用户名: 密码: 验证码:
硬脑膜外电刺激皮层神经假体的能量信号传输关键技术与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经假体学是一门利用神经科学和生物医学工程技术来研究神经功能修复的学科。皮层神经假体是一种可替代因伤或疾病被破坏的皮层运动神经元、感觉神经元或者认知形式功能的装置。硬脑膜外电刺激皮层神经假体是将微电极、功能集成电路植入人体硬脑膜上的特定区域,电刺激靶区域的皮层神经组织使原先由于创伤或疾病导致阻断的特定神经通路再次激活,从而达到修复特定神经功能的目的,具有微创性、脑组织保持完整及感染风险小的优点。
     本论文在总结分析神经功能修复意义、皮层神经假体的分类、关键技术及能量信号传输关键技术研究现状的基础上,系统地提出硬脑膜外电刺激皮层神经假体的设计方案,通过分析硬脑膜外电刺激皮层神经假体的能量信号传输关键技术需求,对其中的感应无线电能传输技术、无线供能通信技术及无线采集技术等共性关键技术进行了设计与实验研究,并开展了硬脑膜外电刺激皮层假体方案可行性的动物实验。本论文的主要研究工作如下:
     1.针对硬脑膜外电刺激皮层神经假体植入电路芯片的电能供应需求,本论文提出了一种基于VLSI的经颅感应无线电能传输方案。该经颅感应无线电能传输系统包括体外能量发射电路和体内能量接收电路,两者通过一对电磁耦合线圈实现能量无线传输。体外装置,即无线电能传输发射电路,包括射频振荡器、E类功率放大器和体外耦合线圈三部分。体内装置,即无线电能传输接收电路,包括整流滤波电路、稳压电路。通过无线电能传输电路的Pspice仿真调试、无线电能传输接收电路CAD设计及CAD版图设计,完成无线电能传输测试实验,特别是低压差稳压电路改进实验。本系统具有以下特点:该基于VLSI的经颅感应无线电能传输接收电路版图面积62μm×195μm,输出3.3V电压;利用美国Johns Hopkins University的Neuroengineering & Biomedical Instrumentation Lab无线供能芯片完成实验测试,该无线电能传输系统能在4MHz载波频段为(10~15)mm距离内植入电路芯片在提供稳定3.3V电压输出10mA驱动电流;该感应无线电能传输系统具有安全、稳定、有效的特点,无需外接导线、无需更换电池且无感染危险;为硬脑膜外皮层神经电刺激神经假体的后续研究提供了一种可靠的无线电能传输工具。
     2.针对硬脑膜外电刺激皮层神经假体植入电路芯片在执行神经功能修复任务时需从外界获取电刺激信号源的问题,本论文提出一种经颅的神经电刺激信号无线传输方案。该系统包括体外的无线电能传输发射电路和无线通信发射电路,体内的无线电能传输接收电路和无线通信接收电路。通过设计经颅神经电刺激信号的无线传输方案设计,建立实验平台,通过基于耦合线圈的经颅神经电刺激信号的无线传输实验,在保证无线电能输出电压稳定的前提下,获得该经颅神经电刺激信号无线传输系统的最高通信速率、最佳植入耦合线圈尺寸及误码率等性能。该系统具有以下优点:利用美国Johns Hopkins University的Neuroengineering & Biomedical Instrumentation Lab无线供能芯片和实验平台,通过同一套电磁耦合线圈,实现能量和数据在相同方向的同步传输;该无线供能通信系统为硬脑膜外电刺激皮层神经假体植入电路能在4MHz载波频段为(10~15)mm距离内植入电路芯片在提供稳定3.3V电压的同时,且能通过半径10mm体内耦合线圈提供电刺激信号数据,其最高通信速率为25 kbps;该经颅神经电刺激信号无线传输技术无需外接导线,无感染危险,是一种无创、有效的通信方法。
     3.针对硬脑膜外电刺激皮层神经假体在修复神经功能过程中需对电极-组织接口信息进行监测的需求,本文设计了一种基于VLSI的经颅神经电信号无线采集系统。该系统包括采集电路、射频收发芯片及计算机等。设计经颅神经电信号的无线采集方案,通过研制该无线采集系统,完成了采集系统的性能测试、电生理信号离体无线传输实验。该系统具有如下特点:该采集系统的体积小,大约56mm×50mm×30 mm;利用16通道VLSI神经弱电势采集芯片,多参数可调,且具有低功耗、集成化的特点;该系统能在一米内以57.6kbps通信速率进行Spike和EEG等信号的无线采集传输,误差率低于8.9336×10-4;该系统采集神经假体电极-组织接口信息,确保硬脑膜外电刺激皮层神经假体神经修复功能,是硬脑膜外电刺激皮层神经假体研究的一项关键技术及监测工具。
     4.根据硬脑膜外电刺激皮层神经假体研究中假设硬脑膜外的电刺激传递到皮层时仍为有效电刺激信号的假说,本论文设计了硬脑膜外电刺激皮层神经假体的电极-组织接口动物实验来对该假说进行验证。提出硬脑膜外电刺激皮层神经假体电极-组织接口动物实验方案,搭建动物实验平台,并在此实验平台上通过不同电刺激参数及空间位置等研究硬脑膜外电刺激信号的有效传递实验,从而反映硬脑膜-脑脊液-软脑膜组织结构对电刺激信号传递的影响。实验结果验证了硬脑膜外电刺激皮层方案的可行性,为课题后续工作奠定实验基础。
     本论文从感应无线电能传输技术、无线供能通信技术及无线采集技术三方面对硬脑膜外电刺激皮层神经假体中的关键技术进行了深入的研究,并完成了硬脑膜外电刺激皮层神经假体方案可行性的动物实验验证。通过本文的研究和实验为硬脑膜外电刺激皮层神经假体具体而深入的研究奠定了理论和实验基础。本文的创新性工作总结如下:
     (1)提出一种基于VLSI的经颅无线电能传输与经颅神经电刺激信号的传输方法,设计了基于VLSI的感应无线电能接收模块电路及基于电磁感应的经颅神经电刺激信号传输模块电路,通过低压差稳压电路的改进实验及神经电刺激信号在一对耦合线圈之间的无线传输实验,测得该感应无线电能传输系统能为(10~15)mm距离内的植入电路芯片提供稳定3.3V电压10mA驱动电流,同时能在半径10mm植入耦合线圈上提供最高通信速率25 kbps的电刺激信号,为硬脑膜外电刺激皮层神经假体研究提供一种无线电能传输及电刺激信号传输技术。
     (2)提出一种基于VLSI经颅神经电信号无线采集方案,搭建该无线采集系统,体积大约56mm×50mm×30 mm,通过多通道性能测试实验,测得该无线采集系统能在一米内对Spike和EEG信号等以最高57.6kbps波特率的无线采集,误差率低于8.9336×10-4,为硬脑膜外电刺激皮层神经假体研究提供一种动态监测技术。
     (3)提出一种硬脑膜外电刺激皮层神经假体的电极-组织接口动物实验方案,搭建猫的硬脑膜外电刺激皮层实验平台,通过硬脑膜外电刺激实验来研究硬脑膜-脑脊液-软脑膜对电刺激信号传递的影响,初步验证了硬脑膜外电刺激皮层方案的可行性,为硬脑膜外电刺激皮层神经假体研究奠定了实验基础。
Neuroprosthetics, also called neural prosthetics, is a discipline related to neuroscience and biomedical engineering concerned with developing neuroprosthetics. Cortical Neuroprosthetic are a series of devices that can substitute a motor, sensory or cognitive modality that might have been damaged as a result of an injury or a disease. The cortical prosthesis by micro-electrical stimulation through dura mater aimed special neural function restoration, where the micro- electrode and functional integrated circuit is implanted on special dura mater of subject to stimulate the target neural tissue for the unblocked neural path, which is damaged by injury or disease. The advantage is minimally invasive, brain integrity and low-risk of infection.
     The proposed dissertation firstly analyzed the significance, concept and classification of neuroprosthetics, followed by the key technology and current research situation of neuroprosthetics. Then the dissertation summarized the concept of the cortical prosthesis by micro-electrical stimulation through dura mater, followed by its basic structure, current research situation and difficulties, finally the key technologies of the cortical prosthesis by micro-electrical stimulation through dura mater were elicited. After that inductive wireless power harvesting system, the wireless power harvesting telemetry system and wireless acquisition system in the cortical prosthesis by micro-electrical stimulation through dura mater were studied through system design and experiment. Further the animal experiment for verifying the feasibility of the cortical prosthesis by micro-electrical stimulation through dura mater has been carried out. The main research work is followed:
     1. A micro and high quality wireless power device is a necessary part for implanted circuit chip in the cortical prosthesis by micro-electrical stimulation through dura mater. The proposed paper designed a wireless power transmission system to meet the power supply demand of the cortical prosthesis by micro-electrical stimulation through dura mater. The proposed system includes extracorporeal power transmitter circuit and internal power receiver circuit, which is wireless connected each other by one pair of inductive coils. The extracorporeal part means the power transmitter circuit, which includes RF oscillator, class E amplifier and extracorporeal coil et al. The internal part is the power receiver circuit, which are rectifier, filter and regulator circuit. The Pspice simulation debug of the whole wireless power transmission circuit, CAD design and CAD layout of the wireless power receiver circuit have been accomplished. Further the test experiment of wireless power transmission has been done. The features of the proposed system are: the receiver circuit of wireless power supply outputs 3.3V, with CAD layout size as 62μm×195μm; the test experiment is finished by using the VLSI chip of Johns Hopkins University Neuroengineering & Biomedical Instrumentation Lab, and the system can output 3.3V 10mA within the distance of (10~15)mm in 4MHz carrier for the implanted circuit chip; The system is safe, stable and efficient for the cortical prosthesis by micro-electrical stimulation through dura mater, without external wire connected, battery and infection danger; the system provided a reliable tool of wireless power supply for further research of the cortical prosthesis by micro-electrical stimulation through dura mater.
     2. Not only the external power supply but also the extracorporeal electrical stimulus supply is needed when the implanted circuit chip of cortical prosthesis by micro-electrical stimulation through dura mater excuted special nerve function restoration. The proposed dissertation designed a VLSI wireless power harvesting telemetry system to accomplish the task for the cortical prosthesis by micro-electrical stimulation through dura mater. The system includes extracorporeal power transmitter and telemetry transmitter,internal power receiver and telemetry receiver. The schematic design of VLSI wireless power harvesting telemetry system is accomplished, and experiment platform was built and test experiment of wireless power harvesting telemetry based on inductive coils has been carried out. The highest baud rate, the optimized implanted inductive coil have been studied at the same time that output voltage of wireless power supply is stable. The features of the proposed system are followed. The power and data have been transmit in the same direction synchronously by one pair of inductive coil, and the experiment has been accomplished by using the VLSI chip and platform in Johns Hopkins University Neuroengineering & Biomedical Instrumentation Lab. The system can transmit the electrical stimulus data by 25kbps by implanted coil of 10mm radius within the distance of (10~15)mm at 4 MHz carrier for implanted circuit chip. The proposed wireless power harvesting telemetry technology is noninvasive, efficient telemetry method without external wire connected and infection danger.
     3. The cortical prosthesis by micro-electrical stimulation through dura mater is used for nerve function restoration not damage nerve tissue, which is guaranteed to be executed efficiently by monitoring the electrode-tissue interface of neuroprosthetics. In this paper a VLSI wireless acquisition system for Spike and EEG signal was designed to carry out the monitoring task. The proposed system includes 16-channel signal acquisition VLSI chip, RF transceiver chip and PC et al. The wireless acquisition system schematic of neuroprosthetic electrode-tissue interface information is put forward, the acquisition system is built, and the system performance test and vitro physiological signal wireless transmission experiment have been accomplished. The characteristic of this system are followed. The proposed system is portable with size of 56mm×50mm×30 mm. The proposed system makes use of 16-channel VLSI neuropotential acquisition chip, of adjustable parameter, low-dissipation and integration. The system can communicate the signal similar to Spike and EEG at 57.6kbps within the distance of one meter with BER lower than 8.9336×10-4. The wireless acquisition technology is one key technology and monitoring tool for the cortical prosthesis by micro-electrical stimulation through dura mater, because the proposed system can acquire the electrode-tissue interface information of neuroprosthetics for guaranteeing the nerve function restoration of the cortical prosthesis by micro-electrical stimulation through dura mater.
     4. The hypothesis of the cortical prosthesis by micro-electrical stimulation through dura mater is that the final electrical stimulus on the target cortex is still effective after it has transmit from the target dura mater. So the proposed paper designed a cat experiment of electrode-tissue interface in the cortical prosthesis by micro-electrical stimulation through dura mater to verify the hypothesis. The animal experiment schematic of electrode-tissue interface in the cortical prosthesis by micro-electrical stimulation through dura mater was put forward, the animal experiment platform was built, and tentative exploration of stimulus effective transmission from dura mater to cortex has been carried out. The main content is followed. The paper especially studied the electrical stimulus attenuation of the dura mater, cerebrospinal fluid (CSF) and pia mater. The experiment studied stimulus parameters effect in the transmission of electrical stimulus in the cortical prosthesis by micro-electrical stimulation through dura mater, which includes stimulus waveshape, pulsewidth and amplitude of single square current, record space sites. The scheme feasibility of the cortical prosthesis by micro-electrical stimulation through dura mater has been verified, which also settled experimental basis for further research of the cortical prosthesis by micro-electrical stimulation through dura mater.
     The proposed dissertation has carried out further study on the cortical prosthesis by micro-electrical stimulation through dura mater, which includes wireless power supply technology,VLSI wireless power harvesting telemetry technology and VLSI wireless acquisition technology. And animal experiment of schematic feasibility in the cortical prosthesis by micro-electrical stimulation through dura mater has been accomplished. The research and experiment in the paper has established substantial theory and experiment basis for further research on the cortical prosthesis by micro-electrical stimulation through dura mater. The creative work is summarized.
     (1) The paper put forward a method of transcranium wireless power supply and transcranium neural electrical stimulus transmission based on VLSI, and the circuit module both inductive wireless power receiver circuit based on VLSI and transcranium neural electrical stimulus transmission circuit based on Electromagnetic induction have been designed, especially the modification of low-drop regulator circuit and the transcranium neural electrical stimulus wireless transmission experiment through the coupling coils. The system can output 3.3V 10mA within the distance of (10~15)mm in 4MHz carrier for the implanted circuit chip, and it can transmit the electrical stimulus data by 25kbps.
     (2) The paper proposed a method of neural electrical signal wireless acquisition in the cortical prosthesis by micro-electrical stimulation through dura mater based on VLSI, and the wireless transcranium acquisition system has been developed, and the performance test of the system has been accomplished. It can communicate the signal similar to Spike and EEG at 57.6kbps within the distance of one meter with BER lower than 8.9336×10-4.
     (3) The paper proposed a method of electrode-tissue interface animal experiment in the cortical prosthesis by micro-electrical stimulation through dura mater, and animal experiment platform has been built, and tentative exploration of stimulus effective transmission from dura mater to cortex has been carried out, especially the scheme feasibility of the cortical prosthesis by micro-electrical stimulation through dura mater has been accomplished.
引文
[1] Zhigong Wang, Xiaosong Gu, Xiaoying Lu, et al. Microelectronics-embedded channel bridging and signal regeneration of injured spinal cords[J]. Progress in Natural Science, 2009, 19(10): 1261-1269
    [2]http://en.wikipedia.org/wiki/Neuroprosthetics
    [3] De B.C, Patel S, Roy A, et al. Factors affecting perceptual thresholds in epiretinal prostheses[J]. Invest Ophthalmol Vis Sci, 2008, 49(6):2303-14.
    [4] Heinrich Hertz, Electric Radiation, Electric Waves, Chap.11, D.E.Jones translation, London, Macmillan Co.(1983) and New York, Dover(1962).
    [5] W.C.Brown. Experiments in the Transportation of Energy by Microwave Beam[J]. IEEE International Record, 1964, XII(2): 8-18.
    [6] W.C.Brown. Thermionic Diode Rectifier in Okress. Microwave power Engineering, Academic Press 1968, I:195-198.
    [7]朱云国.无接触无线能量传输的探索[J].皖西学院学报,2004,20(2):28~29.
    [8]徐传继,李国欣.国际空间太阳能电站的技术进展[J].上海航天,1999,2(5):51~56.
    [9] Young-Ho Suh, Kai Chang. A Novel Dual Frequency Rectenna for High Efficiency Wireless Power Transmission at 2.45 and 5.8GHz[C]. Microwave Symposium Digest, IEEE MTT-S International, 2002, 2(5):1297~1300.
    [10] Aristeidis Karalis, J.D Joannopoulos. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics, 2008,323(1):34-48.
    [11] Elliott G, A.J,Boys, J.T,Green. A W. Magnetically coupled systems for power transfer to electric vehicles[J]. Power Electronics and Drive Systems, 1995, 2:797~801.
    [12] Brian Smith,Zhengnian tang,Mark W. Johnson,et al. An External powered, Mutilchannel,Implantable stimulator-telemetry for control of paralyzed muscle[J]. IEEE Transcations On Biomedical Engineering, 1998, 4(45):76~80。
    [13] Gunnar Gudnason,Jannik H.Nielsen,Erik Bruun. A distributed transducer system for functional electrical stimulation[J]. IEEE Electronics Circuits and Systems, ICECS’01,2001, 1:397~400.
    [14] Thumim A, Reed G, Lupo F, et al. High power electromagnetic energy transfer for to implanted devices[J]. IEEE Transactions on Magnetics, 1970 , 6 (2):326-332.
    [15] Schuder J.C, Gold J.H, Stephenson H.E.Jr. Inductively coupled RF system for transmission of 1 kW of power through the skin[J]. IEEE Trans Biomed Eng. 1971, 18(4):265-73.
    [16] Schuder J.C, Gold J.H, Stephenson H.E.Jr. Ultrahigh power electromagnetic energy transport into the body[J]. Trans Am Soc Artif Intern Organs, 1971, 17: 406-10.
    [17] Nishimura T.H, Eguchi T, Kubota A, et al. An improved transmission energy transfor for a non invasive rechargeable battery to artificial organs[C]. The 8th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2001 :1209 -1214.
    [18] Tsai C.C, Chen B.S, Tsai C.M. Design of wireless transcutaneous energy transmiss system for totally artificial hearts[J]. IEEE Asia-Pacific Conference on Circuits and System, 2000, 646-649.
    [19] Matsuki H, Shiiki M, Murakami K, et al. Investigation of coil geometry for transcutaneous energy transmission for artificial heart[J]. IEEE Transactions on Magnetics, 1992, 28(5):2406-2408.
    [20] Iwawaki Kenji, Watada Masaya, Takatani Setsuo, et al. The design of core-type Transcutaneous Energy Transmission Systems for artificial heart[C]. Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE, 948-952.
    [21] Takashi Yamane. The present and future state of nonpulsatile artificial heart technology[J]. Journal of Artificial Organs, 2002, 5(3):149-155.
    [22] C. Fernhndez, O. Garcia, J. A. Cobos, et al. A simple dc-dc converter for the power supply of a cochlear implant[C]. 2003 IEEE 34th Annual Power Electronics Specialists Conference. Conference Proceedings. June 15-19, 2003, Acapulco, Mexico:1965-1970
    [23] Yu. H, Bashirullah. R. A Low Power ASK Clock and Data Recovery Circuit for Wireless Implantable Electronics[C]. IEEE CICC Proc. of the 2006 Custom Integrated Circuits Conference, San Jose, California, 10-13 Sept. 2006, 9: 249-252.
    [24] Sauer. C, Stanacevic. M, Cauwenberghs.G, et al. Power Harvesting and telemetry in CMOS for implanted devices[J]. Circuits and Systems I, IEEE Transactions on, 2005, 52(12): 2605- 2613.
    [25] Mollazadeh. M, Murari K. K, Cauwenberghs. G, et al. Micropower CMOS Low Noise Amplification, Filtering and Digitization of Multimodal Neuropotentials[J].IEEE Trans Biomed Circuits and Sys, 2005, 3(1) 1-10.
    [26] Lui W, Humayun MS, Weiland JD, et al. Multiple Unit Artificial Retina Chipset System to Benefit the Visual Impaired[M].Theodorescu N.,Ed.Raton B.,FL:CRC,ch.2, 2000.
    [27] Liu W, Bashirullah R, Lazzi G, et al. A smart bi-directional telemetry for retinal prosthesis[J]. Investigative Ophthalmulogy&Visul Science, 2002, 43:4469-4475.
    [28] Liu W, Sivaprakasam M, Wang G, et al. Microelectronics design for an implantable high density retinal prosthesis[J]. Investigative Ophthalmulogy&Visul Science, 2005, 46:1526-1530.
    [29]饶晨.外层型CMOS人工视网膜芯片的研究[D].博士学位论文.重庆大学,2006:100-105.
    [30] Liu. W, Vichienchom. K, Clements. M, et al. A Neuro-Stimulus Chip with Telemetry Unit for Retinal Prosthetic Device[J], IEEE J. Solid State Circuits 2000, 35(10) 1487-1497.
    [31] Rizzo J F, Wyatt J, Loewenstein J, et al. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays[J]. Investigative Ophthalmology and Visual Science, 2003, 44(12):5355-5361.
    [32] Rizzo III.JF, Wyatt.J, Loewenstein.J, et al. Perceptual Efficacy of Electrical Stimulation of Human Retina with a Microelectrode Array during Short-Term Surgical Trials[J]. I O V S, 2003, 44:5362-5369.
    [33] Rizzo III.JF, Goldbaum.S, Shahin.M, et al. In vivo electrical stimulation of rabbit retina with a microfabricated array: Strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility [J]. Restor Neurol Neurosci, 2004, 22:429-443.
    [34] Takeshi M, Takashi F, Jun-Sub C, et al. Transcorneal Electrical Stimulation Promotes the Survival of Photoreceptors and Preserves Retinal Function in Royal College of Surgeons Rats[J]. Investigative Ophthalmology and Visual Science, 2007, 48 : 4725-4732.
    [35] Veraart C, Raftopoulos C, Mortimer JT, et al.Visual sensations produced by optic nerve stimulation using an implanted selfsizing spiral cuff electrode[J]. Brain Res, 1998, 813(1):181-186.
    [36] Delbeke J, Oozeer M, Veraart C. Position,size and luminosity of phosphenes generated by direct optic nerve stimulation[J]. Vision Res, 2003, 43(9):1091-1102.
    [37] Delbeke J, Pins D, Michaux G, et al. Electrical stimulation of anterior visualpathways in retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2001, 42(1):291-297.
    [38]陈虹,刘鸣,贾晨等.一种低功耗数字式人工关节无线监视系统[J].微电子学,2007,37(5):717-725.
    [39]陈虹,贾晨,刘鸣,等.人工关节内锆钛酸铅压电陶瓷供能与电路设计[J].清华大学学报(自然科学版),2008,48(1):128-131.
    [40]马官营,颜国正,何秀.基于电磁感应的消化道内微系统的无线供能[J].上海交通大学学报,2008,42(5):789-802.
    [41] Chai Xinyu, Li Liming, Wu Kaijie, et al. C-sight visual prostheses for the blind: Optic nerve stimulation with penetrating electrode array[J], IEEE Engineering in Medicine and Biology Magazine, 2008,27(5) : 20-28
    [42]周洪波,李刚,张华,等.简易低成本柔性神经微电极制作方法[J].光学精密工程,2007,15(7):1056-1063.
    [43]韩鹏,王志功,徐勇,等.面向片上系统的无片外电容CMOS低压差稳压器[J].半导体学报,2008,29(8):1507-1510.
    [44]傅文珍,张波,丘东元,等.自谐振线圈耦合式电能无线传输的最大效率分析与设计[J].中国电机工程学报,2009,29(18):21-26.
    [45]樊华,郑小林,皮喜田,等.一种用于体内诊疗装置的无线能量传输方案[J].北京生物医学工程,2004,23(3):168-170.
    [46]郑小林,牟宗霞,侯文生,等.基于微线圈阵列的多道神经电刺激信号透皮传输的初步实验研究[J].仪器仪表学报,2009,30(5):1110-1116.
    [47] Rao Cheng, Yuan Xianghui, Zou Jian. Photoelectric plasma-leakage monitoring apparatus[J]. IEEE electronics Letters, 2005, 41(9): 517-518.
    [48] Rao Cheng, Yuan Xianghui, Zhang Sijie, et al. A photodiode circuit macro-model for SPICE simulation[J]. Semiconductor Photonics and Technology. 2006, 12(1): 25-29.
    [49]王志华. SOC集成电路研究的若干问题-ISSC介绍[J].中国集成电路,2007,93:17-20.
    [50] Patrick J, Clark G. The Nucleus 22-channel cochlear implant system[J]. Ear and Hearing, 1991, 12:3-9.
    [51] Seligman P, McDermott H. Architecture of the Spectra 22 speech processor[J]. Ann Otology, Rhinology and Laryngology,1995, 104: 139-141.
    [52] Helms J, Muller J, Schon F, et al. Evaluation of performance with the COMBI 40 cochlear implant in adults: A multicentric clinical study[J].ORL,1997, 59:23-35.
    [53] Cochlear Corporation. ESPrit 3G User Manual. Cochlear Corporation: 2003, http://www.cochlear.com.
    [54] Cochlear Corporation.Freedom User Manual.Cochlear Corporation: 2006, http://www.cochlear.com.
    [55] Cochlear Corporation.Freedom BTE Quick Ref.Cochlear Corporation: 2006, http://www.cochlear.com.
    [56] http://www.cochlearamericas.com/
    [57] http://www.medel.com
    [58] http://www.otobionics.com.tw/index.htm
    [59]曹克利,王直中,王开西,等.耳蜗植入的设计、实验研究与临床应用[J].听力学及言语疾病杂,1994,2:57-61.
    [60]曾晓军,洪志良,任俊彦,等.多道电子耳蜗接收刺激器专用集成电路[J].电子学报,1994,22 (08):82-86.
    [61] http://news.tsinghua.edu.cn
    [62]人工耳蜗在沪问世.http://www.fudan.edu.cn,2008.1.13.
    [63]邹嘉宇,侯文生,郑小林,等.基于DSP的电子耳蜗语音编码及无线传输[J].微计算机信息,2009,25(1-2):6-8.
    [64]滕小兰,郑小林,侯文生,等.一种基于MSP430的电子耳蜗接收刺激器设计[J].传感器与微系统,2009,28(1):68-70.
    [65] Lambert V, Laloyaux C, Schmitt C, et al. Localisation, discrimination,and grasping of daily life objects with an implanted optic nerve prosthesis[J]. Invest Ophthalmol Vis Sci, 2003, 44(5): 4208-4218.
    [66] Veraart C, Wanet-Defalque MC, Gerard B, et al. Pattern recognition with the optic nerve visual prosthesis[J]. Artif Organs, 2003, 27(11): 996-1004.
    [67]牛金海,刘易非,任秋实,等.视觉假体:带给盲人光明的电子设备[J].中国科学E辑:信息科学,2007,37(10):1354~1362.
    [68]毛晓轶,李文渊,王志功.电压激励神经信号重建微电子系统[J].电子器件,2008,31(2):484-487.
    [69]周建政,王志功,李莉,等.宽带无线接收机射频前端结构研究与设计[J].应用科学学报,2008,26(2):156-161.
    [70]王欢,王志功,徐建,等.具有稳定工作状态的无线接收用超再生振荡器[J].半导体学报,2008,29(8):1608-1613.
    [71]钱照华,王志功,刘颖异,等.神经信号遥测模块及电路的设计与实现[J].电子器件,2008,31(4):1284-1292.
    [72]马官营,颜国正,王坤东,等.无线供能胃肠道微型诊查机器人系统研究[J].机器人,2008,30(1):457-463.
    [73] Parise R J. Future all-electric Transportation Communication and recharging via wireless power beam [C]. Proceeding of SPIE, 2001, 14(7):171-179.
    [74]赵德春,导师***.无线内窥镜中高效电磁感应连接[J].清华大学学报(自然科学版),2008,48(9):1519-1521.
    [75] Christian Sauer, Milutin Stanac′evic′, Gert Cauwenberghs, et al. Power Harvesting and Telemetry in CMOS for Implanted Devices[J]. IEEE Transactions On Circuits And Systems, 2005, 52(12):2605-2613.
    [76] G. B. Hmida, M. Dhieb, H. Ghariani, et al. Transcutaneous power and high data rate transmission for biomedical implants[C]. Int. Conf.of DTIS 2006: 374-378.
    [77] Mollazadeh. M, Murari. K, Schwerdt. H, et al. Wireless Multichannel Acquisition of Neuropotentials[C]. Biomedical Circuits and Systems Conference, 2008 BioCAS IEEE. 20-22 Nov, 2008: 49-52.
    [78] Liu W, Bashirullah R, Lazzi G, et al.A smart bi-directional telemetry for retinal prosthesis[J]. Investigative Ophthalmulogy&Visul Science, 2002, 43:4469-4475.
    [79] Liu W, Sivaprakasam M, Wang G, et al. Microelectronics design for an implantable high density retinal prosthesis[J]. Investigative Ophthalmulogy & Visul Science, 2005, 46: 1526-1530.
    [80] J. Coulombe, M. Sawan. An Implant for a Visual Cortical Stimulator[J]. CDEN Biomimetics Symposium, Montreal, September 2004.
    [81] Masoud Roham, David P. Daberkow, Eric S. Ramsson, et al. A Wireless IC for Wide-Range Neurochemical Monitoring Using Amperometry and Fast-Scan Cyclic voltammetry[J]. IEEE Transactions On Biomedical and Systems, 2008, 2(1): 3-9.
    [82] Chua-Chin Wang, Tzung-Je Lee, U Fat Chio. A 570-kbps ASK demodulator without external capacitors for low-frequency wireless bio-implants[J]. Microelectronics Journal, 2008, (39): 130–136.
    [83]谢维夫,李永明,张春,等.一种780~930 MHz低功耗LCVCO的设计[J].微电子学,2008,38(3):407-410.
    [84]麦宋平,张春,晁军,等.一种带植入式数字信号处理器的新型人工耳蜗系统[J].半导体学报,2008,29(9):1745-1752.
    [85] Lingwei Zhang, Hanjun Jiang, Xuguang Sun, et al. A Passive RF Receiving and Power Switch ASIC for Remote Power Control with Zero Stand-by Power[C].IEEE Asian Solid-State Circuits Conference, November 3-5, 2008. Fukuoka, Japan,109-112.
    [86]俞跃,郝红伟,牛川森,等.植入式单穴位电刺激系统研究[J].医疗卫生装备,2009,30(7):7-11.
    [87]任秋实.视觉假体的研究进展与面临的挑战[J] .生命科学,2009,21(2):234-240
    [88] Yang. Zhou, Jinhai. Niu, Ye. Zhou, et al. A novel design of transcutaneous power and data bidirectional transfer system for biomedical implants[C]. 2007 IEEE/ICME International Conference on Complex Medical Engineering, Beijing, China:CME 2007, May 23-27, 1441-1444.
    [89] Shuai Niu, Jinhai Niu, Yifei Liu, et al. Implantable System for Optic Nerve Visual Prosthesis[C]. 2007 IEEE/ICME International Conference on Complex Medical Engineering, Beijing, China: CME 2007, May 23-27, 1503-1506.
    [90] Jia Wang, Ying Zhao, Xinyu Chai, et al. Micro-Stimulator Circuitry Design for Visual Prosthesis Based on Optic Nerve Stimulation in Artificial Vision[C]. 8th International Conference on Signal Processing, Beijing,China: ICSP 2006, November 16-20, 143-146.
    [91] Ying Zhao, Jia Wang, Xinyu Chai, et al.Micro-stimulator Design for Visual Prosthesis based on Optic Nerve Stimulation[C]. Proceedings of International Symposium on Biophotonics, Nanophotonics and Metamaterials, Hangzhou, China: Metamaterials 2006, October 16-18, 2006, 139-142.
    [92] Ying Zhao, Jia Wang, Qiushi Ren, et al. A Novel Design of Control Circuit in Neural Stimulator for Optic Nerve Prostheses[C]. 8th International Conference on Signal Processing, ICSP 2006, November 16-20, Beijing, China:132-138.
    [93] Reecha Wadhwa, Carl F. Lagenaur, Xinyan Tracy Cui. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode[J]. Journal of Controlled Release, 2006, 110(3): 531-541.
    [94] Moxon KA, Kalkhoran NM, Markert M, et al. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface[J]. IEEE Trans Biomed Eng 2004, 51(6): 881–889.
    [95] Philip Troyk, Martin Bak, Joshua Berg, et al. A Model for Intracortical Visual Prosthesis Research[J]. Artificial Organs, 2003, 27(11):1005–1015.
    [96] Anjana Jain, Susann M. Brady-Kalnay, Ravi V. Bellamkonda. Modulation of Rho GTPase Activity Alleviates Chondroitin Sulfate Proteoglycan-DependentInhibition of Neurite Extension[J]. Journal of Neuroscience Research, 2004, 77: 299–307.
    [97] Tracy Cameron, Gerald E. Loeb, Raymond A. Peck, et al. Micromodular Implants to Provide Electrical Stimulation of Paralyzed Muscles and Limbs[J]. IEEE Transactions on biomedical engineering, 1997, 44(9): 781-790.
    [98] Rolf Eckmiller. Towards learning hybrid retina implants with stimulation-and drug-delivery capabilities for retinitis pigmentosa ans neovascular age-related macular degeneration[C]. 2nd international conference on Neuroprosthetic devices, February 27-28, 2010. Beijing, China.
    [99] Docs outline artificial vision progress. Ed Susman. UPI Science News From the Science & Technology Desk Published 9/23/2002 11:59 PM
    [100]Kipke DR. Implantable neural probe systems for cortical neuroprostheses[C]. Conf Proc IEEE Eng Med Biol Soc 2004, 7: 5344–5347.
    [101] Rousche PJ, Petersen RS, Battiston S, et al. Examination of the spatial and temporal distribution of sensory cortical activity using a 100-electrode array[J]. J Neurosci Methods, 1999, 90:57–66.
    [102] Warren DJ, Fernandez E, Normann RA. High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array[J]. Neuroscience, 2001, 105(1):19–31.
    [103] Kim SJ, Manyam SC, Warren DJ, et al. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays[J]. Ann Biomed Eng 2006, 34:300–309.
    [104] Kipke DR. Implantable neural probe systems for cortical neuroprostheses[C]. Conf Proc IEEE Eng Med Biol Soc, 2004, 7:5344–5347.
    [105] Donoghue JP, Wise SP. The motor cortex of the rat: cytoarchitecture and microstimulation mapping[J]. J Comp Neurol, 1982, 212(1):76–88.
    [106] Neafsey EJ, Bold EL, Haas G, et al. The organization of the rat motor cortex: a microstimulation mapping study[J]. Brain Res, 1986, 396(1):77–96.
    [107] Nudo RJ, JenkinsWM, MerzenichMM. Repetitive microstimulation alters the corticalrepresentation ofmovements in adult rats[J]. SomatosensMot Res, 1990, 7: 463–83.
    [108] Remple MS, Henry EC, Catania KC. Organization of somatosensory cortex in the laboratory rat (Rattus norvegicus) [J]: evidence for two lateral areas joined at the representation of the teeth. J Comp Neurol, 2003, 467:105–18.
    [109] Kitzmiller J, Beversdorf D, Hansford D. Fabrication and testing of microelectrodes for small-field cortical surface recordings[J]. Biomed Microdevices, 2006, 8:81–86.
    [110]李志宏,黄贤炬.一种基于Parylene的三维针尖电极阵列的制作方法[J].中国,200810119952. 2008-09-12
    [111]刘舒维,陈迪,柴新禹,等.基于柔性衬底的人造视网膜生物微电极阵列研究[J].传感技术学报,2008,21(4):550-552.
    [112]胡宁,导师***,作者***,等.基于MEMS的人工视网膜微电极阵列设计仿真[J].仪器仪表学报2007,28(11):2024-2027.
    [113]吴义伯,徐爱兰,惠春,等.用于视觉修复的柔性神经微电极阵列的电学性能表征[J].仪器仪表学报,2008,29(12):2527-2531
    [114]王洪良,吴开杰,梁婷,等.基于在体阻抗测量的视神经假体反馈系统构建[J].中国医学物理学杂志,2009,26(3):1184-1209
    [115] Garcia-de-quiros F J, Bonomini M P, Ferrandez J M, et al.Validation of a cortical electrode model for neuroprosthetics purposes[J]. International Work-Conference on Artificial and Natural Neural Networks, 2003, 26(87): 81-88.
    [116] Rag heb T, Geddes L A. Electrical properties of metallic electrodes[J]. Medical and Biological Engineering and Computing, 1990, 28(2): 182-186.
    [117] Jonas A. H, Katiuska M L, Benjamin H, et al. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat[J]. Journal of Neuroscience Methods, 2008, 172: 255–262.
    [118] Ann Spriet, et al. Speech Understanding in Background Noise with the Two-Microphone Adaptive Beamformer BEAM trade mark in the Nucleus Freedomtrade mark Cochlear Implant System[J]. Ear Hear, 2007, 28(1):62-72.
    [119] Olivier Macherey, et al. Asymmetric Pulses in Cochlear Implants: Effects of Pulse Shape, Polarity, and Rate[J].J Assoc Res Otolaryngol, 2006, 5(20): 253-266.
    [120] http://jpkc.sysu.edu.cn/2006/xdsmkx/netcourse/ch10/1-1.htm
    [121] Christian Sauer, Milutin Stanac′evic′, Gert Cauwenberghs, et al. Power Harvesting and Telemetry in CMOS for Implanted Devices[C], Proc. IEEE Biological Circ. and Sys.Conference, Singapore, Dec 2004 :337-340.
    [122] Ghazi Ben Hmida, Mohamed Dhieb, Hamadi Ghariani, et al. Transcutaneous power and high data rate transmission for biomedical implants[C]. in: International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006, DTIS 2006: 374-378.
    [123]姚泰.生理学[M].北京:人民卫生出版社,2006:40-66.
    [124]张震宇,李文渊,王志功.植入式中枢神经恢复系统激励模块及其核心电路设计.电气电子教学学报,2005,27(5):45-48.
    [125] Zhi-Gong Wang, Xiaoying lü, Xiao-song Gu, et al, Microelectronic Detecting, Processing and Rebuilding of Central Neural Signals[C]. Third Joint Symposium on Opto- and Microelectronic Devices and Circuits, March 21- 26, 2004, Wuhan, China:140-145.
    [126] Jeffrey A. Von Arx, Khalil Najafi. On-Chip Coils With Integrated Cores For Remote Inductive Powering Of Integrated Microsystems[C]. 1997 International Conference on Solid-state Sensors and Actuators, June 16- 19, 1997, Chicago, USA:110-115.
    [127] M. Ilic, D. Vasiljevic, D B. Popovic. A Programmable Electronic Stimulator for FES Systems[J]. IEEE Transactions on Rehabilitation Engineering, 1994, 2(4): 346-352.
    [128] M.Ghovanloo, K.Beach, K D. Wise, et al, A BiCMOS Wireless Interface Chip for Micromachined Stimulating Microprobes[C]. 2nd Annual International IEEE-EMBS Special Topic Conference on Mirotechnologies in Medicine &Biology, May 2-4, 2002, Madison, USA: 80-90.
    [129] K. Papathanasiou, T. Lehmann. An Implan table CMOS Signal Conditioning System for Recording Nerve Signals with Cuff Electrodes[C]. ISCAS 2000, IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland:120-128.
    [130] Katiusk M L, Manuel M. B, Benjamin H, et al. Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays[J]. Journal of Neuroscience Methods, 2007, 161 : 118-125.
    [131] Luft AR, Kaelin-Lang A, Hauser TK, et al. Transcranial magnetic stimulation in the rat[J]. Exp Brain Res, 2001, 140 (1):112-21.
    [132] Fernandez E, Alfaro A, Tormos J M, et al. Mapping of the human visual cortex using imageguided transcranial magnetic stimulation[J]. Brain Res Protoc, 2002, 10: 115-124.
    [133] Suner S, Fellows MR, Vargas-Irwin C, et al. Reliability of signals from a chronically implanted, silicon-based electrode array in nonhuman primate primary motor cortex[J]. IEEE Trans Neural Syst Rehabil Eng, 2005, 13(4): 524–41.
    [134] Moxon KA, Kalkhoran NM, Markert M, et al. Nanostructured surfacemodification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface[J]. IEEE Trans Biomed Eng, 2004, 51 (6): 881–890.
    [135] Hall RD, Lindholm EP. Organization of motor and somatosensory neocortex in the albino rats[J]. Brain Res, 1974, 66: 23–8.
    [136] Chapin JK, Lin CS. Mapping the body representation in the SI cortex of anesthetized and awake rats[J]. J Comp Neurol, 1984, 229:199–213.
    [137] Sievert CF, Neafsey EJ. A chronic unit study of the sensory properties of neurons in the forelimb areas of rat sensorimotor cortex[J]. Brain Res, 1986, 381:15–23.
    [138] Xerri C, Croq JO, Merzenich MM, et al. Experience-induced plasticity of cutaneous maps in the primary somatosensory cortex of adult monkeys and rats[J]. JPhysiol Paris, 1996, 90 (3–4): 277–87.
    [139] Kipke DR. Implantable neural probe systems for cortical neuroprostheses. Conf Proc IEEE Eng Med Biol Soc, 2004,7: 5344–7.
    [140] Rousche PJ, Petersen RS, Battiston S, et al. Examination of the spatial and temporal distribution of sensory cortical activity using a 100-electrode array[J]. J Neurosci Methods, 1999, 90:57–66.
    [141] Warren DJ, Fernandez E, Normann RA. High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array[J]. Neuroscience, 2001, 105(1):19–31.
    [142] Kim SJ, Manyam SC, Warren DJ, et al. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays[J]. Ann Biomed Eng, 2006, 34: 300–309.
    [143] Kipke DR. Implantable neural probe systems for cortical neuroprostheses[C]. Conf Proc IEEE Eng Med Biol Soc 2004, 7:5344–5351.
    [144] Donoghue JP, Wise SP. The motor cortex of the rat: cytoarchitecture and microstimulation mapping[J]. J Comp Neurol, 1982, 212 (1): 76–88.
    [145] Neafsey EJ, Bold EL, Haas G, et al.The organization of the rat motor cortex: a microstimulation mapping study[J]. Brain Res, 1986, 396(1):77–96.
    [146] Nudo RJ, JenkinsWM, MerzenichMM. Repetitive microstimulation alters the cortical representation ofmovements in adult rats[J]. SomatosensMot Res, 1990,7:463–83.
    [147] Remple MS, Henry EC, Catania KC. Organization of somatosensory cortex in thelaboratory rat (Rattus norvegicus): evidence for two lateral areas joined at therepresentation of the teeth[J]. J Comp Neurol, 2003, 4(67):105–123.
    [148] S Nii Y, Uematsu S, Lesser RP, et al. Does the central sulcus divide motor and sensory functions Cortical mapping of human hand areas as revealedby electrical stimulation through subdural grid electrodes[J]. Neurology, 1996 Feb, 46(2): 360–367.
    [149] Rousche RJ, Normann RA. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex[J]. J Neurosci Methods, 1998, 82:1–15.
    [150] Turner JN, Shain W, Szarowski DH, et al. Cerebral astrocyte response to micro- machined silicon implants[J]. Exp Neurol, 1999, 156:33–49.
    [151] Szarowski DH, Andersen MD, Retterer S, et al. Brain responses to micro- machined silicon devices[J]. Brain Res, 2003, 98(3):23–35.
    [152] Moxon KA, Kalkhoran NM, Markert M, et al. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain–machine interface[J]. IEEE Trans Biomed Eng, 2004, 51:881–890.
    [153] Biran R, Martin DC, Tresco PA. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays[J]. Exp Neurol, 2005, 195:115–26.
    [154] Kitzmiller J, Beversdorf D, Hansford D. Fabrication and testing of micro- electrodes for small-field cortical surface recordings[J]. Biomed Microdevices, 2006, 8: 81–5.
    [155] Molina-Luna K, BuitragoMM, Hertler B, et al. Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays[J]. J Neurosci Methods, 2007, 161: 118–25.
    [156] Molina-Luna K, Hertler B, Buitrago M, et al. Motor learning transiently changes cortical somatotopy[J]. NeuroImage, 2008, 40:1748–1754.
    [157] Malalasekera.M A. Theoretical Analysis of Epidural Electrical Stimulation Of The Spinal Cord[C]. Proceedings of the First Joint BMESEMBS Conference Serving Humanity, Advancing Technology Oct. 15-16. 1999, Atlanta, GA, USA.
    [158] Molina-Luna K, Hertler B, Buitrago MM, et al. Motor learning transiently changes cortical somatotopy[J]. Neuroimage, 2008, 40:1748–1754.
    [159] Hosp J. A, Molina-Luna K, Hertler B, et al. Dopaminergic Modulation of Motor Maps In Rat Motor Cortex: An In Vivo Study[J].Neuroscience, 2009, 159: 692–700.
    [160] Rasche D, Ruppolt M, Stippich C, et al. Motor cortex stimulation for long-termrelief of chronic neuropathic pain: a 10 year experience[J]. Pain, 2006, 121(1–2):43–52.
    [161] Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia[J].Nature, 2006, 442(7099):164–71.
    [162] Moxon KA, Kalkhoran NM, Markert M, et al. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface[J]. IEEE Trans Biomed Eng, 2004, 51(6):881–889.
    [163] Birbaumer N. Brain-computer-interface research: coming of age[J]. Clin Neurophysiol, 2006, 117(3):479–83.
    [164]王贺波,于生元,王卫东,等.刺激猫上矢状窦区硬脑膜诱发三叉神经脊束核尾侧段和上颈髓后角c-fos蛋白的表达[J].中国疼痛医学杂志,2002,8(1):26-30.
    [165]董钊,于生元,赵秀梅,等.不同参数电刺激上矢状窦对大鼠硬脑膜血流量的影响[J].微循环学杂志,2008,18(1):13~14,19.
    [166]刘若卓,于生元,李凤鹏,等.颈交感神经对中脑导水管周围灰质信号表达的影响[J].中国临床神经科学,2008,16(5):495-498.
    [167]王凯,黎晓新,姜燕荣.电刺激兔视神经诱发皮层电位的实验研究[J].眼科研究,2008,26(4):297-301.
    [168]郭冰冰,侯文生,阴正勤,郑小林,陈丽峰,刘娜,吴小鹰,彭承琳.一种经硬脑膜的多通道视觉诱发电位实验测试系统的设计.仪器仪表学报,2009,30(6增刊):204-207.
    [169]连芩,王珏,刘红忠,等.脑深部电极刺激机制的模拟研究[J].中国康复医学杂志,2008,23(11):1037-1038.
    [170]连芩,王珏,刘红忠,等.脑深部刺激电极的结构优化及其模拟分析[J].西安交通大学学报,2008,42(12):1537-1540.
    [171] McIntyre. C.C, Grill.W.M, Sherman. D.L, et al. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition[J]. J. Neurophysiol, 2004, b(91):1457–1469.
    [172] Miocinovic. S, Parent. M, Butson. C.R, et al. Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation[J]. J. Neurophysiol, 2006, 96: 1569–1580.
    [173] Butson. C.R, McIntyre. C.C. Differences among implanted pulse generator waveforms cause variations in the neural response to deep brain stimulation[J].Clin.Neurophysiol, 2007, 118:1889–1894.
    [174] Sotiropoulos. S.N, Steinmetz. P.N. Assessing the direct effects of deep brain stimulation using embedded axon models[J]. J. Neural Eng, 2007, 4: 107–119.
    [175]王洪良,吴开杰,梁婷,柴新禹,任秋实.基于在体阻抗测量的视神经假体反馈系统构建[J].中国医学物理学杂志,2009,26(3):1184-1209.
    [176] J. L. Lario-Garcia, R. Pallàs-Areny. Measurement of three independent components in impedance sensors using a single square wave[J]. Sens.Actuators, 2004, 110(1–3): 164–170.
    [177] Brindley G, Rushton D. Implanted stimulators of the visual cortex as visual prosthetic devices[J].Trans Am Acad Ophthalmol Otolaryngol, 1974, 78:741-745.
    [178] Dobelle W H, Mladejovsky M G, Girvin J P. Artifical vision for the blind:Electrical stimulation of visual cortex offers hope for a functional prosthesis[J]. Science, 1974, 183(123):440-444
    [179] Pollen D A. Responses of single neurons to electrical stimulation of the surface of the visual cortex[J]. Brain Behav Evol, 1977, 14(1-2):67-86.
    [180] Bak. A, Girvin.J.P, Hambrecht. F, et al.Visual sensations produced by intracortical microstimulation of the human occipital cortex[J]. Med Biol Eng Comput, 1990, 28(3):257-259.
    [181] Schmidt.E.M, Bak.M.J, Hambrecht.F.T, et al. Feasibility of a visual prothesis for the blind based on intracortical microstimulation of the visual cortex[J]. Brain, 1996, 119(2) : 507-522.
    [182] Normann.RA, Maynard.EM, Rousche.PJ, et al. A neural interface for a cortical vision prosthesis[J]. Vision Res, 1999, 39: 2577-2587.
    [183] Normann RA, Warren DJ, Ammermuller J, et al. Highresolution spatio-temporal mapping of visual pathways using multi-electrode arrays[J]. Vision Res, 2001, 41: 1261-1275.
    [184] Jones KE, Campbell PK, Normann RA. A glass/silicon composite intracortical electrode array[J].Ann Biomed Eng, 1997, 20(4):423-437.
    [185]白净.生理系统的仿真与建模[M].北京:清华大学出版社,1994: 102-108.
    [186] Robert J. Greenberg, et al. A Computational Model of Electrical Stimulation of the Retinal Ganglion Cell[J]. IEEE Transactions on biomedical engineering, 1999, 46 (5): 505-518.
    [187]李相银,姚安居,杨庆.大学物理实验[M].南京:东南大学出版社,2000:60-95.
    [188]曹玉珍,刘洪涛,陈敏.可充电的植入式脑深部刺激器及其低功耗设计[J].电子技术应用,2005(2):37-39.
    [189] Nishimura, Eguchi T H, Hirachi T, et a1. An advanced transcutaneous energy transformer for a rechargeable cardiac pacemaker battery by using a resonant DC to DC converter[C]. Industrial Elect ronics Control and Instrumentation, Taipei, Taiwan, 1996, 1: 524-529.
    [190] Akin T, Najafi K. A wireless implantable multichannel digital neural recording system for amicromachined sieveelectrode[J]. IEEE Trans.Solid-State Circuits, 1998, (33):109-118.
    [191] Dudenbostel D, Krieger K L, Candler C, et al. A new passive CMOS telemetry chip to receive power and transmitdata for a wide range of sensor applications[C]. Solid State Sensors and Actuators, Chicago, USA,1997,2: 995-998.
    [192] Takeuchi S, Shimoyama I. A radio-telemetry system with a shape memory alloy microelectrode for neural recording of freely moving insects[J]. IEEE Transaction Biomedical Engineering, 2004, 15(1):133–137.
    [193] Ziaie B, Nardin M D. A single-channelimplantable microstimulator for functional neuromuscular stimulation [J]. IEEE Trans Biomed Eng, 1997, 44:909-913.
    [194]梁俊睿,赵春宇.一种经皮能量传输电路的设计方法[J].电子技术应用,2007,33(4):87-89.
    [195] Dokos S, Suaning GJ, Lovell NH. A Bidomain Model of Epiretinal Stimulation[J]. IEEE Trans Neural Svst Rehabil Eng, 2005, 13(2):137-146.
    [196]田颖,陈培红,聂圣芳等.功率MOSFET驱动保护电路设计与应用[J].电力电子技术,2005,39(1):73-74,80.
    [197]李慧芳,郭庆新,居继龙.一种实用的阻抗匹配方法[J].中国传媒大学学报自然科学版,2007,14(1):50-54.
    [198]曲明,沈红宇,王豪行. E类调谐功率放大器的计算机辅助分析[J].上海交通大学学报,1994,28(1):71-81.
    [199] Sauer. C, Stanacevic. M, Cauwenberghs.G, Thakor. N. Power harvesting and telemetry in CMOS for implanted devices[J]. Circuits and Systems I, IEEE Transactions on, 2005, 52(12): 2605- 2613.
    [200] Chua-Chin Wanga, Tzung-Je Leea, U Fat Chiob. A Capacitor-free CMOS Low Dropout Regulator with Slew Rate Enhancement[J]. Microelectronics Journal, 2008 (39): 130–136.
    [201] Liangguo Shen, Zushu Yan, Xing Zhang, et al. Design of High-PerformanceVoltage Regulators Based on Frequency-Dependent Feedback Factor[C]. IEEE International Symposium on Circuits and Systems. ISCAS 2007,140-148.
    [202] Yamu Hu, Mohumud Sowan. A 900 mV 25μW high PSRR CMOS voltage reference dedicated to implantable micro-devices[C]. ISCAS2003, 1: 373-376.
    [203] Sauer. C, Stanacevic. M, Cauwenberghs.G, et al. Power harvesting and telemetry in CMOS for implanted devices[J], Circuits and Systems I, IEEE Transactions on 2005, 52 (12) : 2605- 2613.
    [204]Gabriel A. Rincon-Mora, Phillip E. Allen. A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator[J]. IEEE Journal Of Solid-State Circuits, 2008, 33(1): 49-52.
    [205] Gabriel A. Rincon-Mora, Phillip E. Allen. Optimized Frequency-Shaping Circuit Topologies for LDO’s[J]. IEEE Transactions on Circuits And Systems, 1998, 45(6): 703-710.
    [206] Mollazadeh M, Murari K, Cauwenberghs G, et al. From Spikes to EEG: Integrated Multichannel and Selective Acquisition of Neuropotential[C]. Conf Proc IEEE Eng Med Biol Soc, 2008, 1(27): 41-44.
    [207] Texas Instruments. Technical Review of low dropout voltage regulator operation and performance[R]. Mixed Signal Products, August 1999.
    [208]邱祖江,郭亚炜,杨莲兴.一种改进Miller编解码的实现方法[J]. 2000,30(3):176-178.
    [209] Kartikeya.Murari, Christian M. Sauer, Milutin Stana′cevi′c, et al. Wireless Multichannel Integrated Potentiostat for Distributed Neurotransmitter Sensing[C]. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, September 1-4, 2005:7329-7332.
    [210] Sauer. C, Stanacevic. M, Cauwenberghs.G, Thakor. N. Power harvesting and telemetry in CMOS for implanted devices[J], Circuits and Systems I, IEEE Transactions on, 2005, 52(12): 2605- 2613.
    [211] Christian Sauer. An Inductive Coupling VLSI Interface For Neurotransmitter Measurements[D]. Baltimore, MD, USA: Johns Hopkins University, 2005:20-50.
    [212] Christian Sauer, Milutin Stanac′evic′, Gert Cauwenberghs, et al. Power Harvesting and Telemetry in CMOS for Implanted Devices[J].IEEE Transactions On Circuits And Systems, 2005, 52(12):2605-2613.
    [213] Mao Yizhi. The numerical analysis of impulse voltage distribution in large power transformer windings[J]. Journal of Hebei University of Technology, 1998,27(4):80-86.
    [214] Yang Xuechang, Wang Yongping, Qi Qingcheng, et al. Calculations of transient voltage distribution and Field strength in transformer windings taken account of Losses[J]. Transformer, 1998, 35(5):7-10.
    [215]王志兴,张晓,冯波,李相银.无线装定发射线圈原理应用研究[J].弹箭与制导学报,2005,24(3):93-94.
    [216] Jeffrey A, Von Arx, Khalil Najafi. On-chip coils with integrated cores for remote inductivepowering of integrated Microsystems[C]. TRANSDUCERS’97 Int’l Conf. Solid-State Sensorsand Actuators, Chicago, 1997:999-1002.
    [217] Ghovanloo M, Najafi K. Fully integrated wideband high-current rectifiers for inductively powered devices [J]. IEEE Solid-State Circuits, 2004, 39(11):1976–1984.
    [218] Soma M, Galbraith DC. Radio-frequency coils in implantable devices:Misalignment analysisand design procedure[J]. IEEE Transactjons Biomedical Engineering, 1987, 34(4):276–282.
    [219] Sullivan C R. Optimal choice for number of strands in a Litz-wire transformer winding[J]. IEEE Transaction Power Electron, 1999, 14(2):283-286.
    [220] Ghahary A, Cho.B H. Design of a transcutaneous energy transmission system using a series resonant converter[C]. IEEE Power Electronics Specialists Conference, 1990: 1–8.
    [221] Kendir G, Liu A, Bashirullah R, et al. An optimal design methodology for inductive power linkwith Class-E amplifier[J]. IEEE Transactions Circuits System, 2005, 52(5):857–866.
    [222] http://ww1.microchip.com/downloads/en/devicedoc/40044d_cn.pdf.
    [223] Maks. C.B, Butson. C.R, Walter. B.L, et al. Deep brain stimulation activation volumes and their association with neurophysiologicalmapping and therapeutic outcomes[J]. J. Neurol. Neurosurg. Psychiatry, 2008, doi: 10.1136/jnnp.2007.126219.
    [224] Mansfield. P.B. Myocardial stimulation: the electrochemistry of electrode-tissue coupling[J]. Am. J. Physiol, 1967, 212: 1475–1488.
    [225] Dymond. A.M. Characteristics of the metal-tissue interface of stimulation electrodes[J]. IEEE Trans. Biomed. Eng, 1976, 23: 274–280.
    [226] Geddes, L.A. Historical evolution of circuit models for the electrode–electrolyte interface[J]. Ann. Biomed. Eng, 1997, 25: 1–14.
    [227] Merrill. D.R, Bikson. M, Jefferys. J.G. Electrical stimulation of excitable tissue: design of efficacious and safe protocols[J]. J. Neurosci. Methods, 2005, 141: 171–198.
    [228] Tuch. D.S, Wedeen. V.J, Dale. A.M, et al. Conductivity tensor mapping of the human brain using diffusion tensor MRI[C]. Proc. Natl. Acad. Sci.U. S. A, 2001, 98: 11697–11701.
    [229] McIntyre. C.C, Mori. S, Sherman. D.L, et al. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus[J]. Clin. Neurophysiol, 2004, 115: 589–595.
    [230] Caparros-Lefebvre. D, Ruchoux. M.M, Blond. S, et al. Long-term thalamic stimulation in Parkinson's disease: postmortem anatomoclinical study[J]. Neurology, 1994, 44: 1856–1860.
    [231] Haberler. C, Alesch. F, Mazal. P.R, et al. No tissue damage by chronic deep brain stimulation in Parkinson's disease[J]. Ann. Neurol, 2000, 48: 372–376.
    [232] Henderson. J.M, Pell. M, O'Sullivan. D.J, et al. Postmortem analysis of bilateral subthalamic electrode implants in Parkinson's disease[J]. Mov. Disord, 2002, 17: 133–137.
    [233] Moss. J, Ryder. T, Aziz. T.Z, et al. Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson's disease[J]. Brain, 2004, 127: 2755- 2763.
    [234] Nielsen. M.S, Bjarkam. C.R, S?rensen. J.C, et al. Chronic subthalamic high-frequency deep brain stimulation in Parkinson's disease—a histopathological study[J]. Eur. J. Neurol, 2007, 14: 132–138.
    [235] Svjetlana Miocinovic, Scott F. Lempka, Gary S. Russo, et al. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation(DBS) [J]. Experimental Neurology, 2009, 216: 166–176.
    [236] McIntyre. C.C, Thakor. N.V. Uncovering the mechanisms of deep brain stimulation for Parkinson's disease through functional imaging, neural recording, and neural modeling[J]. Crit. Rev. Biomed. Eng, 2002, 30: 249–281.
    [237] Kuncel. A.M, Grill. W.M. Selection of stimulus parameters for deep brain stimulation[J]. Clin. Neurophysiol, 2004, 115: 2431–2441.
    [238] Butson. C.R, McIntyre. C.C. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation[J]. Clin. Neurophysiol, 2005, 116: 2490–2500.
    [239] Hemm. S, Mennessier. G, Vayssiere. N, et al. Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging[J]. J. Neurosurg, 2005, 103: 949–955.
    [240] Butson. C.R, Maks. C.B, McIntyre. C.C. Sources and effects of electrode impedance during deep brain stimulation[J]. Clin. Neurophysiol, 2006, 117: 447–454.
    [241] Astrom. M, Johansson. J.D, Hariz. M.I, et al. The effect of cystic cavities on deep brain stimulation in the basal ganglia: a simulation-based study[J]. J. Neural Eng, 2006, 3: 132–138.
    [242] Yousif. N, Bayford. R, Wang. S, et al. Quantifying the effects of the electrode–brain interface on the crossing electric currents in deep brain recording and stimulation[J]. Neuroscience, 2008, 152: 683–691.
    [243] Yousif. N, Bayford. R, Liu. X. The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation[J]. Neuroscience, 2008, 156: 597–606.
    [244] H. L. Hui, J. M. Hugh, C. T. Yit, et al. Approximation of intracochlear electrode impedance from telemetered measurements in a multi-electrode cochlear implant patient[C]. in Proc. IEEE Medicine and Biology Society Conf, 1990, 2288–2289.
    [245] A. M. Dymond, Characteristics of the metal–tissue interface of the stimulation electrodes[J]. IEEE Trans. Biomed. Eng, 1976, 23(4): 274–280.
    [246] Electrode–Tissue Impedance Measurement CMOS ASIC for Functional Electrical Stimulation Neuroprostheses[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(5): 2043-2050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700