用户名: 密码: 验证码:
表面黏贴式光纤光栅传感原理及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿业工程由于其地质灾害的复杂性、隐蔽性和突发性等显著特点对检测技术提出了更高的要求。光纤传感技术作为一种性能优越的传感器件,在本质安全型矿井建设、岩石变形破坏监测中发挥着重要的作用,以其独特优势而处于中心地位,光纤光栅传感器是其发展的最新阶段。以表面黏贴的光纤光栅传感器和被测基体的应变传递为背景,在光纤光栅传感特性研究的基础上,本文全面分析了表面黏贴式光纤光栅传感器的应变传递过程,研究了光纤光栅传感器在岩石试件表面、圆钢锚杆表面和相似模型内部的应变传递,以及影响应变传递的主要因素,设计了适用于岩石变形破坏监测的光纤传感器。这些研究成果对于提高人们对岩石力学行为的认知、扩大光纤传感技术的使用具有重要的理论和现实意义。
     从光纤光栅传感特性出发,在考虑被测基体剪切模量的前提下,分析了裸光纤光栅直接黏贴在表面进行测试的应变传递过程,得出了裸光纤光栅表面直接黏贴的应变传递系数,并与被测基体表面开浅槽埋入裸光纤的检测方法的应变传递相比较。构建了基片式光纤光栅传感器表面黏贴应变传递的力学模型,分析应变传递过程,得出了在考虑基体力学性质的基片式光纤光栅传感器的应变传递规律,分析了其影响应变传递的因素。
     针对实际监测的需要,设计了铜基片式光纤光栅传感器,并对其传感特性进行了试验研究,发现其保留了裸光纤光栅的应变传感线性特性。
     开展了水泥砂浆试件光纤传感器测试实验研究。在一组水泥砂浆试件的表面黏贴裸光纤光栅和电阻应变片,另一组水泥砂浆试件的表面黏贴铜基片式光纤光栅传感器和电阻应变片,在万能材料试验机上进行单轴压缩实验,研究裸光纤光栅和铜基片式光纤光栅在岩石试件表面的应变传递系数,并与理论得出的应变传递系数比较。证明了铜基片式光纤光栅传感器与裸光纤光栅都可以用于岩石试件的变形检测中。
     在模拟煤矿巷道锚杆支护的受力过程中开展了光纤传感器测试实验。将三个裸光纤光栅黏贴在圆钢锚杆的表面,进行全锚拉拔破坏实验,同时在杆身的对应位置黏贴电阻应变片,分析裸光纤光栅在圆钢锚杆表面的应变传递情况,高斯函数很好的拟合了由光纤光栅测试的全锚锚杆拉拔过程中的轴力。实验表明,高斯拟合参数t与岩体对锚杆杆体的握裹程度相关。
     在平面应力物理模型中研究了基片式光纤光栅传感器的应变传递。将铜基片式光纤光栅传感器、醋酸乙烯封装的管式光纤光栅传感器和不锈钢封装的管式光纤光栅传感器分别应用于模型尺寸0.5m×0.5m×0.14m和3.0m×1.33m×0.2m的两个平面应力模型中,并在对应位置架设了百分表,分析了三种传感器的应变传递和对岩层变形的检测,结果发现,基片式光纤光栅传感器与岩层有更好的契合度,有稳定的应变传递,更适宜用于相似物理模型的实验测试中。
     通过表面黏贴的光纤光栅传感器的应变传递研究,以及在岩石试件、圆钢锚杆和平面物理模型上的实验,理论分析和实验研究所得出的光纤光栅表面黏贴的应变传递规律,对表面黏贴的光纤传感技术用于固体材料检测具有重要的借鉴作用。
Because the mineral engineering hazard has the characteristics of complexity,ambiguity and burstiness, it needs further development of the sensing technology. Optic fibersensor is playing an important role in rock deformation monitoring.Fiber Bragg grating sensoris a new type of high performance sensor. Based on the strain transfer of surface FBG sensorwas analyzed. The strain transfer was analyzed when the surface FBG sensors were sticked tothe rock sample, round steel bolt and plane deformation model. It is significant for increasingour knowledge level of the mechanics action and the application of the FBG sensor.
     In this paper, based on the FBG’s sensing properties, under the consideration of themodulus of elasticity of the host material,the strain transfer of the bare FBG was analyzed.Thestrain transfer coefficient was got and compared with one which the bare FBG was buried inthe shallow slot of the host. The mechanics model of the substrate packaged FBG strainsensor was constructed, the strain transfer was analyzed and the strain transfer law wasobtained.Under the consideration of the modulus of elasticity of the host material,the factorsinfluencing strain transfer ratio of FBG stain sensor were analyzed.
     Considering the factual need, the copper substrate packaged FBG strain sensor had beendeveloped and their sensing properties were investigated experimentally.
     Two groups of uniaxial compression tests on rock samples were launched,one of whichhad the bare FBG and ESG,the other one had the copper substrate packaged FBG sensor andESG. The strain transfer coefficients were got when the bare FBG and the copper slicepackaged FBG sensor were sticked to the rock samples.The result shows that both of the bareFBG and the copper slice FBG sensor can be used in the rock deformation monitoring.
     In order to simulate the forces of coal mine tunnel anchor bolts, three bare FBG sensorswere placed along the bolt to measure strain and three ESGs were placed adjacent to the fiberoptic sensors.The pullout test was made to got the strain transfer coefficients of the bare FBGsticked to the round steel bolt.The result shows that the axial stress got by Gaussian function fit is nearly the fact. The parameter t of the Gaussian function is related with the grip abilityof the rock.
     In order to analyze the strain transfer of the copper slice FBG sensor, the copper sliceFBG sensors, the vinyl acetate tube FBG sensors and the stainless steel tube FBG sensorswere placed in two plane simulation models.The size of the two models were0.5m×0.5m×0.14m and3.0m×1.33m×0.2m and the dial indicators were placed correspondingto the FBG sensors.The strain transfers of the three sensors were got.The result shows that thefit between the slice packaged FBG sensors and the model is better than between the tubepackaged sensors and the model.
     The bare FBG sensors and the slice FBG sensors are applied in rock sample test,boltpullout test and plane simulation model.The train transfer coefficients of the bare FBGsensors and the slice FBG sensors are got and compared with the coefficients in theory. Thetest result validates the established transferring model of surface pasting.
引文
[1]Li Hong-Na,Li Dong-Sheng,Song Gang-Bing. Recent applications of fiber optic sensors tohealth monitoring in civil engineering[J].Engineering Structures,2004,26(11):1647-1657.
    [2]N.Tajima, T.Sakurai,M.Sasajima etal.Overview of the Japanese smart materialsdemonstrator program and structures system project[J].Advanced CompositeMaterials,2004,13(1):3-15.
    [3]刘金瑄,柴敬,朱磊等.岩层变形检测的光纤光栅多点传感理论与工程应用[J].光学报,2008,28(11):2143-2147.
    [4]杨兴,胡建明,戴特力.光纤光栅传感器的原理与应用研究[J].重庆师范大学学报(自然科学版,2009,26(4):101-105.
    [5]王宏亮,乔学光,傅海威,等.双光纤光栅双参量传感系统优化设计与研究[J].仪器仪表学报,2006,27(5):536-540.
    [6]HillK O, FujiiY, JohnsonD C, etal. Photosensitivity in optical fiber wave guide: applicationto reflection fiber fabrication[J].Appl Phys Lett,1978,32(10):647-649.
    [7]Prohaska J D, Snitze E,Chen B,etal.Fiber optic Bragg grating strain sensor in large scaleconcrete structures[C].Proceedings of SPIE.Boston,1993,1798:286-294.
    [8]杨建春,陈伟民.光纤F-P应变测量系统在大桥监测中的应用[J].重庆大学学报,2006,29(7):22-25.
    [9]杨建春,陈伟民,徐谋,等.光纤法布应变传感器在桥梁状态监测中的应用[J].传感器与微系统,2006,25(7):76-81.
    [10]刘永前,张彦兵,王新敏.埋入式F-P光纤应变传感器的疲劳性能试验研究[J].传感技术学报,2006,19(4):1219-1222.
    [11]刘永前,杜彦良,王新敏,等.埋入式F-P光纤应变传感器在混凝土桥梁健康监测中的应用研究[J].2006,32(3):348-352.
    [12]樊帆,赵建林,文喜星.强度解调型光纤光栅法布里-珀罗干涉仪的应变传感灵敏度分析[J].中国激光,2010,37(6):1525-1530.
    [13]杨建春,陈伟民,徐谋.光纤法布应变传感器在桥梁状态监测中的应用[J].传感器与微系统,2008,25(7):76-80.
    [14]Zhou Kaiming,Zhang Lin,Chen X Fetal.Optic sensors of high refractive-indexresponsivity and low thermal cross sensitivity that use fiber Bragg gratings of>80btiltedstructures[J]. Opt. Lett.2008,31(9):1193-1195.
    [15]王义平,陈建平,饶云江.同时测量弯曲曲率和弯曲方向的长周期光纤光栅传感器[J].电子·激光,2005,16(10):1139-1143.
    [16]Wang Y P,Rao Y J.Long period fiber grating torsion sensor measuring twist rate andtermining twist direction simultaneously[J].Electronics etters,2004,40(3):164-166.
    [17]王义平,饶云江,冉曾令.一种新颖的长周期光纤光栅可调增益均衡器[J].光学学报,2003,23(8):970-973.
    [18]刘云启.布拉格与长周期光纤光栅及其传感器特性研究[D].天津:南开大学,2000.
    [19]Patrick H J. Self aligning bipolar bend transducer based on long period grating written incore fiber[J].Electronics Lett,2000,36(21):1763-1764.
    [20]饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006.
    [21]胡爱姿,饶云江,王义平,等.基于新型长周期光纤光栅的动态横向负荷传感器[J].光子学报,2003,32(11):1359-1362.
    [22]柴敬,邱标,刘金瑄.基于光纤光栅监测的松散地层深部注水试验[J].煤炭学报,2012,37(2):200-205.
    [23]柴敬,董梁,李毅.济三矿风井厚松散层沉降变形光纤光栅监测方法[J].煤炭科学技术,2010,38(5):12-16.
    [24]柴敬,邱标,魏世明.岩层变形检测的植入式光纤Bragg光栅应变传递分析与应用[J].岩石力学与工程学报,2008,27(12):2551-2556.
    [25]李明,吴海峰,乔学光.一种新颖的高灵敏度光纤光栅压力传感器[J].光电子·激光,2009,20(10):1307-1309.
    [26]王宏亮,乔学光,傅海威.双光纤光栅双参量传感系统优化设计与研究[J].仪器仪表学报,2006,26(5):536-540.
    [27]李冬生,周智,欧进萍.光纤光栅智能复合筋传感特性及其工程应用[J].光电子·激光,2009,20(10):1294-1297.
    [28]Zhou Zhi,He Jian-ping,Jia Hong-wei.Full scable brillouin sensing technique basedsmart wire stay cable[J].Journal of Optoe-lectronics·Laser2009,20(6):765-770.
    [29]张东生,李微,郭丹.基于光纤光栅振动传感器的桥梁索力实时监测[J].传感技术学报,2007,20(7):325-329.
    [30]岳丽娜,黄俊,姜德生.光纤传感技术在长江二桥加固监测中的应用[J].武汉理工大学学报,2009,31(2):10-15.
    [31]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子·激光,2002,13(4):420-430.
    [32]欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(1):45-49.
    [33]UDD E,KUNZLER M,LAYOR M H,et al,EDGAR R. Fiber grating systems for trafficmonitoring[C].Proceedings of SPIE,Health Monitoring and Management of CivilInfrastructure Systems,2001,510-514.
    [34]KRONENBERG P,CASANOVA N, INAUDI D,etal. Dam monitoring with fiber opticsdeformation sensors [C]. Proceedings of SPIE, Smart Structures and Materials,1997:2–11.
    [35]MELTZ G,MOREY W W,GKENN W H. Formation of Bragg gratings in optical fibers bya transverse holographic method[J]. Optics Letters,1989,14(15):823-825.
    [36]张丹,施斌;徐洪钟.基于BOTDR的隧道应变监测研究[J].工程地质学报,2004,12(4):421-426.
    [37]施斌,徐洪钟,张丹等.BOTD应变监测技术应用在大型基础工程健康诊断中的可行性研究[J].岩石力学与工程学报,2007,23(3):493-499.
    [38]张丹,徐洪钟,施斌.基于FBG技术的饱和膨胀土失水致裂过程试验研究[J].工程地质学报,2010,20(1):103-107.
    [39]刘杰,施斌,张丹,等.基于BOTDR的基坑变形分布式监测实验研究[J].岩石力学与工程学报,2006,27(7):1224–1228.
    [40]周智,赵雪峰,武湛君,等.光纤光栅毛细钢管封装工艺及其传感特性研究[J].中国激光,2002,29(12):1089-1092.
    [41]任亮.光纤光栅传感技术在结构健康监测中的应用[D].大连:大连理工大学,2008.
    [42]胡曙阳,赵启大,何士雅,等.金属管封装光纤光栅用于建筑钢筋应变的测量[J].光电子激光,2004,15(6):688-690.
    [43]李川,李欣,孙宇.光纤Bragg光栅传感器在钢筋混凝土梁静荷载试验中的研究[J].土木工程学报,2005,38(2):64-67.
    [44]任亮.光纤光栅传感技术在结构健康监测中的应用[D].大连:大连理工大学,2008.
    [45]李宏男,孙丽,梁德志.光纤布拉格光栅传感器用于混凝土结构施工监测[J].建筑材料学报,2007,10(3):342-347.
    [46]李川,吴晟,刘建平,等.贴片式光纤Bragg光栅应变传感器[J].仪表技术与传感器,2005(7):3-4.
    [47]杨亦飞,刘波,张伟刚,等.工程化光纤光栅应变传感器的制作及其应用[J].仪表技术与传感器,2005(4):1-2.
    [48]詹亚歌,蔡海文,耿建新,等.铝槽封装光纤光栅传感器的增敏特性研究[J].光子学报,2004,33(8):952-955.
    [49]王宇,刘铁根,刘丽娜,等.合金钢封装光纤Bragg光栅传感器传感特性的研究[J].光学技术,2006,32(6):923-925.
    [50]]刘德力.碳纤维复合材料封装FBG传感器研究[D].武汉:武汉理工大学,2007.
    [51]刘春桐,李洪才,赵兵,等.大型装备应变检测中光纤Bragg光栅的应用研究[J].激光与红外,2007,37(10):1091-1094.
    [52]WnukVincent P,Méndez Alexis,Ferguson Steve,etal.Process for mounting andpackaging of fiber Bragg grating strain sensors for use in harsh environmentapplications[C]. Proceedings of SPIE. Bellingham,2005,5758:46-53.
    [53]王宇,刘铁根,刘丽娜,等.合金钢封装光纤Bragg光栅传感器传感特性的研究[J].光学技术,2006,32(6):923-925.
    [54]于秀娟,余有龙,张敏.钛合金片封装光纤光栅传感器的应变和温度传感特性研究[J].光电子·激光,2006,17(5):564-567.
    [55]YuXiujuan, YuYoulong, LiaoYanbiao,etal. Strain measurement of steel and concretestructure using novel surface-mounted fiber Bragg grating sensors[C].Proceedings ofSPIE.2005,5998:291-295.
    [56]刘春桐,李洪才,赵兵,等.大型装备应变检测中光纤Bragg光栅的应用研究[J].激光与红外,2007,37(10):1091-1094.
    [57]于秀娟,余有龙,张敏,等.铜片封装光纤光栅传感器的应变和温度传感特性研究[J].光子学报,2006,35(9):1325-1328.
    [58]W ang Y, Tjin C S, Hao J-Z, etal. Determ ination of load-strain characteristics of concreteslabs by using embedded fiber Bragg grating sensors[C]. The Fifth EuropeanConference on Smart Structures and Materials, Proceedings of SPIE. Newport Beach,CA,USA,2000,4073:297-304.
    [59]王言磊,周智,郝庆多,等. FRP-FBG智能复合板的制作及其传感器特性研究[J].光电子·激光,2007,18(8):900-902.
    [60]张伟刚,周广,梁龙彬,等.混合聚合物光纤光栅封装元件的温敏实验[J].光子学报,2001,30(8):1003-1005.
    [61]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现[J].土木工程学报,2006,39(4):45-53.
    [62]Cox H L,M A,F R Ae S,etal.The elasticity and strength of paper and other fibermaterials[J].British Journal of applied physics,1952,(3):72-79.
    [63]Nanni A,Yang C C,Pan K,etal.Fiber-optic Sensor for Concrete strain measurement[J].ACIMaterials Journal,1991,88(3):257-264.
    [64]Pak Y Eugene. Longitudinal shear transfer in fiber optic sensors[J]. Smart Materials andStructures,1992,(l):57-62.
    [65]赵占朝,刘浩吾,蔡德所.光纤传感无损检测混凝土结构研究述评[J].力学进展,1995,25(2):223-231
    [66]Farhad Ansari, Yuan Libo. Mechanics of bond and interface shear transfer in optical fibersensors[J]. Journal of Engineering Mechanics,1998,124(4):385-394.
    [67]Lau Kin-tak,Yuna Libo,zhou Li-min,etal.Strain monitoring in FRP laminates and concretebeams Using FBG sensors[J].Composite structures,2001,51(1):9-20.
    [68]QingbinLi,GuangLi,GuanglunWnag.Eeffet of the plastic coating on concrete by fiberoptic sensor[J]. Measurement,2003,34(3):215-227.
    [69]QingbinLi,Guang Li,GuanglunWnag,etal..Elasto-Plastie bonding of embedded opticalfiber sensors in concretes[J]. Journal of engineering mechanics,2002,22(4):471-78.
    [70]QingbinLi,GunagLi,LiboYuna. Calibration of embedded fiber optic sensor in concreteunder biaxia[J]. Measurement,2004,35(3):303-310.
    [71]李东升,李宏男.埋入式封装的光纤光栅传感器应变传递分析[J].力学学报,2005,37(4):435-441.
    [72]周智,李冀龙,等.埋入式光纤光栅界面应变传递机理与误差修正[J].哈尔滨工业大学学报,2006,38(1):49-55.
    [73]张雪峰,李庆斌.单压状态下保护层对埋置式光纤传感器的影响[J].清华大学学报(自然科学版),2004,44(3):417-420.
    [74]Ling HY,Lau KT,Cheng L,etal.Embedded fiber Bragg grating sensors for strain sensing incomposite structures[J]. Measurement Science and Teehnology,2005,16(1):2415-2424.
    [75]鲍吉龙,陈莹,赵洪霞.嵌入式光纤光栅传感器应力传递规律研究[J].传感技术学报,2005,18(4):871-875.
    [76]赵洪霞,鲍吉龙,陈莹.光纤光栅聚合物封装及传感特性研究[J].光电子技术与信息,2005,18(5):39-42.
    [77]周智.土木工程结构光纤光栅智能传感元件及其监测系统[D].哈尔滨:哈尔滨工业大学,2002.
    [78]Betz D,Thursby G,Culsh B,etc..Advanced Layout of a Fiber Bragg Grating StrainGauge Rosette[J].Journal of Light wave Teehnology,2006,24(2):1019-1026.
    [79]魏世明.岩体变形光纤光栅传感检测的理论与方法研究[D].西安:西安科技大学,2008.
    [80]卢应发,张梅英,葛修润等.大理岩静态和循环荷载试件的电镜分析[J].岩土力1990,11(4):75-80.
    [81]赵阳升,孟巧荣,康天合等.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报,2008,27(l):28-34.
    [82]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    [83]王恩元,何学秋,刘贞堂.煤岩电磁辐射特性及其应用研究进展[J].自然科学进展.2006,16(5):532-636.
    [84]张东胜,安里千,张拥军.受力光弹材料的红外辐射热特征[J].实验力学,2001,16(4):444-449.
    [85]Cornelia Schmidt-Hattenberger, Marcel Naumann, Gunter Bon. Fiber Bragg Gratingstrain measurements in comparision with additional techniques for rock mechanicaltesting[C]. IEEE SENSOR JOURNAL2003:50-55.
    [86]Y.W.Yang,S.Bhalla,C.Wang,C.K.Soh,J.Zhao, Monitoring of rocks using smart sensors[J].Tunnelling and Underground Space Technology,2007,(22):206-221.
    [87]魏世明,柴敬.岩石单轴压缩光纤光栅传感检测方法研究[J].岩土力学,2008,29(11):3174-3177.
    [88]柴敬,赵文华,李毅,等.采场上覆岩层沉降变形的光纤检测实验[J].煤炭学报,2013,38(1):55-60.
    [89]魏世明,柴敬.相似模拟实验中光纤光栅传感检测研究[J].地下空间与工程学报,2007,(6):1171-1176.
    [90]朱鸿鹄,殷建华,张林,董建华,冯嘉伟,靳伟.大坝模型试验的光纤传感变形监测[J].岩石力学与工程学报,2008,(6):1185-1194.
    [91]常天英,李东升,隋青美,贾磊.光纤光栅传感技术在分岔隧道模型中的实验研究[J].仪器仪表学报,2008,52(l):103-107.
    [92]王宝军,李科,施斌,等.边坡变形的分布式光纤监测模拟试验研究[J].工程地质学报,2010,18(3):325-332.
    [93]李焕强,孙红月,刘永莉,等.光纤传感技术在边坡模型试验中的应用.岩石力学与工程学报,2008,(8):1703-1707.
    [94]严云,江毅.用光纤光栅测量混凝土中钢筋的腐蚀[J].四川建筑科学研究,2006(5):148-151.
    [95]黎学明,陈伟民,黄宗卿.光纤传感器对混凝土结构钢筋腐蚀监测的研究[J].光电子激光,2001,12(10):1037-1040.
    [96]李俊,吴瑾.钢筋锈蚀的光纤光栅监测[J].南京航空航天大学学报,2008,40(3):395-398.
    [97]雷振山,钟少龙.地质构造物理模拟监测的光纤光栅传感系统[J].压电与声光,2010,10(3):264-266.
    [98]A.Kerrouehe,W.J.O.Boyle,etal.Field test of fiber bragg grating sensors incorporated intoCFRP for railway bridge strengthening condition monitoring[J].Sensors and ActuatorsA:Physieal,2008,(7):14-19
    [99]胡军,陈宏波,应汉雨,姜德生.光纤光栅在桥梁预应力索力监测中的应用[J].武汉理工大学学报,2011,33(10):96-99.
    [100]Li Hu,i Ou Jinping. Design and implementation of health monitoring systems forcable-stayed bridges[J].China Civil Engineering ournal,2006,39(4):45-53.
    [101]殷建华,崔鹏,裴华富,等.基于光纤传感技术的边坡监测系统的应[J].兰州大学学报(自然科学版),2011,47(5):290-293.
    [102]裴华富,殷建华,朱鸿鹄.基于光纤光栅传感技术的边坡原位测斜及稳定性评估方法[J].岩石力学与工程学报,2010.29(8):1570-1575.
    [103]朱鸿鹄,殷建华,洪成雨,等.基于光纤传感的边坡工程监测技术[J].工程勘察,2010,38(3):6–14.
    [104]柴敬,邱标,魏世明,李毅,岩层变形检测的植入式光纤Bragg光栅应变传递分析与应用[J].岩石力学与工程学报,2008,27(12):2551-2556.
    [105]朱磊.济三煤矿松散地层沉降变形光纤光栅监测技术研究[D].西安:西安科技大学,2008.
    [106]Liu,JX.,Chai,J,Zhu,L,etal.The installation method and test of rock deformation in deepborehole by fiber bragg grating[C].Conference Information: International Young ScholarsSymposium on Rock Mechanics,2008,2:115-120.
    [107]柴敬,邱标,李毅,朱磊.钻孔植入光纤Bragg光栅检测岩层变形的模拟实验[J].采矿与安全工程学报,2012,29(1):44-47.
    [108]柴敬,邱标,刘金瑄.基于光纤光栅监测的松散地层深部注水试验[J].煤炭学报,2012,37(2):200-205.
    [109]梁德志,孙丽,等.埋入式FBG传感器应变传递的有限元计算与理论分析比较[J].沈阳建筑大学学报,2008,24(1):72-76.
    [110]南秋明.光纤光栅应变传感器的研制及应用[D].武汉:武汉理工大学,2003.
    [111]张在新.胶粘剂[M].北京:化工工业出版社,2005.
    [112]梁磊,姜德胜,孙东亚.光纤传感器在混凝土结构中的相容性研究[J].武汉工业大学学报,2000,22(2):11-14.
    [113]隋海波,施斌,张丹,等.基于BOTDR的锚杆拉拔试验研究[J].岩土工程学报,2008,30(5):755-759.
    [114]Philipp M, Nellen, Andreas Frank, etal. optic fiber Bragg grating for TunnelSurveillance[C]. SPIE,2000,3986:263-270.
    [115]Martin Schroeck, Wolfgang Ecke, Andrea Graupner. Strain monitoring in steel rock boltsusing FBG sensor arrays[C]. SPIE,2000,4047:298-304.
    [116]Lir J G, Hattenberger C S, Borm G. Dynamic strain measurement with a fiber Bragggrating sensor system[J]. Measurement,2002,32:151-161.
    [117]Hattenberger C S, Naumann M, Borm G. Dynamic strain detection using a fiber Bragggrating sensor array for geo technical applications[J]. SPIE,2003,4763:227-232.
    [118]Jobmann, Michael, Voet. Fiber optic deformation and temperature measurementsystem for application at underground radioactive waste repositories[J]. SPIE,2005,5855:282-285.
    [119]Hattenberger C S, Marcel Naumann,Gunter Borm.Fiber Bragg grating strainmeasurement in comparison with additional techniques for rock mechanical testing[J].IEEE sensors journal.2003,3(1):50-55.
    [120]Yang Y W, Bhalla S,Wang C, etal.Monitoring of rocks using smart sensors[J]. Tunnelingand Underground Space Technology,2007,22:206-221.
    [121]Verheslt F,Vervoort A,Bosscher P H.G.X-ray computerized tomography[C]:Determination of hereto genetics in rock samples Proc. of8th ISRM Cong., Tokyo andRotterdam: A. A. Balkema.2005,1:105-108
    [122]Hansor, N W. Influence of surface rough ness of pre-stressing strand on bandperformance[J]. Journal of Pre-stressed Concrete Institute,2009,14(l):32-45.
    [123]Goto Y. Cracks formed in concrete around deformed tension bars[J].Journal of AmericanConcrete Institute,2001,68(4):244-251.
    [124] Vrkljan, I., Szavits, A. Kovacevic, M.S.Non-destructive procedure for testing groutingquality of rock anchors[C]. Proceedings of the Congress of the International Society forRock Mechanics,1999,9(2):1475-1478.
    [125]李文宏,杨振坤,夏建生.光纤Bragg光栅传感技术及其应用[J].传感技术学报,2002,3:215-218.
    [126]黄国君,殷昀虢,戴锋,等.光纤布拉格光栅应变传感器的灵敏性及疲劳可靠性研究[J].激光杂志,2003,24(6):45-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700