用户名: 密码: 验证码:
CGRP在高氧诱导肺泡Ⅱ型上皮细胞损伤中的作用及其信号转导途径探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分早产胎鼠肺泡II型上皮细胞分离、纯化、培养及鉴定
     目的
     探讨胎鼠肺泡Ⅱ型上皮细胞(AECⅡ)的分离、纯化及原代培养方法,建立胎鼠AECⅡ细胞模型,为有关胎儿肺发育及新生儿肺部疾病的研究奠定基础。
     方法
     采用胰酶结合胶原酶的消化方法,分离肺组织细胞成份,然后经差速离心和差速贴壁的方法纯化AECⅡ,进行原代培养;通过台盼蓝染色检测细胞活力,倒置相差显微镜观察细胞生长特点及形态特征,透射电镜鉴定,改良巴氏染色检测细胞纯度以及免疫荧光技术检测表面蛋白C(SP-C)的表达。
     结果
     每3~5只胎鼠可获得AECⅡ(36±5)×106,活力(98±2)%。镜下观察原代AECⅡ呈岛状生长,外观呈多边形或立方形。透射电镜可见特征性的板层小体,改良巴氏染色见胞质内有较多颗粒,纯度为96±3%,呈现SP-C绿色免疫荧光的细胞占96%以上。
     结论
     利用胰酶和胶原酶消化,以及差速离心和差速贴壁的方法可成功分离出高产量、高纯度的胎鼠AECⅡ,能满足体外进一步实验的需要。
     第二部分高氧暴露对早产鼠肺泡Ⅱ型上皮细胞的氧化损伤及CGRP的保护作用
     目的
     观察高氧对早产鼠肺泡Ⅱ型上皮细胞(AECⅡ)的影响以及降钙素基因相关肽(CGRP)对AECⅡ的保护作用。
     方法
     将原代分离培养的孕19d早产鼠AECⅡ接种至6孔培养板,实验随机分为空气组、高氧组、高氧CGRP组、高氧CGRP受体拮抗剂组。空气组和高氧组分别置于体积分数为21%的空气和60%的氧气中暴露24h;高氧CGRP组在暴露前加入CGRP;高氧CGRP拮抗剂组在高氧CGRP组基础上加入CGRP受体拮抗剂(CGRP8-37)。培养24h后,用分光光度计测定各组丙二醛(MDA)、总抗氧化能力(TAOC)、超氧化物歧化酶(SOD)水平;用流式细胞仪检测活性氧(ROS)和细胞凋亡率;用逆转录聚合酶链反应(RT-PCR)测定表面活性蛋白C (SP-C)的mRNA表达。
     结果
     与空气组比较,高氧组MDA、ROS及细胞调亡率均显著增高,TAOC、SOD水平及SP-C mRNA表达均显著降低(P均<0.01)。与高氧组比较,高氧CGRP组细胞MDA、ROS水平及细胞调亡率均显著下降;而TAOC、SOD水平及SP-C mRNA表达均明显增高(P<0.01)。高氧CGRP拮抗剂组与高氧组各指标比较差异均无统计学意义。
     结论
     60%氧暴露24h可导致早产鼠AECⅡ发生氧化损伤,诱导细胞凋亡及SP-C mRNA表达下降;而CGRP可部分减轻AECⅡ的氧化损伤,减少凋亡,促进SP-CmRNA表达,对高氧损伤的AECⅡ起保护作用。
     第三部分CGRP对60%氧暴露早产鼠AECⅡ生长增殖的影响
     目的
     探讨降钙素基因相关肽(CGRP)对60%氧暴露早产鼠肺泡Ⅱ型上皮细胞(AECⅡ)生长增殖的影响。
     方法
     原代分离培养孕19d早产鼠AECⅡ,随机分为6组:空气组、空气CGRP组、空气CGRP拮抗剂组、高氧组、高氧CGRP组、高氧CGRP拮抗剂组。空气组和高氧组分别在氧体积分数为21%的空气和60%的氧气中暴露24h;空气或高氧CGRP组在置于空气或高氧环境前加入CGRP;空气或高氧CGRP拮抗剂组同时加入CGRP和CGRP受体拮抗剂后,再置于空气或60%的氧气中培养24h。先用MTT比色法测定不同浓度CGRP(10-10~10-7M)对正常AECⅡ生长的影响,以确定CGRP的实验最佳浓度;分别采用MTT法和流式细胞术测定各组细胞增殖能力和细胞周期,逆转录聚合酶链反应和免疫荧光技术测定表面活性蛋白C (SP-C)的mRNA及蛋白表达。
     结果
     MTT法结果显示,CGRP从10-10~10-8M,呈剂量依赖方式促进正常培养的早产鼠AECⅡ生长,因此选择10-8M CGRP来干预细胞。加入10-8M CGRP还可使正常培养的AECⅡ进入G2/M及S期的比例增多,SP-C mRNA及SP-C蛋白表达增高(与空气组相比,P均< 0.01)。暴露于60%氧24h后,细胞存活率下降,G0/G1期细胞比例增高,G2/M及S期细胞相应降低,SP-C mRNA及SP-C蛋白表达低下(与空气组比较,P均<0.01)。而预先加入10-8M CGRP后,促进了高氧暴露AECⅡ的增殖能力,使S及G2/M期细胞增多,并可提高AECⅡ的SP-C mRNA及SP-C蛋白表达水平(与高氧组及高氧CGRP拮抗剂组比较,P<0.01)。
     结论
     60%氧暴露24h可抑制早产鼠AECⅡ增殖分化,而CGRP可促进AECⅡ生长,部分解除高氧对AECⅡ的抑制作用。
     第四部分PKCα信号转导途径介导了CGRP对高氧肺泡Ⅱ型上皮细胞损伤的保护作用
     目的
     通过测定PKCα和NF-κB的活化情况,从细胞内信号转导通路这一角度探讨CGRP对高氧肺泡上皮细胞损伤的保护作用机制。
     方法
     原代分离培养孕19d早产鼠AECⅡ,随机分为6组:空气组、空气CGRP组、空气CGRP拮抗剂组、高氧组、高氧CGRP组、高氧CGRP拮抗剂组。空气组和高氧组分别在氧体积分数为21%的空气和60%的氧气中暴露24h;空气或高氧CGRP组在置于空气或高氧环境前加入CGRP,空气或高氧CGRP拮抗剂组同时加入CGRP和CGRP受体拮抗剂,再置于空气或60%的氧气中培养24h。用Western blot检测胞膜和胞浆PKCα的表达变化,激光共聚焦检测NF-κB的核表达情况。
     结果
     在正常培养的AECⅡ细胞中加入CGRP后,胞膜与胞浆PKCα的比值显著增高,NFκB的荧光较强,与空气组及空气CGRP拮抗剂组相比有显著性差异(P<0.01)。细胞暴露于高氧后,胞膜与胞浆PKC比值显著低于空气组,而NFκB的荧光强度高于空气组(p<0.01)。高氧CGRP组二者比值及核内NFκB荧光强度高于高氧组及高氧CGRP拮抗剂组,差异有显著性意义(p<0.01)。
     结论
     PKCα介导了CGRP对细胞的信号传递过程,参与了CGRP对高氧AECⅡ损伤的保护作用,而NF-κB是PKCα的下游信号,部分执行了PKCα传递的保护功能
Part one An enhanced method for isolation,primary culture,and identification of typeⅡalveolar Epithelial cells from fetal rats
     Objective
     To develop the isolation and purification technology for typeⅡalveolar epithelial cells (AECⅡ) of fetal rat, thus providing experimental means for the study of lung development or neonatal lung disease.
     Methods
     Lung tissues of 19-day fetal rats were digested with trypsin and collagenase, then purified for AECⅡwith different centrifugal force and repeated attachment. Cell viability was evaluated by typran inclusion dying before plating into six-well flask. Growth status and shape of attached cells were observed with inverted phase contrast microscope. AECⅡwere identified by electron microscope and its percentage was assessed by modified Papanicolaou dying and immunofluorescence ,the latter aiming to detect expression of surfactant protein C(SP-C) in AECⅡ.
     Results
     The total amount of cells we harvested from 3 to5 fetal rat was (36±5)×106 with a viability of (98±2)%. Cells were like polygonal and connected like island under microscope.AECⅡwas ascertained by lamellar bodies found in cytoplasma under electron microscope and its percentage was (96±3)% identified by modified Papanicolaou dying, the same as the result by immunofluorescence for SP-C.
     Conclusions
     Highly Purified and viable AECⅡcould be achieved by our methods and the cell model could be used in further study.
     Part two Protection of calcitonin gene-related peptide in hyperoxia-induced injury of premature rat typeⅡalveolar epithelial cells
     Objective
     To explore the influence of 60% oxygen and the effects of calcitonin gene-related peptide(CGRP) on typeⅡalveolar epithelial cells(AECⅡ) isolated from premature rat lung in vitro.
     Methods
     AECⅡwere isolated from 19d fetal rat lung and cultured for 12h to attach. Then AECⅡwere randomly divided into four groups: air group, hyperoxia group, hyperoxia plus CGRP group, hyperoxia plus CGRP and CGRP8-37 group. AECⅡof air group and hyperoxia group were exposed to 21% or 60% oxygen respectively for 24h while hyperoxia plus CGRP group were added with CGRP and hyperoxia plus CGRP and CGRP8-37 group with CGRP and CGRP8-37(CGRP receptor antagonist) before placed into 60% oxygen. Concentrations of maleic dialdehyde(MDA), superoxide dismutase(SOD) and total antioxidant capacity (TAOC) in culture cells were detected by ultraviolet spectrophotometer. Reactive oxygen species (ROS) and apoptosis rate of AECII were analyzed by flow cytometry and the mRNA level of surfactant associated protein C (SP-C) was measured by RT-PCR.
     Results
     The levels of MDA, ROS and apoptosis cell number were increased whereas TAOC, SOD and SP-C mRNA expression declined in hyperoxia group compared with those in air group(P<0.01). Reversely, MDA, ROS and apoptosis rate were significantly lower and levels of TAOC, SOD and SP-C mRNA expression were significantly higher in group hyperoxia plus CGRP group than in hyperoxia group or hyperoxia plus CGRP and CGRP8-37 group.
     Conclusions
     Exposure to 60% oxygen for 24h could cause oxidative injury, induce apoptosis and decrease SP-C mRNA level of AECII in vitro in premature rats, while CGRP may play a protective role against hyperoxic lung injury by antioxidant, inhibition of AEC apoptosis and promotion of the SP-C mRNA expression.
     Part three The effects of calcitonin gene-related peptide on proliferation of premature rat typeⅡalveolar epithelial cells exposed to 60% oxygen
     Objective
     To explore the influence of 60% oxygen and the effects of calcitonin gene-related peptide(CGRP) on growth of typeⅡalveolar epithelial cells(AECⅡ) isolated from premature rat lung in vitro.
     Methods
     AECⅡwere isolated from 19d fetal rat lung and cultured for 12h to attach. Then AECⅡwere randomly divided into six groups: air, air/CGRP, air/CGRP8-37, hyperoxia, O2/CGRP, and O2/CGRP8-37. AECⅡwere exposed to FiO2 21%(air) or 60% (hyperoxia) for 24h respectively. Air/CGRP and O2/CGRP were carried out by adding CGRP into medium and then putting the plates into air or 60% oxygen for 24h. Air/CGRP8-37 and O2/CGRP8-37 were done by adding both CGRP and CGRP8-37 into cultural fluid before placing the plate into air or 60% oxygen. MTT assay was taken to determine the optimal concentration of CGRP by evaluating the effects of different concentration of CGRP(10-10~10-7M) on growth of normal AECⅡ. Cell proliferation ability was determined by MTT assay and cell cycles by flow cytometry. The mRNA levels and protein contents of surfactant protein C (SP-C) in six groups were measured by RT-PCR and immunofluorescence respectively.
     Results
     The 10-8M of CGRP was choose in the study for that MTT results showed CGRP promoted growth of AECⅡin a dose-dependent manner in a range of 10-10~10-8M. CGRP in a concentration of 10-8M could also increase the rate of cells subjected to S and G2/M phases in cell cycles and raised the expression of SP-C mRNA and protein in normal culture of AECⅡ. When exposed to 60% oxygen for 24h, AECⅡshowed a decreased viability, enhanced proportion of cell in G0/G1 phase with a corresponding decline of rates in S and G2/M phases, and reduced levels of mRNA and proteins of SP-C. But addition with 10-8M of CGRP prior to hyperoxia treatment promoted AECⅡproliferation, enhanced the cell proportions of S and G2/M phases, and raised the expression of SP-C mRNA and protein.
     Conclusions
     Exposure to 60% oxygen for 24h could inhibited AECⅡgrowth, proliferation and differentiation whereas CGRP could partially counteract the inhibition effects of hyperoxia on AECⅡand play a protective role against hyperoxia-induced lung injury.
     Part four The protection of CGRP on hyperoxia-induced typeⅡalveolar epithelial cell injury mediated by PKCalpha pathway
     Objective
     To explore the mechanism of CGRP in protecting AECⅡfrom hyperoxia-induced injury through the determination of the signal transduction molecular -- PKC alpha and NF -κB.
     Methods
     AECⅡwere isolated from 19d fetal rat lung and cultured for 12h to attach. Then AECⅡwere randomly divided into six groups: air, air/CGRP, air/CGRP8-37, hyperoxia, O2/CGRP, and O2/CGRP8-37. AECⅡwere exposed to FiO2 21%(air) or 60% (hyperoxia) for 24h respectively. Air/CGRP and O2/CGRP were carried out by adding CGRP into medium and then putting the plates into air or 60% oxygen for 24h. Air/CGRP8-37 and O2/CGRP8-37 were done by adding both CGRP and CGRP8-37 into cultural fluid before placing the plate into air or 60% oxygen. Western blot was taken to detect the fraction of PKCalpha in membrane and cytosol and translocation of NF-κB was observed under laser confocal microscopy.
     Results
     When CGRP was added into the medium in normal cultural condition, AECⅡshow an increased ratio of membrane to cytoplasm fraction of PKCalpha and strong fluorescence of NF-κB in nucleus compared with those in air and air/CGRP8-37(p < 0.01). After exposure to hyperoxia, the ratio of membrane to cytoplasm fraction of PKC declined and the fluorescence of NF-κB in nucleus enhanced compared with those in air. The ratio of PKCalpha and fluorescence of NF-κB were increased in O2/CGRP compared with those in hyperoxia and O2/CGRP8-37. The differences among groups were significant.
     Conclusions
     The PKC alpha mediated signal transduction of CGRP and participated in the process that CGRP protected AECⅡfrom hyperoxia-induced injury, while NF-κB is a downstream molecular of PKC alpha, executing in part the function of the PKC alpha signal.
引文
[1] Sugahara K; Tokumine J; Teruya K. Alveolar epithelial cells: differentiation and lung injury. Respirology[J]. 2006, 11: S28-S31
    [2] Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited[J]. Respir Res. 2001, 2(1):33-46
    [3] Selman M, Pardo A. The epithelial/fibroblastic pathway in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2003;29:S93–S96
    [4] Delgado A V, McManus A T, Chambers J P. Production of tumor necrosis factor-alpha,interleukine 1-beta, interleukine 2, and interleukin 6 by rat leukocyte subpopulation after exposure to substance P[J]. Neuropeptides. 2003, 37(6) : 355-361
    [5] Connal JL, Schnuriger V, Zanone R, et al. The neuropeptide calcitonin gene-related peptide differently modulates proliferation and differentiation of smooth muscle cells in culture depending on the cell type[J]. Regulatory Peptides. 2001, 101: 169–178
    [6] Ito H, Bell D, Tamamori M, etal. Calcitonin gene-related peptide (CGRP) and hypertrophy of cardiomyocytes. Heart Vessels. 1997;S12:15-7.
    [7] Yule KA, White SR: MigrAECion of 3T3 and lung fibroblasts in response to calcitonin gene-related peptide and bombesin. Exp Lung Res. 1999, 25:261-273.
    [8] Li WJ, Wang TK. Calcitonin gene-related peptide inhibits interleukin-1beta-induced interleukin-8 secretion in human type II alveolar epithelial cells[J]. Acta Pharmacol Sin. 2006, 27(10): 1340-5
    [9] Hastings RH; Hua XY. Expression of calcitonin gene-related peptide by cultured rat alveolar type II cells[J]. Am J Respir Cell Mol Biol. 1995, 13(5): 563-569
    [1] Crandall ED, MAECthay MA. Alveolar epithelial transport. Basic science to clinical medicine[J]. Am J Respir Crit Care Med. 2001, 163(4):1021–1029
    [2] Stone KC, Mercer RR, Gehr P, et al.Allometric relationships of cell numbers and size in the mammalian lung[J]. Am J Respir Cell Mol Biol. 1992, 6(2):235-43
    [3]柳琪林,胡森,盛志勇。肺泡Ⅱ型上皮细胞形态与功能的研究进展[J]。中国危重病急救医学,2003,15(7):445-446
    [4] Copland I, Post M. Lung development and fetal lung growth[J]. Paediatr Respir Rev. 2004, 5 (Suppl A): S259-264
    [5] Dobbs LG, Gonzalez R, Williams MC. An improved method for isolating type II cells in high yield and purity[J]. Am Rev Respir Dis. 1986, 134(1):141–145
    [6] Peers C, Kemp PJ, Boyd CA, et al. Whole-cell K+ currents in type II pneumocytes freshly isolated from rat lung: pharmacological evidence for two subpopulations of cells[J]. Biochim Biophys Acta. 1990, 1052(1):113-118
    [7] Lei J, Wendt CH, Fan D, et al. Developmental acquisition of T3-sensitive Na-K-ATPase stimulation by rat alveolar epithelial cells [J]. Am J Physiol Lung Cell Mol Physiol. 2007, 292(1): 6-14
    [8] Thome UH, Davis IC, Nguyen SV, et al. Modulation of sodium transport in fetal alveolar epithelial cells by oxygen and corticosterone [J]. Am J Physiol Lung Cell Mol Physiol. 2003, 284(2): 376-385
    [9] Buckley S, Driscoll1 B, Shi1 W, et al. Migration and gelatinases in cultured fetal, adult, and hyperoxic alveolar epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol. 2001, 281(2): 427-434
    [10] Leary JF, Finkelstein JN, Notter RH, et al. Isolation of typeⅡpneumocytes by laser flow cytometry[J].Am Rev Respir Dis. 1982, 125(3):326-330
    [11] Chen J, Chen Z, Narasaraju T, et al. Isolation of highly pure alveolar epithelial type I and type II cells from rat lungs[J]. Lab Invest. 2004, 84(6):727-735。
    [12]祝华平,常立义,李文斌,等.胎鼠肺细胞的分离纯化及原代培养[J].华中科技大学学报:医学版. 2003,32(6):597—600
    [13] Funkhouser JD, Cheshire LB, Read RJ, et al. Monoclonal antibody isolation of typeⅡpneumocytes[J]. Cytometry. 1987, 8(3):321-326
    [14] Mason RJ. Biology of alveolar typeⅡcells[J]. Respirology 2006;11:S12–S15.
    [15] Hamvas A, Cole FS, Nogee LM. Genetic disorders of surfactant proteins[J]. Neonatology. 2007, 91(4): 311-317
    [16] Wang J, Wang S, Manzer R, et al. Ozone induces oxidative stress in rat alveolar type II and type I-like cells[J]. Free Radic Biol Med. 2006, 40: 1914–1928.
    [17] Gonzale ZR, Yang YH, Griffin C, et a1. Freshly isolated rat alveolar type I cells, typeⅡcells, and cultured typeⅡcells have distinct molecular phenotypes[J].Physio Lung Cell Mol Physiol. 2005, 288(1): 179-189
    [1]符跃强,许峰,卢仲毅,等.氧化应激对肺泡Ⅱ型上皮细胞的损伤作用及JNK信号转导机制[J].重庆医科大学学报. 2007, 32(11):1150-1153
    [2]徐洪涛,李华强,余健,等。高氧致新生鼠急性肺损伤及氧化应激反应的动态研究[J]。中国小儿急救医学。2006,13(3):224-226
    [3] Rosenfeld MG.Production of a novel neuropeptide encoded by the calcitonin gene via tissue specific RNA processing [J]. Nature.1983,304:129.
    [4] Dakhama A, Park JW, Taube C,et al. Alteration of airway neuropeptide expression and development of airway hyperresponsiveness following respiratory syncytial virus infection[J]. Am J Physiol Lung Cell Mol Physiol. 2005, 288(4): 761-770
    [5] Dakhama1 A, Larsen GL, Gelfand EW. Calcitonin gene-related peptide: role in airway homeostasis[J]. Curr Opin Pharmacol. 2004, 4 (3): 215–220
    [6] Warner B, Stuart L, Papes R, et al. Functional and pathological effects of prolonged hyperoxia in neonatal mice[J]. Am J Physiol Lung Cell Mol Physiol. 1998, 275: 110-117
    [7] Han R, Buch S, Tseu I, et al. Changes in structure, mechanics, and insulin-like growth factor-related gene expression in the lungs of newborn rats exposed to air or 60% oxygen[J]. Pediatr Res. 1996, 39: 921-929
    [8] Altemeier WA, Sinclair SE. Hyperoxia in the intensive care unit: why more is not always better[J]. Curr Opin Crit Care. 2007,13 (1): 73-78
    [9] Zhang X, Shan P, Sasidhar M, et al. Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium[J]. Am J Respir Cell Mol Biol. 2003, 28(3): 305-315
    [10] Wang Y, Feinstein SI, Manevich Y, Ho YS, et al. Lung injury and mortality with hyperoxia are increased in peroxiredoxin 6 gene-targeted mice[J]. Free Radic Biol Med. 2004, 37(11):1736-43.
    [11] Folz RJ, Abushamaa AM, Suliman HB. Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia[J]. J Clin Invest. 1999, 103(7): 1055-1066
    [12]许峰,霍泰辉,翁颂铭,等。早产鼠高氧肺损伤中肺表面活性物质的代谢变化[J]。中国危重病急救医学,2001,13(12): 745-747
    [13] Russell GA. Antioxidants and neonatal lung diseases [J] .Eur J pediatr. 1994, 153:S36~S41
    [14] Nagata K, Iwasaki Y, Yamada T, et al. Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury[J]. Respir Med. 2007, 101(4): 800-807
    [15] Simonson SG,Welty-Wolf KE,Huang YC,et a1.Aemsolized manganese SOD decreases hyperoxic pulmonary injury in primates physiology and biochemistry[J].J Appl Physiol,1997,83(2):550-558
    [16] Ahmed MN,Suliman HB,Folz RJ,et a1.Extracelular superoxide dismutase protects lung development in hyperoxia-exposed newborn mice[J].Am J Respir Crit Care Med. 2003,167(3):400-405
    [17]马岳,陈克正。肺部降钙素基因相关肽的生理病理学意义[J]。现代临床医学生物工程学杂志。2004, 10(6):456-459
    [18] Springer J, Geppetti P, Fischer A, et al. Calcitonin gene-related peptide as inflammatory mediator[J]. Pulm Pharmacol Ther. 2003, 16(3):121-130
    [19]佘飞,孙威,毛节明,等。降钙素基因相关肽转基因预防小鼠自身免疫性糖尿病发病及其抗氧化应激机制[J]。生理学报。2003, 55(6):625-632.
    [20] Li WJ, Wang TK. Calcitonin gene-related peptide inhibits interleukin-1β-induced interleukin-8 secretion in human type II alveolar epithelial cells[J]. Acta Pharmacol Sin. 2006, 27(10): 1340–1345
    [21] Monneret G, Arpin M, Venet F, et al. Calcitonin gene related peptide and N-procalcitonin modulate CD11b upregulation in lipopolysaccharide activated monocytes and neutrophils[J]. Intensive Care Med. 2003, 29(6): 923-928
    [1] Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants[J]. Semin Neonatol, 2003, 8(1): 39-49.
    [2] Valen?a Sdos S, Kloss ML, Bezerra FS, et al. Effects of hyperoxia on Wistar rat lungs[J]. J Bras Pneumol, 2007, 33(6): 655-662.
    [3] Villa1 I, Fiumel CD, Maestronin A, et al. Human osteoblast-like cell proliferation induced by calcitonin-related peptides involves PKC activity [J]. Am J Physiol Endocrinol Metab. 2003, 284: 627-633.
    [4] Dakhama1 A, Larsen GL, Gelfand EW. Calcitonin gene-related peptide: role in airway homeostasis[J]. Curr Opin Pharmacol. 2004, 4 (3): 215–220
    [5] Kresch MJ, Christian C. Developmental regulation of the effects of surfactant protein A on phospholipid uptake by fetal rat type II pneumocytes[J]. Lung. 1998, 176(1): 45-61.
    [6] Copland I, Post M. Lung development and fetal lung growth[J]. Paediatr Respir Rev. 2004, 5 (Suppl A): S259-264.
    [7] Hislop AA. Bronchopulmonary dysplasia: prenatal and postnatal influences[J]. Pediatr Pulmonol. 2001, Suppl 23: 107-109.
    [8] Warburton D,Schwarz M,Tefft D,et a1. The molecular basis of lung morphogenesis [J].Mech Dev,2000,92(1):55-81.
    [9]符跃强,卢仲毅,方芳,等。氧化应激下肺泡II型上皮细胞凋亡及Bax和p53的表达变化[J]。中国危重病急救医学。2008, 18(8):462-465
    [10] De Paepe ME, Mao Q, Chao Y, et al. Hyperoxia-induced apoptosis and Fas/FasL expression in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol[J]. 2005, 289(4): 647-659.
    [11] Coalson JJ. Pathology of bronchopulmonary dysplasia[J]. Semin Perinatol, 2006, 30(4): 179-184.
    [12] Ambalavanan N, Carlo WA. Bronchopulmonary dysplasia: new insights[J]. Clin Perinatol, 2004, 31(3): 613-628.
    [13] Helt CE, Staversky RJ, Lee YJ, et al.The CDK and PCNA domains on p21Cip1 both function to inhibit G1/S progression during hyperoxia. Am J Physiol [J]. 2004, 286(3): 506-513.
    [14] Warner B, Stuart L, Papes R, et al. Functional and pathological effects of prolonged hyperoxia in neonatal mice[J]. Am J Physiol Lung Cell Mol Physiol, 1998, 275(1): 110-117.
    [15] Han RN, Buch S, Tseu I, et al. Changes in structure, mechanics, and insulin-like growth factor-related gene expression in the lungs of newborn rats exposed to air or 60% oxygen[J]. Pediatr Res, 1996, 39(6):921-929.
    [16] Mulugeta S, Beers MF. Surfactant protein C: Its unique properties and emerging immunomodulatory role in the lung[J]. Microbes Infect, 2006, 8(8): 2317-2323.
    [17] Hamvas A, Cole FS, Nogee LM. Genetic disorders of surfactant proteins[J]. Neonatology, 2007, 91(4): 311-317.
    [18]赵敏,王宪。降钙素基因相关肽的新近研究进展[J]。生理科学进展。2001,32(2):163-164
    [19] Van Lommel A. Pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEB): chemoreceptors and regulators of lung development[J]. Paediatr Respir Rev. 2001, 2(2):171-6.
    [20] Kawase T, Okuda K, Wu CH, et al. Calcitonin gene-related peptide acts as a mitogen for human Gin-1 gingival fibroblasts by activating the MAP kinase signalling pathway[J]. J Periodontal Res. 1999, 34(3): 160-168
    [21] Cheng L, Khan M, Mudge AW. Calcitonin gene-related peptide promotes Schwann cell proliferation[J]. J Cell Biol 1995, 129: 789–96.
    [22] Connat JL, Schnüriger V, Zanone R, et al. The neuropeptide calcitonin gene-related peptide differently modulates proliferation and differentiation of smooth muscle cells in culture depending on the cell type[J]. Regul Pept. 2001, 15: 101(1-3): 169-78.
    [23] Hagner S, Stahl U, Knoblauch B, et al. Calcitonin receptor-like receptor: identification and distribution in human peripheral tissues[J]. Cell Tissue Res. 2002,310(1): 41-50.
    [24] Pietrobon D. Migraine: new molecular mechanisms. Neuroscientist[J]. 2005, 11: 373–386.
    [25] Lin Q, Li D, Xu X, et al. Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin[J]. Mol Pain. 2007, 3: 30
    [1] Sabri A ,Steinberg SF. Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heartfailure[J].Mol Cell Biochem,2003,251:97—101
    [2]程敏,唐建武.PKC亚型的生物学特性与调节功能[J].国外医学生理病理科学与临床分册,2002,22:493—496.
    [3] Steinberg SF. Structural basis of protein kinase C isoform function. Physiol[J]. 2008, 88(4): 1341-1378.
    [4] Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling[J]. Immunol Rev. 2006, 210: 171-186.
    [5] Younes A, Garg A, Aggarwal BB. Nuclear transcription factor-kappaB in Hodgkin's disease[J]. Leuk Lymphoma. 2003, 44(6): 929-935.
    [6] Sun SC, Xiao G. Deregulation of NF-kappaB and its upstream kinases in cancer[J]. Cancer Metastasis Rev. 2003, 22(4): 405-422.
    [7] Dakhama1 A, Larsen GL, Gelfand EW. Calcitonin gene-related peptide: role in airway homeostasis[J]. Curr Opin Pharmacol. 2004, 4 (3): 215-220.
    [8] Hagner S, Stahl U, Knoblauch B, et al. Calcitonin receptor-like receptor: identification and distribution in human peripheral tissues[J]. Cell Tissue Res. 2002, 310(1): 41-50.
    [9] Oehrlein SA, Maelicke A, Herget T. Expression of protein kinase C gene family members is temporally and spatially regulated during neural development in vitro[J]. Eur J Cell Biol. 1998, 77(4):323-337
    [10] Kontny E, Kurowska M, Szczepańska K, et al. Rottlerin, a PKC isozyme-selective inhibitor, affects signaling events and cytokine production in human monocytes[J]. J Leukoc Biol. 2000, 67(2): 249-258.
    [11] Chang YJ, Holtzman MJ, Chen CC. Interferon-gamma-induced epithelial ICAM-1 expression and monocyte adhesion. Involvement of protein kinase C-dependent c-Src tyrosine kinase activation pathway[J]. J Biol Chem. 2002, 277(9): 7118-7126.
    [12] Lu H, Guizzetti M, Costa LG. Inorganic lead stimulates DNA synthesis in human astrocytoma cells: role of protein kinase Calpha[J]. J Neurochem. 2001, 78(3): 590-599.
    [13]高萍,冯怡,柳惠图.蛋白激酶Ca对人正常肝和肝癌细胞周期及G1期相关调控因子cyclinD1、cyclinE的影响[J]。解剖学报,2005,36(1):37-40
    [14] Hsieh YC, Chen YH, Jao HC, et al. Role of cAMP-response element-binding protein phosphorylation in hepatic apoptosis under protein kinase C alpha suppression during sepsis[J]. Shock. 2005, 24(4): 357-363.
    [15]王万铁,林丽娜,涂军伟,等。异丙酚对兔肺缺血--再灌注损伤时蛋白激酶C基因表达的影响[J]。中国病理生理杂志,2005,21(3):545-549
    [16] Wang Y, Schattenberg JM, Rigoli RM, et al. Hepatocyte resistance to oxidative stress is dependent on protein kinase C-mediated down-regulation of c-Jun/AP-1[J]. J Biol Chem. 2004, 279(30): 31089-31097.
    [17] Chen C, Chou C, Sun Y, et al. Tumor necrosis factor alpha-induced activation of downstream NF-kappaB site of the promoter mediates epithelial ICAM-1 expression and monocyte adhesion. Involvement of PKCαlpha, tyrosine kinase, and IKK2, but not MAPKs, pathway[J]. Cell Signal. 2001, 13(8): 543-553.
    [18] Yang M, Sang H, Rahman A, et al. G alpha 16 couples chemoattractant receptors to NF-kappa B activation[J]. J Immunol. 2001, 166(11): 6885-6892.
    [19] Xu SZ, Shah CJ, Bullock L, et a1. Pb2+ reduces PKCs and NF—KB in vitro[J]. Cell Biol Toxico1. 2006, 22: 189—198.
    [20] Christman JW, Lancaster LH, Blackwell TS. Nuclear factor kappa B: a pivotal role in the systemic inflammatory response syndrome and new target for therapy[J]. Intensive Care Med. 1998, 24(11): 1131-1138.
    [21] Cechetto DF. Role of nuclear factor kappaB in neuropathological mechanisms[J].Brain Res,2001, 132:391-404.
    [22] Heon SK, Ko HM, Kim HA, et al. Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kappaB activation[J]. Cancer Res. 2006, 66(9): 4681-4686.
    [23] Piva R, Belardo G, Santoro MG. NF-kappaB: a stress-regulated switch for cell survival[J]. Antioxid Redox Signal. 2006, 8(3-4): 478-86.
    [24] Wu ZH, Miyamoto S. Many faces of NF-kappaB signaling induced by genotoxic stress[J]. J Mol Med. 2007, 85(11): 1187-1192.
    [1] De Paepe ME, Mao Q, Chao Y, et al. Hyperoxia-induced apoptosis and Fas/FasL expression in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol[J]. 2005, 289(4): 647-659.
    [2] Helt CE, Staversky RJ, Lee YJ, et al.The CDK and PCNA domains on p21Cip1 both function to inhibit G1/S progression during hyperoxia. Am J Physiol [J]. 2004, 286(3): 506-513.
    [3] Dauger S, Ferkdadji L, Saumon G, et al. Neonatal exposure to 65% oxygen durably impairs lung architecture and breathing pattern in adult mice[J].Chest. 2003, 123(2): 530-538.
    [4] McGrath MSA, Stahl J. Apoptosis in neonatal murine lung exposed to hyperoxia[J]. Am J Respir Cell Mol Biol. 2001, 25: 150–155
    [5]李冬梅,薛辛东,南春红,等。高氧致早产鼠BPD模型肺泡Ⅱ型上皮细胞形态与功能的变化[J]。中国优生与遗传杂志。2005, 13(5):59-61
    [6] Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers[J]. Proc Am Thorac Soc. 2006, 3(4): 364-372.
    [7] Ray P, Devaux Y, Stolz DB, et al. Inducible expression of keratinocyte growth factor (KGF) in mice inhibits lung epithelial cell death induced by hyperoxia[J]. Proc Natl Acad Sci U S A. 2003, 100(10): 6098-6103.
    [8] Barazzone C, Donati YR, Rochat AF, et al. Keratinocyte growth factor protects alveolar epithelium and endothelium from oxygen-induced injury in mice[J]. Am J Pathol. 1999, 154(5):1479-1487.
    [9] Gazdhar A, Fachinger P, van Leer C, et al. Gene transfer of hepatocyte growth factor by electroporation reduces bleomycin-induced lung fibrosis[J]. Am J Physiol Lung Cell Mol Physiol. 2006 Oct 20;
    [10] Buckley S, Driscoll B, Shi W, et al. Migration and gelatinases in cultured fetal, adult, and hyperoxic alveolar epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol. 2001, 281(2): 427-434.
    [11] Van Leer C, Stutz M, Haeberli A, Geiser T. Urokinase plasminogen activator released by alveolar epithelial cells modulates alveolar epithelial repair in vitro[J]. Thromb Haemost. 2005, 94(6): 1257-1264.
    [12] Lazar MH, Christensen PJ, Du M, et al. Plasminogen activator inhibitor-1 impairs alveolar epithelial repair by binding to vitronectin[J]. Am J Respir Cell Mol Biol. 2004, 31(6): 672-678.
    [13] Kim JS, Mc Kinnis, Nawrocki A, et al. Stimulation of migration and wound repair of guinea-pig airway epithelial cells in response to epidermal growth factor[J]. Am J Respir Cell Mol Biol. 1998, 18(1): 66-74
    [14] Wen JL, WANG TK, WANG. X. Calcitonin gene-related peptide inhibits interleukin-1β-induced interleukin-8 secretion in human type II alveolar epithelial cells[J]. Acta Pharmacologica Sinica. 2006, 27(10): 1340–1345
    [15] Lee J, Reddy R, Barsky L, et al. Contribution of proliferation and DNA damage repair to alveolar epithelial type 2 cell recovery from hyperoxia[J]. Am J Physiol Lung Cell Mol Physiol. 2006, 290: 685-694
    [16] Barbara D, Susan B, Kim CB, et al. Telomerase in alveolar epithelial development and repair[J]. Am J Physiol Lung Cell Mol Physiol. 2000, 279(6): 1191-1198
    [17] Kenneth CF. Mesenchymal Regulation of Alveolar Repair in Pulmonary Fibrosis[J]. Am J Respir Cell Mol Biol. 2000, 23(2): 142-145
    [18] Kevin K, Kim MC, Kugler PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix[J]. Proc Natl Acad Sci U S A. 2006, 103(35): 13180–13185.
    [19] Torday JS, Torres E, Rehan VK. The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation, and repair in vitro[J]. Pediatr Pathol Mol Med. 2003, 22(3): 189-207.
    [20] Foster CD, Varghese LS, Skalina RB, et al. In Vitro Transdifferentiation of human fetal type II cells toward a type I-like Cell[J]. Pediatr Res. 2007, 61(4): 404-409.
    [21]卢红艳,常立文,汪鸿,等。高氧对早产大鼠Ⅱ型肺泡上皮细胞转分化的影响[J]。细胞与分子免疫学杂志2006,22(6):706-709
    [22] Aliotta JM, Sanchez-Guijo FM, Dooner GJ, et al. Alteration of Marrow Cell Gene Expression, Protein Production and Engraftment into Lung by Lung-derived Microvesicles: A Novel Mechanism for Phenotype Modulation[J]. Stem Cells. 2007, 25(9): 2245-56
    [23] Gomperts BN, Belperio JA, Fishbein MC, et al. Keratinocyte Growth Factor Improves Repair in the Injured Tracheal Epithelium[J]. Am J Respir Cell Mol Biol. 2007, 37(1): 48-56.
    [24] Shinji Abe, Craig Boyer, Xiangde Liu,et al. Cells Derived from the Circulation Contribute to the Repair of Lung Injury[J]. Am J Respir Crit Care Med. 2004, 170(11): 1158-1163
    [25]陈娟,许峰,蒋静,等。氧化应激状态下肺泡Ⅱ型上皮细胞凋亡及细胞外信号调节激酶信号转导机制的研究[J].中国危重病急救医学. 2007,19(4): 193-196.
    [26] Truong SV, Monick MM, Yarovinsky TO, et al. ERK activation delays hyperoxia-induced epithelial cell death in conditions of Akt down regulation[J]. Am J Respir Cell Mol Biol. 2004, 31(6): 611-618.
    [27] Upadhyay D, Correa-Meyer E, Sznajder JI, et al. FGF-10 prevents mechanical stretch-induced alveolar epithelial cell DNA damage via MAPK activation[J]. Am J Physiol Lung Cell Mol Physiol. 2003, 284(2): 350-359.
    [28] Upadhyay D, Bundesmann M, Panduri V, et al. Fibroblast growth factor-10 attenuates H2O2-induced alveolar epithelial cell DNA damage: role of MAPK activation and DNA repair[J]. Am J Respir Cell Mol Biol. 2004, 31(1): 107-113.
    [29] Portnoy J, Curran-Everett D, Mason RJ. Keratinocyte growth factor stimulates alveolar typeⅡcell proliferation through the extracellular signal-regulated kinase and phosphatidylinositol 3-OH kinase pathways[J]. Am J Respir Cell Mol Biol, 2004, 30(6): 901-907.
    [30] Zhang X, Shan P, Sasidhar M, et al. Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium[J]. Am J Respir Cell Mol Biol,2003, 28: 305-315.
    [31] Steinberg SF. Structural basis of protein kinase C isoform function. Physiol[J]. 2008, 88(4): 1341-78.
    [32]程敏,唐建武.PKC亚型的生物学特性与调节功能[J].国外医学生理病理科学与临床分册,2002,22:493—496.
    [33] Lu H, Guizzetti M, Costa LG.Inorganic lead stimulates DNA synthesis in human astrocytoma cells: role of protein kinase Calpha[J]. J Neurochem. 2001, 78(3): 590-599.
    [34] Hsieh YC, Chen YH, Jao HC, et al. Role of cAMP-response element-binding protein phosphorylation in hepatic apoptosis under protein kinase C alpha suppression during sepsis[J]。Shock. 2005, 24(4): 357-363.
    [35]王万铁,林丽娜,涂军伟,等。异丙酚对兔肺缺血—再灌注损伤时蛋白激酶C基因表达的影响[J]。中国病理生理杂志,2005,21(3):545-549.
    [36]王俐,谭锦泉。STAT调控机制研究进展[J]。现代免疫学,2005,25(1):78-81.
    [37] Burke WM,Jin X,Lin HJ,et a1.Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells[J].Oncogene. 2001,20:7925-7934.
    [38] Ni Z,Lou W,Lee SO,et a1.Selective activation of members of the signal transducers and activators of transcription family in prostatecarcinoma[J].J Urol. 2002,167:1859-1862.
    [39] Hokuto I, Ikegami M, Yoshida M, et al. Stat-3 is required for pulmonary homeostasis during hyperoxia[J]. J Clin Invest. 2004, 113(1): 28–37.
    [40]付亚娟,叶枫,吕卫国,等。Notch信号通路的研究现状。医学分子生物学杂志,2007,4(5):447-450.
    [41] Taichman DB,Loomes KM,Schachtner S K,et a1.Notch1 and Jagged1 expression by the developing pulmonary vasculature[J].Dev Dyn,2002,225(2):l66-175.
    [42] Ito T,Udaka N,Yazawa T,et a1.Basic helix—loop—helix transcription factors regulate the neuroendoerine differentiation of fetal mouse pulmonary epithelium[J].Development,2000,127:3913-3921.
    [43]汪鸿,常立文,卢红艳,等。Notch信号在胎鼠肺泡II型上皮细胞与成纤维细胞共培养体系中的表达[J]。实用儿科临床杂志,2007,22(24):1884-1886.
    [44]刘春梅,常立文,刘敬。Notch2、Notch4在新生早产大鼠高氧肺损伤中的表达[J]。实用儿科临床杂志。2007,22(2):101-102.
    [45]丁秀娟,潘林娜。TGF-β信号转导通路与肺癌关系的研究现状[J]。实用肿瘤学杂志,2008,22(6):562-565.
    [46] Buckley S, Bui KC, Hussain M, et al. Dynamics of TGF-beta 3 peptide activity during rat alveolar epithelial cell proliferative recovery from acute hyperoxia[J]. Am J Physiol. 1996, 271(1 Pt 1): 54-60.
    [47] O'Reilly MA, Staversky RJ, Flanders KC, et al. Temporal changes in expression of TGF-beta isoforms in mouse lung exposed to oxygen[J]. Am J Physiol. 1997, 272(1 Pt 1): 60-67.
    [48] Buckley S, Shi W, Barsky L, et al. TGF-beta signaling promotes survival and repair in rat alveolar epithelial type 2 cells during recovery after hyperoxic injury[J]. Am J Physiol Lung Cell Mol Physiol. 2008, 294(4): 739-748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700