用户名: 密码: 验证码:
电刺激大鼠上矢状窦血管源性头痛模型的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1、通过清醒状态下电刺激大鼠上矢状窦结合免疫组织化学和免疫荧光染色的方法,系统的观察Fos阳性神经元在脑内的分布情况,筛查给予刺激时脑内参与疼痛活动的脑区,并探讨活动脑区与5-HT阳性神经元之间的关系。
     2、观察苯甲酸利扎曲普坦对清醒状态下电刺激大鼠上矢状窦模型动物行为学、Fos阳性神经元表达的影响。
     3、对清醒状态下电刺激大鼠上矢状窦模型动物的三叉神经核尾侧亚核做蛋白组学分析,寻找差异表达蛋白,探讨血管源性头痛发生发展可能的机制。
     方法
     1、雄性SD大鼠随机分为两组即实验组和对照组,手术暴露上矢状窦安放电极后,实验组电刺激硬脑膜,应用免疫组织化学染色技术观察Fos阳性神经元在脑内的分布并绘图,免疫荧光双重染色Fos与5-HT,观察双标神经元的分布情况。
     2、SD大鼠手术暴露上矢状窦安放电极后,实验组自身前后对照观察腹腔给予不同浓度苯甲酸利扎曲普坦后的行为学变化。之后随机分为两组即实验组和空白对照组,观察腹腔给予生理盐水和苯甲酸利扎曲普坦后的Fos表达情况,并与实验一的结果进行对比。
     3、SD大鼠随机分为两组即实验组和对照组,手术暴露上矢状窦安放电极后,实验组电刺激硬脑膜后,对两组三叉神经核尾侧亚核取材行蛋白电泳和质谱分析,寻找差异蛋白。
     结果
     1.电刺激后Fos阳性神经元在脑内分布广泛,主要集中在高颈段脊髓后角,三叉脊束核尾侧亚核,中缝核簇,中脑导水管周围灰质,脚间核及下丘脑等区域。荧光双重染色结果显示5-HT阳性神经元主要分布在中缝核簇及中脑导水管周围灰质,与模型Fos阳性神经元之间有重叠,仅在中缝大核等部位观察到个别双标神经元。
     2、给予等及高浓度苯甲酸利扎曲普坦组的动物与低浓度组及生理盐水组相比,在同等强度电刺激时甩头、理毛的次数减少,与给予生理盐水组及空白组(实验一)相比,Fos蛋白表达的区域无明显改变,但在三叉神经核尾侧亚核的表达有所减少而在中脑导水管周围灰质的表达有所增加。
     3、双向凝胶电泳后有1562对蛋白样点匹配成功,表达上调者735个,表达下调者827个。选取了9个蛋白样点进行UPLC-ESI-MS/MS肽质量指纹谱分析后为G蛋白结合核蛋白ran、溶血磷脂酶2、谷胱甘肽-S-转移酶的P-形式的酶、琥珀酸半醛脱氢酶、Haloacid脱卤类水解酶域包含蛋白2、Transgelin蛋白、ATP酶,氢离子运输,溶酶体13kDa,V1的亚基G1期、SEPT11蛋白和rCG55630, isoform CRA_a。
     结论
     1.脑内的多个区域参与了电刺激上矢状窦血管源性头痛模型的发生和发展过程,除了与疼痛的信息传递和调控有关外,与情感、植物神经等调控有关的核团也参与其中。电刺激大鼠上矢状窦血管源性头痛的发生和发展过程中,激活神经元的性质尚需进一步的探讨,少量5-HT阳性神经元参与其中,可能与下行镇痛系统的激活有关。
     2、清醒状态下电刺激大鼠上矢状窦模型对苯甲酸利扎曲普坦有很好的行为学反应,给药后行为学指标的改变提示疼痛有所减轻,进一步验证模型的可行性。同时,给药后Fos表达的改变提示三叉神经脊束核尾侧亚核及中脑导水管周围灰质参与了药物对疼痛控制的药理过程,但具体机制尚待阐明。
     3、电刺激大鼠上矢状窦后,三叉神经脊束核尾侧亚核内蛋白表达有发生上调与下调,提示核胞浆转运增加、对抗凋亡、诱导蛋白谷胱甘肽-S化的蛋白增加、GABA的降解减低等,可能与血管源性头痛的发生有关。
Objective
     1、By means of electrical stimulation on superior sagittal sinus (SSS) of waking rats, combined with immunohistochemistry and immunofluorescence, the distribution of Fos-immunoreactive neurons in brain was systematically observed in order to find the active regions participating nociception during the stimulation, meaningwhile, the relationship between the Fos-immuoreactive neurons and the 5-HT-immunoreactive neurons was studied.
     2、To investigate the effect of flunarizine on ethology and Fos expression in the mode of electrical stimulation in SSS in waking rat.
     3、Protemic analysing of caudal subnucleus of the trigeminal nucleus caudalis of the waking rats after electrical stimulation on SSS was performed to search for the differential protein expression and explore possible mechanims of the vascular headache.
     Methods
     1、The male SD rats were randomly divided into experimental group and control group. After exposure of SSS, rats in the experimental group were received electrical stimulation on the dura mater. Immunohistochemistry was then utilized to label Fos expressing neurons and immunofluorescence was to label Fos or/and 5-HT expressing neurons, at the same time, the schematic map illustrating the distribution of Fos-immunoreactive neurons was drawn.
     2、After exposure of SSS of SD rats, self-control was employed to compare the behavior change after intraperitoneal injection of flunarizine with different concentration. Then the rats were randomly divided into experimental group (intraperitoneally flunarizine) and control group (intraperitoneally physiological saline) to immunochemically invesgate and compare the Fos expression between both groups and with the results from the first expriment.
     3、SD rats were randomly divided into experimental group and control group. After exposure of SSS, rats in the experimental group were received electrical stimulation on the dura mater near SSS. Then protemics study (protein electrophoresis and mass chromatographic analysis) was conducted for regions of trigeminal nucleus caudal part to search for differential expressed protein.
     Results
     1. After the electrical stimulation the Fos-immunoreactive neurons were observed in many areas in the brain, which were upper cervical spinal dorsal horn, spinal trigeminal nucleus caudalis, raphe nuclei, periaqueductal gray, interpeduncular nucleus and hypothalamus. Double immunofluorescence staining indicated that 5-HT-immunoreactive neurons existed mainly in the raphe nuclei and periaqueductal gray. Although Fos-immunoreactive neurons and 5-HT-immuroreactive neurons overlapped in the raphe nuclei and periaqueductal gray, only few Fos/5-HT co-localized neurons were found in the raphe magnus nucleus.
     2、The number of head shaking and grooming of rats with equal and high concentration of flunarizine was significantly reduced compared to low concentration and physiological saline.The distribution of Fos-immunoreactive neurons in the brain of rats in flunarizine injection group was the same with those in physiological saline injection group and normal group (experiment first), however, the Fos expression decreased in caudal subnucleus of trigeminal nuclei and increased in periadqueductal gray in rat brain of flunarizine injection group.
     3、After the two-dimensional gel electrophoresis, there were 1562 pairs of protein plot matched, among which 735 plot increased and 827 decreased.9 of the protein plot were selected for UPLC-ESI-MS/MS and they were GTP-binding nuclear protein Ran, lysophospholipase 2, glutathione S-transferase P, succinate semialdehyde dehydrogenase, Haloacid dehalogenase-like hydrolase domain-containing protein 2, transgelin, ATPase, H transporting, lysosomal V1 subunit G1, Septl1 protein and rCG55630, isoform CRA_a.
     Conclusions
     1. Several areas in the brain are involved in the generation and development of vascular headache in the mode of electrical stimulation on superior sagittal sinus. Except for nuclei modulating and transmitting nociceptive information, those relating to both motion and autonomic nerve regulation take part in the above process. In process of generation and development of vascular headache in the mode of electrical stimulation on SSS, the chemical property of the activated neurons is still need to further investigate. Some 5-HT immunoreactive neurons are activated, which means their participating in the process and may partially relate to the activation of descending antinociceptive system.
     2、The waking rat mode of electrical stimulating on SSS responed well to flunarizine for ethological parameters changed after injection of flunarizine indicating that pain was relieved, which further testified the feasibility of the mode. At the same time, the caudal subnucleus of trigeminal nuclei and periadequeductal gray were presumed to take part in the process of pain modulation from flunarizine for the Fos expression changed after injection of flunarizine, but specific mechanism was still unclear and need to explore.
     3、After the electrical stimulation on SSS, protemics of trigeminal nucleus caudalis were changed, indicating increased caryoplasm-cytoplasm transportion, increased anti-apoptosis and induced S-glutathionylation and decreased GABA degradation and so on, which may participate in the generation and development of the vascular headache.
引文
1. Siberstein SD. Migraine. Lancet.2004,363:381-391.
    2. Olsen-TS. Migraine with and without aura the same disease due to cerebral vasospasm of different intensity, a hypothesis based on CBF studies during migraine. Headache,1990,30:269-272.
    3. Moskowitz MA. Basic mechanisms in vascular headache. Neurol Clin North Am.1990,8:801-815.
    4. Leao AAP. Spreading depression of activity in cerebral cortex. J Neurophysiol, 1994,7:379-390
    5. van den Brock RW, MaassenVanDenBfink A, de Vfies R, et al. Pharmacological analysis of contractile efects of eletriptan and sumatriptan on human isolated blood vessels. J Eur J Pharmacol,2000; 407:165-173.
    6. Gorji A. Spreading depression:a review of the clinical relevance. Brain Res Rev.2001,38(1-2):33-60.
    7. Moskowitz MA. Pathophysiology of headache-past and present J Headache. 2007,47:58-63.
    8. Goadsby PJ, Hoskin KL and Knight YE. Substance P blockade with the potent andcentrally actingantagonist GR205171 does not effect centraltrigeminal activity with superior sagittal sinus stimulation. Neuroscience.1998.86:337-343.
    9. Karen L. Hosin, David CE Bulmer and Peter J Goadsby. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neuroscience letter.1999,266:173-176.
    10. Yoshito Kinashita et al. Potential Applications and Limitations of Proteomics in the Study of Neurological Disease. Arch Neurol 2006,63:1692-1696.
    11. Margareta Ramstrom and Jonas Bergquist. Miniaturized proteomics and peptidomics using capillary liquid separation and high resolution mass spectrometry. FEBS Letters.2004,567:92-95.
    12. Ellen Niederberger and Gerd Geisslinger. Proteomics in Neuropathic Pain Research. Anesthesiology.2008.108:314-323.
    13. Teruyuki Tsuji et al. The Application of Proteomics in Neurology. Current Proteomics.2005,2:41-53.
    14. Peter J. Goadsby and Karen L. Hoskin. Differential effects of low dose CP122,288 and eletriptan on Fos expression due to stimulation of the superior sagittal sinus in cat. Pain.1999,82:15-22.
    15.董钊,于生元等。不同参数电刺激上矢状窦对大鼠硬脑膜血流量的影响。微循环学,2008,18:13—14。
    16.董钊一种新型的清醒状态血管源性头痛大鼠模型的建立与鉴定。2008年博士毕业论文。中国医院知识仓库博硕士论文数据库。
    17.姜磊偏头痛痛觉机制的实验研究—电刺激清醒大鼠上矢状窦区硬脑膜后TNC基因表达谱的变化。2009年博士毕业论文。中国医院知识仓库博硕士论文数据库。
    18.王晓琳等。GAD67-GFP基因敲入小鼠5-羟色胺与γ-氨基丁酸共存神经元在脑内的分布。南京医科大学学报,2007,4:376—379.
    19.王贺波,于生元,王卫东.刺激猫上矢状窦区硬脑膜诱发三叉神经脊束核尾侧段和上颈段后角c-fos蛋白的表达.中国疼痛医学杂志.2002,8(1):26-30.
    20. Karen L.,Hoskin, David C.E., Bulmer et al. Fos expression in the midbrain periaqueductal grey after trigeminovascular stimulation. J. Anat. 2001.198:29-35.
    21. George Paxinos and Charles Watson. The rat brain in stereotaxic coordinates, 5th edition.2004. New York:Academic Press.
    22. Azami J, Green DL, Roberts MHT, Monbemius R. The behavioural importance of dynamically activated descending inhibition from the nucleus gigantocellularis pars alpha. Pain.2001,92:53-62.
    23. Karen L Hoskin, Holger Kaube and Peter J Goasby. Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain.1996,119: 1419-1428.
    24. Moskowitz MA. Pathophysiology of headache-past and present. Headache. 2007,47:S58-63.
    25.宿长军,段丽,饶志仁等.大鼠束缚后脑内Fos蛋白的表达.解剖学报,2005,36:123—126.
    26.刘俊华赵正卿雷辉等.热应激对大鼠脑桥臂旁核Fos和GFAP表达的影响.神经解剖学杂志.2007.23(4):367-372.
    27. Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett.1999.266 (3); 173-176.
    28. Chen T, Dong YX, Li YQ. Fos expression in serotonergic neurons in the rat brainstem following noxious stimuli:an immunohistochemical double-labelling study. J Anat.2003.203(6):579-588.
    29. Pace MC, Mazzariello L, Passavanti MB, Sansone P, Barbarisi M, Aurilio C. Neurobiology of pain. J Cell Physiol.2006.209(1):8-12.
    30. Raskin NH, Hosobuchi Y, Lamb S. Headache may arise from perturbation of brain. J Headache.1987.27(8):416-420.
    31. Haas DC, Kent PF, Friedm8n DI. Headache caused by a single lesion of multiple slerosis in the periaqueductal gray aera. Headache.1993; 33: 452-455.
    32.刘若卓,于生元.中脑导水管周围灰质在大鼠血管源性头痛模型中的作用.中华神经医学杂志.2005.4(7):672-676.
    33. Wang SS, Kamphuis W, Huitinga I, Zhou JN, Swaab DF. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR:the presence of multiple receptor imbalances. Mol Psychiatry.2008.13(8):786-799.
    34. Field HL, Basbaum AI. Central nervous system mechanisms of pain modulation. In:Text Book of Pain (Wall PD, Metzack R ed).1994, pp: 243-257. New York:Churchill Livingstone
    35. Steinbusch HWM. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience.1981,6: 557-618.
    36. Bower RM, Westlund KN, Coulter JD. Origins of serotonergic projections to the spinal cord in rat:an immunocytochemical-retrograde transport study. Brain Res.1981,226:187-200.
    37. Cervero F, Bennett GJ, Headley PM. Processing of sensory information in the superficial dorsal horn of the spinal cord.1995. New York:Olenum.
    38. Jones SL, Gebhart GF. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat:activation of descending inhibition by morphine, glutamate and electrical stimulation. Brain Research.1988.460: 281-296.
    39. Potrebic SB, Fields HL, Mason P. Serotonin immunoreactivity is contained in one physiological cell class in the rat rostral ventromedial medulla. J Neurosci. 1994.14:1655-1665.
    40. Antal M, Petko M, Polgar E, Heizmann WC, Storm-mathisen J. Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibers descending from the rostral ventromedial medulla. Neuroscience.1996. 73:509-518.
    41. Millan MJ. Descending control of pain. Neurobiology.2002.66:355-474.
    42. Gerhart KD, Yezierski RP, Wilcox TK, Willis WD. Inhibition of primate spinothalamic tract neurons bu stimulation in periaqueductal gray or adjacent midbrain reticular formation. Journal of Neurophsiology.1984.51:450-466.
    43. Basbaum AI, Field HL. Endogenous pain control systems:brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci.1984.7:309-338.
    44. Pertovaara A. Plasticity in descending pain modulatory systems. Prog Brain Res.2002.231-242.
    45.Gao K and Mason P. Somatodendritic and axonal anatomy of intracellularly labeled serotonergic neurons in the rat medulla. J Comp Neurol.1997, 389:309-328.
    46. Bower RM, Westlund KN, Coulter JD. Organization of descending serotonergic projections to the spinal cord. Brain Res.1982,57:239-265.
    47. Wirmer P, Rothner AD, Saper J, et al. A randomized, double-blind, placebocontrolled study of sumatrlptan nasal spray in the treatment of acute migraine in adolescents J Pediatrics.2000,106:989-997
    48. Lines CR, McCarroll KA, Visser WH. Rizatriptan:Pharmacological difference from sumatriptan and clinical results. Curr Med Res Opin.2001, 17(Suppl 1):S54-58.
    49. Millan MJ. The induction of pain:an integrative review. Prog Neurobiol.1999. 57:1-164.
    50. Reynolds DV. Surgery in the rat during electrical analgesia by focal brain stimulation. Science.1969,164:2289-2293.
    51. Brandler R, Shipley MT. Columnar organization of the midbrain periaqueductal gray:modules for emotional expression? Trends in Neuroscience.1994,17:379-389.
    52. Marchand JE, Hagino H. Afferent to the periaqueductal gray in the rat. A horseradish peroxidase study. Neuroscience.1983,9:95-106.
    53. Sakata S, Shima F, Kato M, Fukui M. Effects of thalamic parafascicular stimulation on the periaqueductal gray and adjacent reticular formation neurons. A possible contribution to pain control mechanisms. Brain Research. 1988,451:85-96.
    54. Yu LC, Han JS. Involvement of arcuate nucleus of hypothalamus in the descending pathway from nucleus accumbens to periaqeductal gray subserving an antinociceptive effect. International journal of Neuroscience. 1989,48:71-78.
    55. Willis WD, Gerhart KD, Willcockson WS, Yezierski RP, Wilcox TK, Cargill CL. Primate raphe- and reticulospinal neurons:effects of stimulation in periaqueductal gray or VPLc thalamic nucleus. Journal of Neurophysiology. 1984,51(3):467-80.
    56. Richardson DE. Central stimulation-induced analgesia in human-modulation bu endogenous opioid peptides. Critical Review in Neurobiology.1990,6: 33-37.
    57. Hammond DL. Control system for nociceptive afferent processing:the descending inhibitory pathways. In:Yaksh TL, et al., editors. Spinal Afferent Processing.1986. New York:Plenum Press. p 363-390.
    58. Vaughan CW and Christie MJ. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaquductal grey in vitro. J Physiol.1997, 498:463-472.
    59. Morgan MM, Whitney PK,Gold MS. Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray.Brain Res.1998,804:159-166.
    60. Bandler R and Depaulis A. Midbrain periaqueductal gray control of defensive behavior in the cat and the rat.In:Depaulis A,Bandler R, editors.The Midbrain Periaqueductal Gray Matter:Functional, Anatomical and Neurochemical Organization.1991. New York:Plenum Press.p 175-198.
    61. Fardin V,Oliveras JL,Besson JM. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat.I.The production of behavioral side effects together with analgesia.Brain Res. 1984,306:105-123.
    62. Pier Giorgio Righetti et al. Proteome analysis in the clinical chemistry laboratory:Myth or reality? Clinica Chimica Acta.2005,357:123-139.
    63.司堃等。过硫酸胺与N-((3—二甲氨基)丙基)丙烯酰胺氧化还原引发体系的研究。高分子学报,1995,4:508-511.
    64.徐康森等。SDS-聚丙烯酰胺凝胶电泳(PAGE)紫外扫描法测蛋白和酶的分子量和含量。药物分析杂志。1990,10:334—337.
    65.宋元英等。中药不同组分对小鼠缺血脑组织蛋白表达谱的影响。中国中西医结合杂志,2006,26:526—528.
    66. Corbett AH, Silver PA. Nucleocytoplasmic transport of macromolecules. Microbiol Mol Biol Rev.1997,61:193-211.
    67. Shelley Sazer and Mary Dasso. The Ran decathlon:multiple roles of Ran. Journal of Cell Science.2000,113:1111-1118.
    68. Sara Nakielny and Gideon Dreyfuss. Import and export of the nuclear protein import receptor transportin by a mechanism independent of GTP hydrolysis. Current Biology.1997,8:89-95.
    69. Toyoda T, Sugimoto H, Yamashita S. Sequence, expression in Escherichia coli, and characterization of lysophospholipase Ⅱ. Biochim Biophys Acta.1999 Feb 25,1437(2):182-93.
    70. Sugimoto H, Hayashi H, Yamashita S, Purification, cDNA cloning, and regulation of lysophospholipase from rat liver. J Biol Chem.1996 Mar 29;271(13):7705-11.
    71. Wang A, Yang HC, Friedman P, Johnson CA, Dennis EA. A specific human lysophospholipase:cDNA cloning, tissue distribution and kinetic characterization. Biochim Biophys Acta.1999 Feb 25;1437(2):157-69.
    72. Zhimin Yin, Vladimir N. Ivanov, Hasem Habelhah, Kenneth Tew, and Ze'ev Ronai. Glutathione S-Transferase p Elicits Protection against H2O2-induced Cell Death via Coordinated Regulation of Stress Kinasesl. CANCER RESEARCH.2000,60,4053-4057.
    73. Mehrotra S, Sharma A, Kumar S, Kar P, Sardana S, Sharma JK. Polymorphism of glutathione S-transferase Ml and T1 gene LOCI in COPD. Int J Immunogenet.2010.Apr 6.
    74. Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD. Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress. J Biol Chem.2009, 2;284(1):436-45.
    75. Stevens TH, Forgac M. Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol.1997; 13:779-808.
    76. Forgac M. Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS Lett.1998 Dec 4;440(3):258-63.
    77. Pietrement C, Sun-Wada GH, Silva ND, McKee M, Marshansky V, Brown D, Futai M, Breton S. Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod.2006 Jan;74(1):185-94.
    78. Jansen EJ, van Bakel NH, Coenen AJ, van Dooren SH, van Lith HA, Martens GJ. An isoform of the vacuolar (H(+))-ATPase accessory subunit Ac45. Cell Mol Life Sci.2010 Feb;67(4):629-40.
    79.张庆鸿等流体剪切力作用强度对极化破骨细胞ATP6Vlal mRNA的影响华西口腔医学杂志2007年25卷4期396-398.
    80. Pearl PL, Shamim S, Theodore WH, Gibson KM, Forester K, Combs SE, Lewin D, Dustin I, Reeves-Tyer P, Jakobs C, Sato S. Polysomnographic abnormalities in succinic semialdehyde dehydrogenase (SSADH) deficiency. Sleep.2009 Dec 1;32(12):1645-8.
    81. Buzzi A, Wu Y, Frantseva MV, Perez Velazquez JL, Cortez MA, Liu CC, Shen LQ, Gibson KM, Snead OC 3rd. Succinic semialdehyde dehydrogenase deficiency:GABAB receptor-mediated function. Brain Res.2006 May 23;1090(1):15-22.
    82. Park JH, Han JB, Kim SK, Park JH, Go DH, Sun B, Min BI. Spinal GABA receptors mediate the suppressive effect of electroacupuncture on cold allodynia in rats. Brain Res.2010 Mar 31;1322:24-9.
    83. Anderson WB, Graham BA, Beveridge NJ, Tooney PA, Brichta AM, Callister RJ. Different forms of glycine- and GABA(A)-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons. Mol Pain.2009 Nov 18;5:65.
    84. Wiffen PJ, Collins S, McQuay HJ, Carroll D, Jadad A, Moore RA. WITHDRAWN. Anticonvulsant drugs for acute and chronic pain. Cochrane Database Syst Rev.2010 Jan 20;(1):CD001133.
    85.http://www.ebi.ac.uk/interpro/IEntrv?ac=IPR005834
    86. Mericskay M, Li Z, Paulin D.Transcriptional regulation of the desmin and SM22 genes in vascular smooth muscle cells. Curr Top Pathol. 1999;93:7-17.
    87. Assinder SJ, Stanton JA, Prasad PD. Transgelin:an actin-binding protein and tumour suppressor.Int J Biochem Cell Biol.2009 Mar;41(3):482-6. Epub 2008 Mar 10.
    88. Cao L, Yu W, Wu Y, Yu L. The evolution, complex structures and function of septin proteins. Cell Mol Life Sci.2009 Oct;66(20):3309-23.
    89. Blaser S, Roseler S, Rempp H, Bartsch I, Bauer H, Lieber M, Lessmann E, Weingarten L, Busse A, Huber M, Zieger B. Human endothelial cell septins: SEPT11 is an interaction partner of SEPT5. J Pathol.2006 Sep;210(1):103-10.
    90. Li X, Serwanski DR, Miralles CP, Nagata K, De Blas AL. Septin 11 is present in GABAergic synapses and plays a functional role in the cytoarchitecture of neurons and GABAergic synaptic connectivity. J Biol Chem.2009 Jun 19;284(25):17253-65.
    91. Florea,L., Di Francesco,V., Miller,J., Turner,R., Yao,A., Harris,M., Walenz,B., Mobarr,C., Merkulov,G.V., Charlab,R., Dew,I., Deng,Z., Istrail,S., Li,P. and Sutton,G. Gene and alternative splicing annotation with AIR. Genome Res.2005, 15(1),54-66.
    1. Boivie J, Leijon G and Johansson I. Central post-stroke pain-a study of the mechanisms through analyses of the sensory abnormalities. Pain 1989, 37:173-185.
    2. Vierck CJ and Light AR. Effects of combined hemotoxic and anterolateral spinal lesions on nociceptive sensitivity. Pain 1999,83:447-457.
    3. Boivie J. In Wall and Melzack's Textbook of Pain 2006. McMahon SB and Koltzenburg M eds. (London:Elsevier),1057-1074.
    4. Jimenez CR, Stam FJ, Li KW, Gouwenberg Y, Hornshaw MP, De Winter F, Verhaagen J, Smit AB. Proteomics of the injured rat sciatic nerve reveals protein expression dynamics during regeneration. Mol Cell Proteomics 2005,4:120-32.
    5. Kang SK, So HH, Moon YS, Kim CH. Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Proteomics 2006, 6:2797-812.
    6. Komori N, Takemori N, Kim HK, Singh A, Hwang SH, Foreman RD, Chung K, Chung JM, Matsumoto H. Proteomics study of neuropathic and nonneuropathic dorsal root ganglia:Altered protein regulation following segmental spinal nerve ligation injury. Physiol Genomics 2007,29:215-30.
    7. Ding Q, Wu Z, Guo Y, Zhao C, Jia Y, Kong F, Chen B, Wang H, Xiong S, Que H, Jing S, Liu S. Proteome analysis of up-regulated proteins in the rat spinal cord induced by transection injury. Proteomics 2006,6:505-18.
    8. Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 2005,45:715-26.
    9. Sharma HS, Gordh T, Wiklund L, Mohanty S, Sjoquist PO. Spinal cord injury induced heat shock protein expression is reduced by an antioxidant compound H-290/51:An experimental study using light and electron microscopy in the rat. J Neural Transm 2006,113:521-36.
    10. Costigan M, Mannion RJ, Kendall G, Lewis SE, Campagna JA, Coggeshall RE, Meridith-Middleton J, Tate S, Woolf CJ. Heat shock protein 27: Developmental regulation and expression after peripheral nerve injury. J Neurosci 1998,18:5891-900.
    11. Kretz A, Schmeer C, Tausch S, Isenmann S. Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ganglion cells in vivo. Neurobiol Dis 2006,21:421-30.
    12. Kunz S, Tegeder I, Coste O, Marian C, Pfenninger A, Corvey C, Karas M, Geisslinger G, Niederberger E. Comparative proteomic analysis of the rat spinal cord in inflammatory and neuropathic pain models. Neurosci Lett 2005, 381:289-93.
    13. Tanaka S, Uehara T, Nomura Y. Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 2000,275:10388-93.
    14. Granville DJ, Gottlieb RA. The mitochondrial voltage-dependent anion channel (VDAC) as a therapeutic target for initiating cell death. Curr Med Chem 2003,10:1527-33
    15. Reichert F, Saada A, Rotshenker S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes:Phagocytosis and the galactose-specific lectin MAC-2. J Neurosci 1994,14:3231-45.
    16. Alzate O, Hussain SA, Goettl VM, Tewari AK, Madiai F, Stephen RL, Hackshaw KV. Proteomic identification of brainstem cytosolic proteins in a neuropathic pain model. Molecular brain research 2004,128:193-200.
    17.金锋.蛋白质组学研究相关技术与应用.明胶科学与技术.2008,28:1-4.
    18.赵莹.蛋白组学研究与进展.中国医学研究与临床.2008,6:55-57.
    1、Abouch Valenty Krymchantowskil. Primary headache diagnosis among chronic daily headache patients. Arq Neuropsiquiatr 2003: 61(2-B):364-367.
    2、Bendtsen L, Jensen R. Amitriptyline reduces myofascial tenderness in patients with chronic tension-type headache. Cephalalgia.2000:20(6):603-10.
    3、Diener HC, Katasarva Z. Analgesic/abortive overuse and misuse in chronic daily headache. Curr Pain Headache Rep.2001:5:545-550.
    4、Eulalia Torrente Castells 1, Eduardo Vazquez Delgado 2, Cosme Gay Escoda 3. Use of amitriptyline for the treatment of chronic tension-type headache. Review of the literature. Med Oral Patol Oral Cir Bucal.2008 Sepl:13(9):E567-72.
    5、Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders:2nd edition. Cephalalgia.2004:24(Suppl 1):9-160.
    6、Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders, cranial neuralgia, and facial pain. Cephalalgia.1988:8 (Suppl7):1-96.
    7、Jull G, Trott P, Potter H, Zito G, Niere K, Shirley D, et al. A randomized controlled trial of exercise and manipulative therapy for cervicogenic headache. Spine.2002:27:1835-1843.
    8、Martelletti P, van Suijlekom H. Cervicogenic Headache—Practical approaches to therapy. CNS Drugs.2004:18:793-805.
    9、National Headache Foundation. Diet and headache. Available at: www.headaches.org/consumer/topicsheets/diet headache.html. Accessed December 29,2004.
    10、Peter J Goadsby, Christopher Boes. New Daily Persistent Headache. Neurology in Practice. J Neurol Neurosurg Psychiatry 2002:72 (Suppl Ⅱ):ⅱ6-ⅱ9.
    11、Rampello L, Alvano A, Chiechio S, Malaguarnera M, Raffaele R, Vecchio I. Evaluation of the prophylactic efficacy of amitriptyline and citalopram, alone or in combination, in patients with comorbidity of depression, migraine, and tension-type headache. Neuropsychobiology.2004:50(4):322-8.
    12、Schoenen J, Jamart B, Gerard P, Lenarduzzi P, Delwaide PJ. Exteroceptive suppression of temporalis muscle activity in chronic headache. Neurology.1987:37(12):1834-6.
    13、Silberstein SD, Lipton RB. Chronic daily headache including transformed migraine, chronic tensiontype headache, and medication overuse. In: Silberstein SD, Lipton RB, Dalessio DJ, eds. Wolff's Headache and Other Head Pain. New York, NY:Oxford University Press.2001:247-282.
    14、Srikiatkhachorn A. Pathophysiology of chronic daily headache. Curr Pain Headache Rep.2001:5:537-544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700