorescence experiment, the neovessels in ZFP-ATF group had less branch, integrated pericyte coverage and wide diameter, however, the neovessels in VEGF165group had more branch, incomplete pericyte coverage and narrow diameter.
     Conclusion:The ZFP-ATF may dramatically stimulate the increase of the neovessels; more importantly, the maturity of the neovessels in ZFP-ATF group was optimal and effective because of the intergrated pericyte coverage.
     Part IV The effect of PLGA nano material as a better carrier and ZFP-ATF stimulating the therapeutic angiogenesis in ischemic limb mice and influencing the skeletal muscle fiber remodeling.
     Objective:To study the effect of the PLGA nanomaterial as a better carrier and ZFP-ATF stimulating the angiogenesis in ischemic limb mice model and influencing the skeletal muscle fiber remodeling. Methods:The unilateral ischemic limb mice model were performed with the resection and ligation of femoral artery. Double emulsion-solvent evaporation method was used to synthesize PLGA-heparin nanoparticles. Then test the surface morphology, the average diameter, the loading efficiency and the release time in vitro; then inject the PLGA-heparin into mouse ischemic limbs to observe the perfusion recovery with LDPI at the time of post-ischemic7,14,21, and28days; and finally, test the expression of VEGF and HGF and the number of the neo-vessels in ischemic limbs. After that, the mice were randomly divided into three groups (N=8). The ZFP-ATF, VEGF165and saline were respectively injected into the ischemic muscle7days after the femoral artery resection operation. The relative amount of VEGF protein was evaluated7days after injection, the capillary density was analyzed with immunohistochemical experiment including the CD31and PCNA14days after injection. Besides, the skeletal muscle fiber type was firstly observed21days after receiving the injection according to the MHC mRNA Real-time PCR and ATPase staining. Results:The surface morphology of the PLGA-heparin was smooth, the average diameter was290nm, the loading efficiency was5.35%, and the release period maintained for14days. In animal experiment, the perfusion recovery, VEGF and HGF levels, and capillary density in PLGA-heparin group were significantly higher than the control group. The relative amount of VEGF protein in ZFP-ATF group was higher in ischemic muscle than the VEGF165, salinel groups (P<0.05). The immunohistochemical experiment results showed the capillary density in ZFP-ATF group was obviously more than the VEGF165, saline groups (P<0.05). Besides that, the relative amount of MHC isoforms mRNA showed the increase of MHC-I isoform and decrease of MHC-IIb isoform in Gastrocnemius and Soleus in both ZFP-ATF and VEGF165groups compared with the salinel group(P<0.05), of course, the ATPase staining suggested the constituent ratio of muscle fiber type-I was increased.however, the muscle type-II was reduced by ZFP-ATF and VEGF165groups compared with the salinel group (P<0.05) both in Gastrocnemius and Soleus, though the differences between the ZFP-ATF group and VEGF165group had no statistical significance.. Conclusion:Nanoparticle encapsulating heparin could be successful and efficient in ischemic disease with prolongation its therapeutic effects and stimulating growth factors expression. The ZFP-ATF was of importance in therapeutic angiogenesis in terms of the ischemic disease according to supplying enough neovessels and promoting mature neovessels. Moreover, it was the first research on skeletal muscle fiber type remodeling with the gene therapy. The changes from the type-II to type-I indicated a potential clinical therapy for development of the muscle tolerance activity for the ischemic limb.
引文
1. Lahoz, C., et al., Metabolic syndrome and asymptomatic peripheral artery disease in subjects over 60 years of age. Diabetes care,2006. 29(1):p.148-50.
    2. Mueller, T., et al., Mortality rates and mortality predictors in patients with symptomatic peripheral artery disease stratified according to age and diabetes. Journal of vascular surgery,2014.
    3. Guerchet, M., et al., Epidemiology of peripheral artery disease in elder general population of two cities of Central Africa:Bangui and Brazzaville. European journal of vascular and endovascular surgery the official journal of the European Society for Vascular Surgery, 2012.44(2):p.164-9.
    4. Umuerri, E. M., V. A. Josephs, and A.O. Obasohan, Determination of lower extremity peripheral artery disease:The role for automated Oscillometric measurement of ankle brachial index in Nigerians. The Nigerian postgraduate medical journal,2013.20(4):p.305-10.
    5. Malyar, N., et al., Recent trends in morbidity and in-hospital outcomes of in-patients with peripheral arterial disease:a nationwide population-based analysis. European heart journal,2013. 34(34):p.2706-14.
    6. Norgren, L., et al., Inter-society consensus for the management of peripheral arterial disease. International angiology:a journal of the International Union of Angiology,2007.26(2):p.81-157.
    7. Management of peripheral arterial disease (PAD). TransAtlantlc Inter-Society Consensus (TASC). Section D:chronic critical limb ischaemia. European journal of vascular and endovascular surgery: the official journal of the European Society for Vascular Surgery, 2000.19 Suppl A:p. S144-243.
    8. Management of peripheral arterial disease (PAD). TransAtlantic Inter-Society Consensus (TASC). European journal of vascular and endovascular surgery:the official journal of the European Society for Vascular Surgery,2000.19 Suppl A:p. Si-xxviii, S1-250.
    9. Adam, D. J., et al., Bypass versus angioplasty in severe ischaemia of the leg (BASIL):multicentre, randomised controlled trial. Lancet, 2005.366(9501):p.1925-34.
    10. Losordo, D. W. and S. Dimmeler, Therapeutic angiogenesis and vasculogenesis for ischemic disease:part Ⅱ:cell-based therapies. Circulation,2004.109(22):p.2692-7.
    11. Losordo, D. W. and S. Dimmeler, Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part Ⅰ:angiogenic cytokines. Circulation,2004.109(21):p.2487-91.
    12. Ho, Q. T. and C. J. Kuo, Vascular endothelial growth factor:biology and therapeutic applications. The international journal of biochemistry & cell biology,2007.39(7-8):p.1349-57.
    13. Fischer, C., M. Schneider, and P. Carmeliet, Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis. Handbook of experimental pharmacology,2006(176 Pt 2):p.157-212.
    14. Bir, S. C., et al., Therapeutic treatment with sustained-release platelet-rich plasma restores blood per fusion by augmenting ischemia-induced angiogenesis and arteriogenesis in diabetic mice. Journal of vascular research,2011.48(3):p.195-205.
    15. de Paula, E. V., et al., Dual gene transfer of fibroblast growth factor-2 and platelet derived growth factor-BB using plasmid deoxyribonucleic acid promotes effective angiogenesis and arteriogenesis in a rodent model of hindlimb ischemia. Translational research:the journal of laboratory and clinical medicine,2009. 153(5):p.232-9.
    16. Dai, S., et al., Endothelial-specific expression of mitochondrial thioredoxin promotes ischemia-mediated arteriogenesis and angiogenesis. Arteriosclerosis, thrombosis, and vascular biology, 2009.29(4):p.495-502.
    17. Varnavas, V. C., et al., Chronic hind limb ischemia reduces myocardial ischemia-reperfusion injury in the rabbit heart by promoting coronary angiogenesis/arteriogenesis. In vivo,2010.24(2):p.147-52.
    18. Shimizu, T., et al., Angiogenesis and microvasculature in the female reproductive organs:physiological and pathological implications. Current pharmaceutical design,2012.18(3):p.303-9.
    19. Poveshchenko,0. V., A. F. Poveshchenko, and V. I. Konenkov, [Physiological and cytological bases of cellular regulation of angiogenesis]. Uspekhi fiziologicheskikh nauk,2012.43(3):p.48-61.
    20. Nowak, D. G., et al., Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic i so forms:a novel therapeutic strategy for angiogenesis. The Journal of biological chemistry,2010.285(8):p.5532-40.
    21. Giacca, M. and S. Zacchigna, VEGF gene therapy:therapeutic angiogenesis in the clinic and beyond. Gene therapy,2012.19(6):p. 622-9.
    22. Kondo, S., et al., The shortest i so form of human vascular endothelial growth factor/vascular permeability factor (VEGF/VPF121) produced by Saccharomyces cerevisiae promotes both angiogenesis and vascular permeability. Biochimica et biophysica acta,1995.1243(2):p. 195-202.
    23. Amano, H., et al., Alteration of splicing signals in a genomic/cDNA hybrid VEGF gene to modify the ratio of expressed VEGF i so forms enhances safety of angiogenic gene therapy. Molecular therapy:the journal of the American Society of Gene Therapy,2005.12(4):p. 716-24.
    24. Furlani, A. P., et al., Effects of therapeutic angiogenesis with plasmid VEGF165 on ventricular function in a canine model of chronic myocardial infarction. Revista brasileira de cirurgia cardiovascular orgao oficial da Sociedade Brasileira de Cirurgia Cardiovascular, 2009.24(2):p.143-9.
    25. Catena, R., et al., Increased expression of VEGF121/VEGF165-189 ratio results in a significant enhancement of human prostate tumor angiogenesis. International journal of cancer. Journal international du cancer,2007.120(10):p.2096-109.
    26. Holzbach, T., et al., [Angiogenesis VEGF 165gene therapy with AdVEGF-a new delay procedure for flaps]. Handchirurgie, Mikrochirurgie, plastische Chirurgie:Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie:Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse:Organ der Vereinigung der Deutschen Plastischen Chirurgen, 2005.37 (6):p.365-74.
    27. Hammer, A. and S. Steiner, Gene therapy for therapeutic angiogenesis in peripheral arterial disease-a systematic review and meta-analysis of randomized, controlled trials. VASA. Zeitschrift fur Gefasskrankheiten,2013.42(5):p.331-9.
    28. Nikol, S., et al., Vascular endothelial growth factor (VEGF165) and its influence on angiogenesis versus arteriogenesis in different vascular beds. Journal of endovascular therapy:an official journal of the International Society of Endovascular Specialists,2002.9(6): p.842-54.
    29. Nikol, S., et al., Local peri vascular application of low amounts of a plasmid encoding for vascular endothelial growth factor (VEGF165) is efficient for therapeutic angiogenesis in pigs. Acta physiologica Scandinavica,2002.176(2):p.151-9.
    30. Gowdak, L. H., et al., Induction of angiogenesis by cationic lipid-mediated VEGF165 gene transfer in the rabbit ischemic hindlimb model. Journal of vascular surgery,2000.32(2):p.343-52.
    31. Bhang, S. H., et al., Combined gene therapy with hypoxia-inducible factor-lalpha and heme oxygenase-1 for therapeutic angiogenesis. Tissue engineering. Part A,2011.17(7-8):p.915-26.
    32. Liu, L., et al., Age-dependent impairment of HIF-lalpha expression in diabetic mice:Correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. Journal of cellular physiology,2008.217(2):p. 319-27.
    33. Khan, T. A., F. W. Sellke, and R. J. Laham, Gene therapy progress and prospects:therapeutic angiogenesis for limb andmyocardial ischemia. Gene therapy,2003.10(4):p.285-91.
    34. Miller, J., A. D. McLachlan, and A. Klug, Repetitive zinc-binding domains in the protein transcription factor Ⅲ A from Xenopus oocytes. The EMBO journal,1985.4(6):p.1609-14.
    35. Tse-Dinh, Y. C. and R. K. Beran-Steed, Escherichia coli DNA topoisomerase I is a zinc metalloprotein with three repetitive zinc-binding domains. The Journal of biological chemistry,1988. 263(31):p.15857-9.
    36. Narayanan, N., R. J. Gorelick, and J. J. DeStefano, Structure/function mapping of amino acids in the N-terminal zinc finger of the human immunodeficiency virus type 1 nucleocapsid protein:residues responsible for nucleic acid helix destabilizing activity. Biochemistry,2006.45(41):p.12617-28.
    37. Hayes, P. L., et al., The solution structure of ZNF593 from Homo sapiens reveals a zinc finger in a predominantly unstructured protein. Protein science:a publication of the Protein Society,2008.17(3):p.571-6.
    38. Stoll, R., et al., Structure of the Wilms tumor suppressor protein zinc finger domain bound to DNA. Journal of molecular biology,2007. 372(5):p.1227-45.
    39. Zhang, H., et al., The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. Journal of integrative plant biology,2012.54(7):p.500-10.
    40. Pavlova, S., et al., Transcription factor NF-kappaB (p50/p50, p65/p65) controls porcine ovarian cells functions. Animal reproduction science, 2011.128(1-4):p.73-84.
    41. Cascio, S., L. Zhang, and 0. J. Finn, MUC1 protein expression in tumor cells regulates transcription of proinflammatory cytokines by forming a complex with nuclear factor-kappaB p65 and binding to cytokine promoters:importance of extracellular domain. The Journal of biological chemistry,2011.286(49):p.42248-56.
    42. Huang, Z. H., J. X. Chen, and G. Q. Su, [In vitro antitumor effect of adenovirus containing CD-TK fusion gene driven by VEGF promoter on LoVo cells]. Di 1 jun yi da xue xue bao= Academic journal of the first medical college of PLA,2005.25(5):p.521-3.
    43. Chen, J. F., et al., [Construction of recombinant adenoviruses encoding TK suicide gene driven by VEGF promoter using efficient AdEasier-1 system]. Ai zheng= Aizheng= Chinese journal of cancer, 2004.23(9):p.1093-7.
    44. Steinacker, J. M., et al., Expression of myosin heavy chain isoforms in skeletal muscle of patients with peripheral arterial occlusive disease. Journal of vascular surgery,2000.31(3):p.443-9.
    45. Alluin,0., et al., Metabosensitive afferent fiber responses after peripheral nerve injury and transplantation of an acellular muscle graft in association with schwann cells. Journal of neurotrauma,2006. 23(12):p.1883-94.
    46. Chaillou, M., et al., Relation between alpha-isoform and phosphatase activity of Na+, K+-ATPase in rat skeletal muscle fiber types. Cellular and molecular biology,2011.57 Suppl:p.OL1520-7.
    47. Zhang, L., K. J. Morris, and Y. C. Ng, Fiber type-specific immunostaining of the Na+, K+-ATPase subunit isoforms in skeletal muscle:age-associated differential changes. Biochimica et biophysica acta,2006.1762(9):p.783-93.
    48. Apcher, S., B. Manoury, and R. Fahraeus, The role of mRNA translation in direct MHC class I antigen presentation. Current opinion in immunology,2012.24(1):p.71-6.
    1. Miller, J., A. D. McLachlan, and A. Klug, Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. The EMBO journal,1985.4(6):p.1609-14.
    2. Tse-Dinh, Y. C. and R. K. Beran-Steed, Escherichia coli DNA topoisomerase I is a zinc metalloprotein with three repetitive zinc-binding domains. The Journal of biological chemistry,1988. 263(31):p.15857-9.
    3. Omichinski, J. G., et al., High-resolution three-dimensional structure of a single zinc finger from a human enhancer binding protein in solution. Biochemistry,1990.29(40):p.9324-34.
    4. Petering, D. H., et al., Cadmium and lead interactions with transcription factor IIIA from Xenopus laevis:a model for zinc finger protein reactions with toxic metal ions and metallothionein. Marine environmental research,2000.50(1-5):p.89-92.
    5. Adachi, H. and M. Tsujimoto, Characterization of the human gene encoding the scavenger receptor expressed by endothelial cell and its regulation by a novel transcription factor, endothelial zinc finger protein-2. The Journal of biological chemistry,2002.277(27):p. 24014-21.
    6. Kwon, Y. and M. J. Smerdon, Binding of zinc finger protein transcription factor IIIA to its cognate DNA sequence with single UV photoproducts at specific sites and its effect on DNA repair. The Journal of biological chemistry,2003.278(46):p.45451-9.
    7. Schefe, J. H., et al., A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocy tic zinc finger protein. Circulation research,2006.99(12):p.1355-66.
    8. Pountney, D. L., R. P. Tiwari, and J. B. Egan, Metal- and DNA-binding properties and mutational analysis of the transcription activating factor, B, of coliphage 186:a prokaryotic C4 zinc-finger protein. Protein science:a publication of the Protein Society,1997.6(4): p.892-902.
    9. Sun, H. Y., et al., Sphingosine-1-phosphate induces human endothelial VEGF and MMP-2 production via transcription factor ZNF580:novel insights into angiogenesis. Biochemical and biophysical research communications,2010.395(3):p.361-6.
    10. Chen, S., et al., Structure of N-terminal domain of ZAP indicates how a zinc-finger protein recognizes complex RNA. Nature structural & molecular biology,2012.19(4):p.430-5.
    11. Chen, Y., et al., Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice. Plant molecular biology,2014.84(6):p.621-34.
    12. Lien, H. W., et al., A novel zinc finger protein 219-like (ZNF219L) is involved in the regulation of collagen type 2 alpha la (col2ala) gene expression in zebrafish notochord. International journal of biological sciences,2013.9(9):p.872-86.
    13. Narayanan, N., R. J. Gorelick, and J. J. DeStefano, Structure/function mapping of amino acids in the N-terminal zinc finger of the human immunodeficiency virus type 1 nucleocapsid protein:residues responsible for nucleic acid helix destabilizing activity. Biochemistry,2006.45(41):p.12617-28.
    14. Hayes, P. L., et al., The solution structure of ZNF593 from Homo sapiens reveals a zinc finger in a predominantly unstructured protein. Protein science:a publication of the Protein Society,2008.17(3):p.571-6.
    15. Stoll, R., et al., Structure of the Wilms tumor suppressor protein zinc finger domain bound to DMA. Journal of molecular biology,2007. 372(5):p.1227-45.
    16. Zhang, H., et al., The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. Journal of integrative plant biology,2012.54(7):p.500-10.
    17. Wang, Y., et al., ZNF424, a novel human KRAB/C2H2 zinc finger protein, suppresses NFAT and p21 pathway. BMB reports,2010.43(3):p.212-8.
    18. Brayer, K. J., S. Kulshreshtha, and D. J. Segal, The protein-binding potential of C2H2 zinc finger domains. Cell biochemistry and biophysics,2008.51(1):p.9-19.
    19. Guo, S. Q., et al., [Cloning and characterization of RZF71 encoding a C2H2-type zinc finger protein from rice]. Yi chuan= Hereditas/ Zhongguo yi chuan xue hui bian ji,2007.29(5):p.607-13.
    20. Brayer, K. J. and D. J. Segal, Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell biochemistry and biophysics,2008.50(3):p.111-31.
    21. Jiang, L., et al., Functional analysis of a novel KRAB/C2H2 zinc finger protein Mipul. Biochemical and biophysical research communications, 2007.356(4):p.829-35.
    22. A zinc finger transcription factor, alphaA-crystal1 in binding protein 1, is a negative regulator of the chondrocyte-specific enhancer of the alphal (Ⅱ) collagen gene. Molecular and cellular biology,2006. 26(13):p.5202.
    23. Al-Sarraj, A. and G. Thiel, Substance P induced biosynthesis of the zinc finger transcription factor Egr-1 in human glioma cells requires activation of the epidermal growth factor receptor and of extracellular signal-regulated protein kinase. Neuroscience letters, 2002.332(2):p.111-4.
    24. Armstrong, R. C., J. G. Kim, and L. D. Hudson, Expression of myelin transcription factor I (MyTI), a "zinc-finger"DNA-binding protein, in developing oligodendrocytes. Glia,1995.14(4):p.303-21.
    25. Cao, X., et al., Upregulation of VEGF-A and CD24 gene expression by the tGLIl transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene,2012.31(1):p.104-15.
    26. Huang, Z. H., J. X. Chen, and G. Q. Su, [In vitro antitumor effect of adenovirus containing CD-TK fusion gene driven by VEGF promoter on LoVo cells]. Di 1 jun yi da xue xue bao=Academic journal of the first medical college of PLA,2005.25(5):p.521-3.
    27. Chen, J. F., et al., [Construction of recombinant adenoviruses encoding TK suicide gene driven by VEGF promoter using efficient AdEasier-1 system]. Ai zheng=Aizheng= Chinese journal of cancer, 2004.23(9):p.1093-7.
    28. Krebs, C. J., et al., The KRAB zinc finger protein RSL1 modulates sex-biased gene expression in liver and adipose tissue to maintain metabolic homeostasis. Molecular and cellular biology,2014.34(2): p.221-32.
    29. Moosmann, P., et al., Silencing of RNA polymerases Ⅱ and Ⅲ-dependent transcription by the KRAB protein domain of KOX1, a Kruppel-type zinc finger factor. Biological chemistry,1997.378(7): p.669-77.
    30. Owen, H. R., et al., Identification of novel and cell type enriched cofactors of the transcription activation domain of RelA (p65 NF-kappaB). Journal of proteome research,2005.4(4):p.1381-90.
    31. Kurosu, T. and B. M. Peterlin, VP16 and ubiquitin; binding of P-TEFb via its activation domain and ubiquitin facilitates elongation of transcription of target genes. Current biology:CB,2004.14(12): p.1112-6.
    32. Pavlova, S., et al., Transcription factor NF-kappaB (p50/p50, p65/p65) controls porcine ovarian cells functions. Animal reproduction science, 2011.128(1-4):p.73-84.
    33. Cascio, S., L. Zhang, and 0. J. Finn, MUC1 protein expression in tumor cells regulates transcription of proinflammatory cytokines by forming a complex with nuclear factor-kappaB p65 and binding to cytokine promoters:importance of extracellular domain. The Journal of biological chemistry,2011.286(49):p.42248-56.
    34. Budillon, A., et al., Point mutation of the autophosphorylation site or in the nuclear location signal causes protein kinase A RⅡ beta regulatory subunit to lose its ability to revert transformed fibroblasts. Proceedings of the National Academy of Sciences of the United States of America,1995.92(23):p.10634-8.
    35. Pla, D., et al., Lamellarin D bioconjugates II:Synthesis and cellular internalization of dendrimer and nuclear location signal derivatives. Bioconjugate chemistry,2009.20(6):p.1112-21.
    36. Dong, P., M. Yoshimi, and N. Tadashi, [The expression difference of VEGF, PDGF/dThdPase and MVD on primary hypopharyngeal carcinoma and metastasis lymph nodes]. Lin chuang er bi yan hou ke za zhi=Journal of clinical otorhinolaryngology,2002.16(9):p.451-3.
    37. Kilvaer, T. K., et al., The VEGF- and PDGF-family of angiogenic markers have prognostic impact in soft tissue sarcomas arising in the extremities and trunk. BMC clinical pathology,2014.14(1):p.5.
    38. Thomas, J. L. and A. Eichmann, The power of VEGF (vascular endothelial growth factor) family molecules. Cellular and molecular life sciences: CMLS,2013.70(10):p.1673-4.
    39. Diana, D., et al., Structural determinants of the unusual helix stability of a de novo engineered vascular endothelial growth factor (VEGF) mimicking peptide. Chemistry,2008.14(14):p.4164-6.
    40. Yue, Y. G., et al., [Influence of the VEGF antibody targeted vascular therapy on the expression of collagen type Ⅰ in hyperplastic]. Zhonghua shao shang za zhi=Zhonghua shaoshang zazhi=Chinese journal of burns,2006.22(6):p.427-30.
    41. Wright, C. E., Effects of vascular endothelial growth factor (VEGF)A and VEGFB gene transfer on vascular reserve in a conscious rabbit hindlimb ischaemia model. Clinical and experimental pharmacology & physiology,2002.29(11):p.1035-9.
    42. Bellomo, D., et al., Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circulation research,2000.86 (2):p. E29-35.
    43. Lahteenvuo, J. E., et al., Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation,2009.119(6):p. 845-56.
    44. Cermenati, S., et al., Soxl8 genetically interacts with VegfC to regulate lymphangiogenesis in zebrafish. Arteriosclerosis, thrombosis, and vascular biology,2013.33(6):p.1238-47.
    45. Foster, R. R., et al., Glycosaminoglycan regulation by VEGFA and VEGFC of the glomerular microvascular endothelial cell glycocalyx in vitro. The American journal of pathology,2013.183(2):p.604-16.
    46. Duong, T., et al., VEGFD regulates blood vascular development by modulating SOX18 activity. Blood,2013.
    47. Wise, L. M., et al., The vascular endothelial growth factor (VEGF)-E encoded by orf virus regulates keratinocyte proliferation and migration and promotes epidermal regeneration. Cellular microbiology, 2012.14(9):p.1376-90.
    48. Bhardwaj, S., et al., Adventitial gene transfer of VEGFR-2 specific VEGF-E chimera induces MCP-1 expression in vascular smooth muscle cells and enhances neointimal formation. Atherosclerosis,2011. 219(1):p.84-91.
    49. Knetsch, M. L. and L. H. Koole, VEGF-E enhances endothelialization and inhibits thrombus formation on polymeric surfaces. Journal of biomedical materials research. Part A,2010.93(1):p.77-85.
    50. Inoue, Y., et al., Protective effects of placental growth factor on retinal neuronal cell damage. Journal of neuroscience research,2013.
    51. [Comparative immunohistochemical evaluation of vascular endothelial growth factor and its receptors in the placental villi in gestational diabetes mellitus and type 1 diabetes]. Arkhiv patologii,2013.75(5): p.13-8.
    52. Zhuang, W., et al., [Transplantation of autologous myoblasts transfected with VEGF165 improves heart function after myocardial infarction in rabbits]. Zhong nan da xue xue bao. Yi xue ban=Journal of Central South University. Medical sciences,2012.37(7):p.682-8.
    53. Hertel, J., et al., Transcription of the vascular endothelial growth factor receptor-3 (VEGFR3) gene is regulated by the zinc finger proteins Sp1 and Sp3 and is under epigenetic control:Transcription of vascular endothelial growth factor receptor 3. Cellular oncology, 2014.
    1. Sun, Z., et al., VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale,2013.5(15):p.6857-66.
    2. Kusumanto, Y. H., et al., Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia:a double-blind randomized trial. Human gene therapy,2006.17(6):p.683-91.
    3. Zygalaki, E., et al., Quantitative real-time reverse transcription PCR study of the expression of vascular endothelial growth factor (VEGF) splice variants and VEGF receptors (VEGFR-1 and VEGFR-2) in non small cell lung cancer. Clinical chemistry,2007.53(8):p. 1433-9.
    4. Bahram, F. and L. Claesson-Welsh, VEGF-mediated signal transduction in lymphatic endothelial cells. Pathophysiology:the official journal of the International Society for Pathophysiology/ISP,2010. 17(4):p.253-61.
    5. Mac Gabhann, F. and A. S. Popel, Interactions of VEGF isoforms with VEGFR-1,'VEGFR-2, and neuropilin in vivo:a computational model of human skeletal muscle. American journal of physiology. Heart and circulatory physiology,2007.292(1):p. H459-74.
    6. Meyer, M., et al., A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. The EMBO journal,1999.18 (2):p.363-74.
    7. Lin, C.M., et al., Wogonin inhibits ILS-induced angiogenesis via down-regulation of VEGF and VEGFR-1, not VEGFR-2. Plantamedica,2006. 72(14):p.1305-10.
    8. Kanellis, J., et al., Renal ischemia-reperfusion increases endothelial VEGFR-2 without increasing VEGF or VEGFR-1 expression. Kidney international,2002.61(5):p.1696-706.
    9. He, L., J. Tang, and Y. J. Bu, [Role of P13K/Akt pathway in chronic myeloidleukemia]. Zhonghua xue ye xue za zhi=Zhonghua xueyexue zazhi, 2013.34(1):p.80-2.
    10. Tan, N., et al., [Effect of P13K/AKT signal pathway regulation on expression of XIAP and cIAP2 in ovarian cancer cells]. Zhonghua bing li xue za zhi Chinese journal of pathology,2013.42(9):p.613-4.
    11. Souza, K., et al., Arsenite activation of P13K/AKT cell survival pathway is mediated by p38 in cultured human keratinocytes. Molecular medicine,2001.7(11):p.767-72.
    12. Chiao, F., [Cell-specific sensitivity to hypoxia and P13K/Akt pathway activation in neurons]. [Hokkaido igaku zasshi] The Hokkaido journal of medical science,2004.79(6):p.755-64.
    13. Kim, B. S., et al., VEGF expression in hypoxia and hyperglycemia: reciprocal effect on branching angiogenesis in epithelial-endothelial co-cultures. Journal of the American Society of Nephrology:JASN,2002.13(8):p.2027-36.
    14. Pinter, E., et al., Hyperglycemia-induced vasculopathy in the murine concept us is mediated via reductions of VEGF-A expression and VEGF receptor activation. The American journal of pathology,2001.158(4): p.1199-206.
    15. Schrufer, T. L., et al., Ablation of 4E-BP1/2 prevents hyperglycemia-mediated induction of VEGF expression in the rodent retina and in Muller cells in culture. Diabetes,2010.59(9):p. 2107-16.
    16. Vempati, P., A. S. Popel, and F. Mac Gabhann, Formation of VEGF i so form-specific spatial distributions governing angiogenesis: computational analysis. BMC systems biology,2011.5:p.59.
    17. Guo, J., et al., VEGF-A and its isoform VEGF(1) (2) (1) mRNA expression measured by quantitative real-time RT-PCR:correlation with F-18 FDG uptake and aggressiveness of lung adenocarcinoma:preliminary study. Annals of nuclear medicine,2011.25(1):p.29-36.
    18. Celletti, F. L., et al., Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature medicine,2001.7(4):p. 425-9.
    19. Leppanen, P., et al., Gene transfers of vascular endothelial growth factor-A, vascular endothelial growth factor-B, vascular endothelial growth factor-C, and vascular endothelial growth factor-D have no effects on atherosclerosis in hypercholesterolemic low-density 1ipoprotein-receptor/apolipoprotein B48-deficientmice. Circulation, 2005.112(9):p.1347-52.
    20. Leppanen,0., et al., Oral imatinib mesylate (STI571/gleevec) improves the efficacy of local intravascular vascular endothelial growth factor-C gene transfer in reducing neointimal growth in hypercholesterolemic rabbits. Circulation,2004.109(9):p.1140-6.
    21. Howell, W. M., et al., VEGF polymorphisms and severity of atherosclerosis. Journal of medical genetics,2005.42(6):p.485-90.
    22. Ozawa, C. R., et al., Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. The Journal of clinical investigation,2004.113(4):p.516-27.
    23. Yla-Herttuala, S., J. E. Markkanen, and T. T. Rissanen, Gene therapy for ischemic cardiovascular diseases:some lessons learned from the first clinical trials. Trends in cardiovascular medicine,2004.14(8): p.295-300.
    24. Ho, Q. T. and C. J. Kuo, Vascular endothelial growth factor:biology and therapeutic applications. The international journal of biochemistry & cell biology,2007.39(7-8):p.1349-57.
    25. Kondo, S., et al., The shortest isoform of human vascular endothelial growth factor/vascular permeability factor (VEGF/VPF121) produced by Saccharomyces cerevisiae promotes both angiogenesis and vascular permeability. Biochimica et biophysica acta,1995.1243(2):p. 195-202.
    26. Amano, H., et al., Alteration of splicing signals in a genomic/cDNA hybrid VEGF gene to modify the ratio of expressed VEGF i so forms enhances safety of angiogenic gene therapy. Molecular therapy:the journal of the American Society of Gene Therapy,2005.12(4):p. 716-24.
    27. Cohen, T., et al., VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sul fates for efficient binding to the VEGF receptors of human melanoma cells. The Journal of biological chemistry,1995.270(19): p.11322-6.
    28. Zhou, Z. J., et al., [Cloning of expression vector for VEGF121 and VEGF165 genes encoding human vascular endothelial growth factor]. Di 1 jun yi da xue xue bao= Academic journal of the first medical college of PLA,2002.22(2):p.111-3.
    29. Zhang, L., et al., Vector-based RNAi, a novel tool for i so form-specific knock-down of. VEGF and anti-angiogenesis gene therapy of cancer. Biochemical and biophysical research communications,2003.303(4):p.1169-78.
    30. Volpi, N., et al., An ti angiogenic VEGF isoform in inflammatory myopathies. Mediators of inflammation,2013.2013:p.219313.
    31. Furlani, A. P., et al., Effects, of therapeutic angiogenesis with plasmid VEGF165 on ventricular function in a canine model of chronic myocardial infarction. Revista brasileira de cirurgia cardiovascular orgao oficial da Sociedade Brasileira de Cirurgia Cardiovascular, 2009.24(2):p.143-9.
    32. Catena, R., et al., Increased expression of VEGF121/VEGF165-189 ratio results in a significant enhancement of human prostate tumor angiogenesis. International journal of cancer. Journal international du cancer,2007.120(10):p.2096-109.
    33. Holzbach, T., et al., [Angiogenesis VEGF165 gene therapy with AdVEGF-a new delay procedure for flaps]. Handchirurgie, Mikrochirurgie, plastische Chirurgie:Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie:Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse:Organ der Vereinigung der Deutschen Plastischen Chirurgen, 2005.37(6):p.365-74.
    34. Zhang, H. T., et al., The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. British journal of cancer,2000.83(1):p.63-8.
    35. Grunstein, J., et al., Isoforms of vascular endothelial growth factor act in a coordinate fashion To recruit and expand tumor vasculature. Molecular and cellular biology,2000.20(19):p.7282-91.
    1. Norrby, K., On the quantitative rat mesenteric-window angiogenesis assay. EXS,1992.61:p.282-6.
    2. Chudy, P., et al., Therapeutic angiogenesis improves fibrinolytic imbalance in patients with critical limb ischemia. Blood coagulation & fibrinolysis:an international journal in haemostasis and thrombosis,2013.
    3. Crino, L. and G. Metro, Therapeutic options targeting angiogenesis in nonsmall cell lung cancer. European respiratory review:an official journal of the European Respiratory Society,2014.23(131): p.79-91.
    4. Cristofaro, B., et al., Neurotrophin-3 is a novel angiogenic factor capable of therapeutic neovascularization in a mouse model of limb ischemia. Arteriosclerosis, thrombosis, and vascular biology,2010. 30(6):p.1143-50.
    5. Sweat, R. S., D. C. Sloas, and W. L. Murfee, VEGF-C Induces Lymphangiogenesis and Angiogenesis in the Rat Mesentery Culture Model. Microcirculation,2014.
    6. Benest, A. V. and D.0. Bates, Measurement of angiogenic phenotype by use of two-dimensional mesenteric angiogenesis assay. Methods in molecular biology,2009.467:p.251-70.
    7. Tikkanen, M., et al., Failure of second-trimester measurement of soluble endoglin and other angiogenic factors to predict placental abruption. Prenatal diagnosis,2007.27(12):p.1143-6.
    8. Xu, D., et al., Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability. The Journal of biological chemistry,2011.286(1):p.737-45.
    9. Hoeppner, L. H., et al., Revealing the role of phospholipase Cbeta3 in the regulation of VEGF-induced vascular permeability. Blood,2012. 120(11):p.2167-73.
    10. Lim, Y. C., et al., Prevention of VEGF-mediated microvascular permeability by C-peptide in diabetic mice. Cardiovascular research, 2014.101(1):p.155-64.
    11. Angulo, J., et al., Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial proliferation, arterial relaxation, vascular permeability and angiogenesis by dobesilate. European journal of pharmacology,2011.667(1-3):p.153-9.
    12. Eliceiri, B. P., et al., Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Molecular cell, 1999.4(6):p.915-24.
    13. Ancelin, M., et al., A dynamic shift of VEGF i so forms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and vascular permeability in human uterus. Proceedings of the National Academy of Sciences of the United States of America, 2002.99(9):p.6023-8.
    14. Cao, R., et al., Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proceedings of the National Academy of Sciences of the United States of America,2001.98(11):p.6390-5.
    15. Vestweber, D., F. Wessel, and A. F. Nottebaum, Similarities and differences in the regulation of leukocyte extravasation and vascular permeability. Seminars in immunopathology,2014.
    16. Jiang, S., et al., Vascular Endothelial Growth Factors Enhance the Permeability of the Mouse Blood-brain Barrier. PloS one,2014.9(2): p. e86407.
    17. Plein, A., A. Fantin, and C. Ruhrberg, Neuropilin regulation of angiogenesis, arteriogenesis and vascular permeability. Microcirculation,2014.
    18. Tian, X., et al., Control of Vascular Permeability by Atrial Natriuretic Peptide via a GEF-H1-dependent Mechanism. The Journal of biological chemistry,2014.289(8):p.5168-83.
    19. Spring, K., et al., Phosphorylation of DEP-1/PTPRJ on threonine 1318 regulates Src activation and endothelial cell permeability induced by vascular endothelial growth factor. Cellular signalling,2014. 26(6):p.1283-1293.
    20. Yang, Z. H., et al., Permeability of the blood-tumor barrier is enhanced by combining vascular endothelial growth factor with papaverine. Journal of neuroscience research,2014.
    21. Dombrowsky, H., et al., Ingest ion of (n-3) fatty acids augments basal and platelet activating factor-induced permeability to dextran in the rat mesenteric vascular bed. The Journal of nutrition,2011.141(9): p.1635-42.
    22. Lange, M., et al., Pulmonary microvascular hyperpermeability and expression of vascular endothelial growth factor in smoke inhalation-and pneumonia-induced acute lung injury. Burns:journal of the International Society for Burn Injuries,2012.38(7):p.1072-8.
    23. Li, Y., et al., Elevated vascular endothelial growth factor levels induce hyperpermeability of endothelial cells in hantavirus infection. The Journal of international medical research,2012.40(5):p. 1812-21.
    24. Cho, H. J., et al., Effects of choroidal vascular hyperpermeability on anti-vascular endothelial growth factor treatment for polypoidal choroidal vasculopathy. American journal of ophthalmology,2013. 156(6):p.1192-1200 el.
    25. Nagy, J. A., et al., Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis,2008.11(2):p.109-19.
    26. Anisimov, A., et al., Vascular endothelial growth factor-angiopoietin chimera with improved properties for therapeutic angiogenesis. Circulation,2013.127(4):p.424-34.
    27. Shin, Y., et al., In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab on a chip,2011.11(13): p.2175-81.
    28. Shantha Kumara, H. M., et al., Minimally invasive colorectal resection for cancer is associated with a short-lived decrease in soluble Tie-2 receptor levels, which may transiently inhibit VEGF-mediated angiogenesis (via altered blood levels of free Ang-1 and Ang-2). Surgical endoscopy,2010.24(10):p.2581-7.
    29. Zhang, H., et al., Sequential, timely and controlled expression of hVEGF165 and Ang-1 effectively improves functional angiogenesis and cardiac function in vivo. Gene therapy,2013.20(9):p.893-900.
    30. Chen, J. X. and A. Stinnett, Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in type II diabetic mice. Arteriosclerosis, thrombosis, and vascular biology,2008.28 (9):p.1606-13.
    31. Wakui, S., et al., Localization of Ang-1,-2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Laboratory investigation; a journal of technical methods and pathology,2006.86(11):p.1172-84.
    32. Ray, P. S., et al., Early effects of hypoxia/reoxygenation on VEGF, ang-1, ang-2 and their receptors in the rat myocardium:implications for myocardial angiogenesis. Molecular and cellular biochemistry, 2000.213(1-2):p.145-53.
    33. Nehls, V., K. Denzer, and D. Drenckhahn, Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell and tissue research,1992.270(3):p.469-74.
    34. Kaneko, E., et al., [Therapeutic angiogenesis for critical limb ischemia]. Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics, 2013.50(3):p.366-8.
    35. Greenberg, J. I., et al., A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature,2008.456(7223):p. 809-13.
    36. Vajanto, I., et al., Evaluation of angiogenesis and side effects in ischemic rabbit hindlimbs after intramuscular injection of adenoviral vectors encoding VEGF and LacZ. The journal of gene medicine,2002. 4(4):p.371-80.
    37. Kurz, H., et al., Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and alpha-smooth muscle actin: relevance for non-sprouting angiogenesis. Histochemistry and cell biology,2008.130(5):p.1027-40.
    38. Farahani, R. M., et al., Directed glia-assisted angiogenesis in a mature neurosensory structure:pericytes mediate an adaptive response in human dental pulp that maintains blood-barrier function. The Journal of comparative neurology,2012.520(17):p.3803-26.
    39. Killingsworth, M. C. and X. Wu, Vascular pericyte density and angiogenesis associated with adenocarcinoma of the prostate. Pathobiology:journal of immunopathology, molecular and cellular biology,2011.78(1):p.24-34.
    40. Feng, Y., et al., Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thrombosis and haemostasis,2007.97(1):p.99-108.
    41. Hall, A. P., Review of the per icy te during angiogenesis and its role in cancer and diabetic retinopathy. Toxicologic pathology,2006. 34(6):p.763-75.
    42. Nowak, D. G., et al., Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms:a novel therapeutic strategy for angiogenesis. The Journal of biological chemistry,2010.285(8):p.5532-40.
    43. Rophael, J. A., et al., Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. The American journal of pathology,2007.171(6):p.2048-57.
    1. Kusumanto, Y. H., et al., Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia:a double-blind randomized trial. Human gene therapy,2006.17(6):p.683-91.
    2. Khan, T. A., F. W. Sellke, and R. J. Laham, Gene therapy progress and prospects:therapeutic angiogenesis for limb and myocardial ischemia. Gene therapy,2003.10(4):p.285-91.
    3. Slevin, M., et al., Activation of MAP kinase (ERK-1/ERK-2), tyrosine kinase and VEGF in the human brain following acute ischaemic stroke. Neuroreport,2000.11(12):p.2759-64.
    4. Davies, M. G., Critical limb ischemia:cell and molecular therapies for limb salvage. Methodist DeBakey cardiovascular journal,2012. 8(4):p.20-7.
    5. Qin, D., et al., Early vessel destabilization mediated by Angiopoietin-2 and subsequent vessel maturation via Angiopoietin-1 induce functional neovasculature after ischemia. PloS one,2013.8 (4): p. e61831.
    6. Law, P. K., et al., Human VEGF165-myoblasts produce concomitant angiogenesis/myogenesis in the regenerative heart. Molecular and cellular biochemistry,2004.263(1-2):p.173-8.
    7. Watkins, W. M., et al., Hypoxia-induced expression of VEGF splice variants and protein in four retinal cell types. Experimental eye research,2013.116:p.240-6.
    8. Howell, W. M., et al., VEGF polymorphisms and severity of atherosclerosis. Journal of medical genetics,2005.42(6):p.485-90.
    9. Luttun, A., et al., Revascularization of ischemic tissues by P1GF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Fltl. Nature medicine,2002.8(8):p.831-40.
    10. Lazarous, D. F., et al., Basic fibroblast growth factor in patients with intermittent claudication:results of a phase I trial. Journal of the American College of Cardiology,2000.36(4):p.1239-44.
    11. Kurihara, T., P. D. Westenskow, and M. Friedlander, Hypoxia-Inducible Factor (HIF)/Vascular Endothelial Growth Factor (VEGF) Signaling in the Retina. Advances in experimental medicine and biology,2014.801: p.275-81.
    12. Chen, J. X. and A. Stinnett, Ang-1 gene therapy inhibits hypoxia-inducibl factor-lalpha (HIF-1alpha)-proly1-4-hydroxylase-2, stabilizes HIF-1alpha expression, and normalizes immature vasculature in db/db mice. Diabetes,2008.57(12):p.3335-43.
    13. Meini, S., et al., Short-term and long-term effects of one-week treatment with intravenous iloprost in critical limb ischemia patients (Leriche-Fontaine stage Ⅲ and Ⅳ). International angiology:a journal of the International Union of Angiology,2005. 24(1):p.64-9.
    14. Toriyama, T., et al., Effect of artificial carbon dioxide foot bathing oh critical limb ischemia (Fontaine Ⅳ) in peripheral arterial disease patients. International angiology:a journal of the International Union of Angiology,2002.21(4):p.367-73.
    15. Brown, M. D., et al., Remodeling in the microcirculation of rat skeletal muscle during chronic ischemia. Microcirculation,2003. 10(2):p.179-91.
    16. Regensteiner, J. G., et al., Chronic changes in skeletal muscle histology and function in peripheral arterial disease. Circulation, 1993.87(2):p.413-21.
    17. Kim, G. D., et al., The characteristics of myosin heavy chain-based fiber types in porcine longissimus dor si muscle. Meat science,2014. 96(2 Pt A):p.712-8.
    18. Steinacker, J. M., et al., Expression of myosin heavy chain isoforms in skeletal muscle of patients with peripheral arterial occlusive disease. Journal of vascular surgery,2000.31(3):p.443-9.
    19. Holm, L., et al., Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. Journal of applied physiology,2008.105(5):p.1454-61.
    20. Plomgaard, P., et al., The mRNA expression profile of metabolic genes relative to MHC i so form pattern in human skeletal muscles. Journal of applied physiology,2006.101(3):p.817-25.
    21. Bortolotto, S. K., et al., MHC isoform composition and Ca(2+)- or Sr(2+)-activation properties of rat skeletal muscle fibers. American journal of physiology. Cell physiology,2000.279(5):p. C1564-77.
    22. Caiozzo, V. J., et al., Single-fiber and whole muscle analyses of MHC isoform plasticity:interaction between T3 and unloading. The American journal of physiology,1997.273(3 Pt 1):p. C944-52.
    23. Trapani, L., et al., Effects of myosin heavy chain (MHC) plasticity induced by HMGCoA-reductase inhibition on skeletal muscle functions. FASEB journal:official publication of the Federation of American Societies for Experimental Biology,2011.25(11):p.4037-47.
    24. Bloemink, M. J., et al., Kinetic analysis of the slow skeletal myosin MHC-1 isoform from bovine masseter muscle. Journal of molecular biology,2007.373(5):p.1184-97.
    25. Vogel, R., et al., Mass spectrometry reveals changes in MHC Ⅰ antigen presentation after lentivector expression of a gene regulation system. Molecular therapy. Nucleic acids,2013.2:p. e75.
    26. Ulbricht, T., et al., PML promotes MHC class Ⅱ gene expression by stabilizing the class Ⅱ transactivator. The Journal of cell biology, 2012.199(1):p.49-63.
    27. Schiaffino, S. and C. Reggiani, Molecular diversity of myofibrillar proteins:gene regulation and functional significance. Physiological reviews,1996.76(2):p.371-423.
    28. Keller, C. W., et al., TNF-alpha induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells. The Journal of biological chemistry,2011.286(5):p.3970-80.
    29. Sallum, A.M., et al., MHC class Ⅰ and Ⅱ expression in juvenile dermatomyositis skeletal muscle. Clinical and experimental rheumatology,2009.27(3):p.519-26.
    30. Mendler, L., et al., Regeneration of re innervated rat soleus muscle is accompanied by fiber transition toward a faster phenotype. The journal of histochemistry and cytochemistry:official journal of the Histochemistry Society,2008.56(2):p.111-23.
    31. McGuigan, M. R., et al., Muscle fiber characteristics in patients with peripheral arterial disease. Medicine and science in sports and exercise,2001.33(12):p.2016-21.
    32. Girgenrath, S., K. Song, and L. A. Whittemore, Loss of myostatin expression alters fiber-type distribution and expression of myosin heavy chain isoforms in slow-and fast-type skeletal muscle. Muscle & nerve,2005.31(1):p.34-40.
    33. Hashimoto, T., A. Sugiyama, and S. Taguchi, Myosin heavy chain isoforms expression and cyclic AMP concentrations in hypoxia-induced hypertrophied right ventricle in rats. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,2004.138(4): p.365-70.
    34. Brenes, R. A., et al., Toward a mouse model of hind limb ischemia to test therapeutic angiogenesis. Journal of vascular surgery,2012. 56(6):p.1669-79; discussion 1679.
    35. Zechner, C., et al., Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell metabolism,2010.12(6):p.633-42.
    36. Handschin, C. and B. M. Spiegelman, PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination. Cell metabolism,2011.13(4):p.351; author reply 352.
    37. Zhu, L. N., et al., Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts. Gene, 2013.532(2):p.246-52.
    38. Guo, J., et al., Comparisons of different muscle metabolic enzymes and muscle fiber types in Jinhua and Landrace pigs. Journal of animal science,2011.89(1):p.185-91.
    39. Yoshinaga, K., et al., Nerve fiber analysis on the so-called accessory subscapularis muscle and its morphological significance. Anatomical science international,2008.83(1):p.55-9.
    40. Echaniz-Laguna, A., et al., Electrophysiological studies in a mouse model of Schwartz-Jampel syndrome demonstrate muscle fiber hyperactivity of peripheral nerve origin. Muscle & nerve,2009.40(1): p.55-61.
    1. Behrendt, D. and P. Ganz, Endothelial function. From vascular biology to clinical applications. The American journal of cardiology, 2002.90(10C):p.40L-48L.
    2. Norgren, L. and H.0. Myhre, [Arterial insufficiency in the legs]. Tidsskrift for den Norske laegeforening:tidsskrift for praktisk medicin, ny raekke,2007.127(16):p.2123.
    3. Kawamoto, H., et al., [Sensitivity surveillance of streptococci isolates for several antibiotics in Gifu prefecture (2005-2007)]. The Japanese journal of antibiotics,2009.62(6):p.509-24.
    4. Annex, B. H., Therapeutic angiogenesis for critical limb ischaemia. Nature reviews. Cardiology,2013.10(7):p.387-96.
    5. Chudy, P., et al., Therapeutic angiogenesis improves fibrinolytic imbalance in patients with critical limb ischemia. Blood coagulation & fibrinolysis:an international journal in haemostasis and thrombosis,2013.
    6. Grochot-Przeczek, A., J. Dulak, and A. Jozkowicz, Therapeutic angiogenesis for revasculariza tion in peripheral artery disease. Gene, 2013.525(2):p.220-8.
    7. Hammer, A. and S. Steiner, Gene therapy for therapeutic angiogenesis in peripheral arterial disease-a systematic review and meta-analysis of randomized, controlled trials. VASA. Zeitschrift fur Gefasskrankheiten,2013.42(5):p.331-9.
    8. Das, S., G. Singh, and A. B. Baker, Overcoming disease-induced growth factor resistance in therapeutic angiogenesis using recombinant co-receptors delivered by a liposomal system. Biomaterials,2014.35(1):p.196-205.
    9. Benest, A. V. and D.0. Bates, Measurement of angiogenic phenotype by use of two-dimensional mesenteric angiogenesis assay. Methods in molecular biology,2009.467:p.251-70.
    10. Huang, H. C., et al., Cannabinoid receptor 2 agonist ameliorates mesenteric angiogenesis and portosystemic collaterals in cirrhotic rats. Hepatology,2012.56(1):p.248-58.
    11. Yang, M., M. Aragon, and W. L. Murfee, Angiogenesis in mesenteric microvascular networks from spontaneously hypertensive versus normotensive rats. Microcirculation,2011.18(7):p.574-82.
    12. Kaneko, E., et al., [Therapeutic angiogenesis for critical limb ischemia]. Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics, 2013.50(3):p.366-8.
    13. Anisimov, A., et al., Vascular endothelial growth factor-angiopoietin chimera with improved properties for therapeutic angiogenesis. Circulation,2013.127(4):p.424-34.
    14. Dai, Q., et al., Engineered zinc finger-activating vascular endothelial growth factor transcription factor plasmid DNA induces therapeutic angiogenesis in rabbits with hindlimb ischemia. Circulation,2004.110(16):p.2467-75.
    15. Ryu, J. K. and J. K. Suh, Therapeutic angiogenesis as a potential future treatment strategy for erectile dysfunction. The world journal of men's health,2012.30(2):p.93-8.
    16. Isner, J. M., et al., Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet,1996.348 (9024):p.370-4.
    17. Losordo, D. W., et al., Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165as sole therapy for myocardial ischemia. Circulation,1998. 98(25):p.2800-4.
    18. Fortuin, F. D., et al., One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. The American journal of cardiology,2003.92(4):p.436-9.
    19. Gyongyosi, M., et al., NOGA-guided analysis of regional myocardial per fusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia:subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation,2005.112(9 Suppl):p.1157-65.
    20. Kusumanto, Y. H., et al., Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia:a double-blind randomized trial. Human gene therapy,2006.17(6):p.683-91.
    21. Muona, K., et al.,10-year safety follow-up in patients with local VEGF gene transfer to ischemic lower limb. Gene therapy,2012.19(4): p.392-5.
    22. Belch, J., et al., Effect of fibroblast growth factor NV1FGF on amputation and death:a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet,2011.377(9781):p. 1929-37.
    23. Carmeliet, P. and R. K. Jain, Molecular mechanisms and clinical applications of angiogenesis. Nature,2011.473(7347):p.298-307.
    24. Hakimoglu, Y., et al., The effects of nitrous oxide on vascular endothelial growth factor (VEGF) and its soluble receptor 1 (VEGFR1) in patient undergoing urological surgery. Pakistan journal of medical sciences,2014.30(1):p.45-9.
    25. Gonsalves, C. S., et al., Angiogenic growth factors augment K-C1 cotransporter expression in erythroid cells via Hypoxia-Inducible Factor-1alpha. American journal of hematology,2013.
    26. Zhang, H., et al., Sequential, timely and controlled expression of hVEGF165 and Ang-1 effectively improves functional angiogenesis and cardiac function in vivo. Gene therapy,2013.20(9):p.893-900.
    27. Shantha Kumara, H. M., et al., Minimally invasive colorectal resection for cancer is associated with a short-lived decrease in soluble Tie-2 receptor levels, which may transiently inhibit VEGF-mediated angiogenesis (via altered blood levels of free Ang-1 and Ang-2). Surgical endoscopy,2010.24(10):p.2581-7.
    28. Wakui, S., et al., Localization of Ang-1,-2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Laboratory investigation; a journal of technical methods and pathology,2006.86(11):p.1172-84.
    29. Adas, G., et al., VEGF-A and FGF gene therapy accelerate healing of ischemic colonic anastomoses (experimental study). International journal of surgery,2011.9(6):p.467-71.
    30. Shioyama, W., et al., Docking protein Gabl is an essential component of postnatal angiogenesis after ischemia via HGF/c-met signaling. Circulation research,2011.108(6):p.664-75.
    31. Lazarous, D. F., et al., Basic fibroblast growth factor in patients with intermittent claudication:results of a phase I trial. Journal of the American College of Cardiology,2000.36(4):p. 1239-44.
    32. Luttun, A., et al., Revascularization of ischemic tissues by P1GF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Fltl. Nature medicine,2002.8(8):p.831-40.
    33. Ji, X., et al., Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-lalpha. International journal of cancer. Journal international du cancer, 2013.
    34. Shin, Y., et al., In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab on a chip,2011. 11(13):p.2175-81.
    35. Carmeliet, P., Basic Concepts of (Myocardial) Angiogenesis:Role of Vascular Endothelial Growth Factor and Angiopoietin. Current interventional cardiology reports,1999.1(4):p.322-335.
    36. Karal-Yilmaz,0., et al., Controlled release of imatinib mesylate from PLGA microspheres inhibit craniopharyngioma mediated angiogenesis. Journal of materials science. Materials in medicine, 2013.24(1):p.147-53.
    37. d' Angelo, I., et al., Engineering strategies to control vascular endothelial growth factor stability and levels in a collagen matrix for angiogenesis:the role of heparin sodium salt and the PLGA-based microsphere approach. Acta biomaterialia,2013.9(7):p.7389-98.
    38. Carmeliet, P., VEGF gene therapy:stimulating angiogenesis or angioma-genesis? Nature medicine,2000.6(10):p.1102-3.
    39. Carmeliet, P. and D. Collen, Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Annals of the New York Academy of Sciences,2000.902:p.249-62; discussion 262-4.
    40. Bibber, B., et al., A Review of Stem Cell Translation and Potential Confounds by Cancer Stem Cells. Stem cells international, 2013.2013:p.241048.
    41. Zickri, M. B., D. H. El Aziz, and H. G. Metwally, Histological experimental study on the effect of stem cell therapy on adriamycin induced chemobrain. International journal of stem cells,2013.6(2): p.104-12.
    42. Conway, E. M. and P. Carmeliet, The diversity of endothelial cells: a challenge for therapeutic angiogenesis. Genome biology,2004.5(2): p.207.
    43. Stump, M. M., et al., Endothelium Grown from Circulating Blood on Isolated Intravascular Dacron Hub. The American journal of pathology, 1963.43:p.361-7.
    44. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science,1997.275(5302):p.964-7.
    45. Liu, X., et al., Regulation of endothelial progenitor cell release by Wnt signaling in bone marrow. Investigative ophthalmology & visual science,2013.54(12):p.7386-94.
    46. Seo, S. G., et al., Negative-pressure wound therapy induces endothelial progenitor cell mobilization in diabetic patients with foot infection or skin defects. Experimental & molecular medicine, 2013.45:p. e62.
    47. Pereira-da-Silva, T., et al., Safety and effectiveness of the genous endothelial progenitor cell-capture stent:follow-up to 5 years. The Journal of invasive cardiology,2013.25(12):p.666-9.
    48. Asahara, T., C. Kalka, and J. M. Isner, Stem cell therapy and gene transfer for regeneration. Gene therapy,2000.7(6):p.451-7.
    49. Aoki, M., M. Yasutake, and T. Murohara, Derivation of functional endothelial progenitor cells from human umbilical cord blood mononuclear cells isolated by a novel cell filtration device. Stem cells,2004.22(6):p.994-1002.
    50. Tateishi-Yuyama, E., et al., Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells:a pilot study and a randomised controlled trial. Lancet,2002.360(9331):p.427-35.
    51. Fadini, G. P., C. Agostini, and A. Avogaro, Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis,2010.209(1):p.10-7.
    52. Moura, R., G. P. Fadini, and M. Tjwa, Induced pluripotent stem (iPS) cells and endothelial cell generation:SIRT-ainly a good idea! Atherosclerosis,2010.212(1):p.36-9.
    53. Botham, C. M., W. L. Bennett, and J. P. Cooke, Clinical Trials of Adult Stem Cell Therapy for Peripheral Artery Disease. Methodist DeBakey cardiovascular journal,2013.9(4):p.201-205.
    54. Chang, C. H., et al., Sphingosine-1-phosphate induces VEGF-C expression through a MMP-2/FGF-1/FGFR-1-dependent pathway in endothelial cells in vitro. Acta pharmacologica Sinica,2013.34(3): p.360-6.
    55. Foster, R. R., et al., Glycosaminoglycan regulation by VEGFA and VEGFC of the glomerular microvascular endothelial cell glycocalyx in vitro. The American journal of pathology,2013.183(2):p.604-16.
    56. Cheng, Y., et al., Potential mechanism for endothelial progenitor cell therapy in acute myocardial infarction:Activation of VEGF- PI3K/Akte-NOS pathway. Annals of clinical and laboratory science, 2013.43(4):p.395-401.
    57. Yang, H. N., et al., Transfection of VEGF(165) genes into endothelial progenitor cells and in vivo imaging using quantum dots in an ischemia hind limb model. Biomaterials,2012.33(33):p. 8670-84.
    58. Long, J., et al., The therapeutic effect of vascular endothelial growth factor gene- or heme oxygenase-1 gene-modified endothelial progenitor cells on neovascularization of rat hindlimb ischemia model. Journal of vascular surgery,2013.58(3):p.756-65 e2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700