用户名: 密码: 验证码:
血流感染回顾性临床研究及患者免疫功能与预后的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     评价北京协和医院近三年血流感染的现状,包括患者的基础状态、临床表现及转归、病原学特点及预后相关因素,探查患者基础状态与血流感染预后的相关性。
     [方法]
     回顾性分析我院2008-2010年住院成人血流感染患者的临床资料和病原学资料。使用设计好的规范化表格收集数据,SPSS软件包对数据进行分析。
     [结果]
     三年间共收集成人血流感染患者927例,其中97.4%存在慢性基础疾病或需要长期住院治疗的疾病。191例患者为住院期间复数菌感染(20.6%)。引起成人血流感染的病原体中,革兰阳性菌和革兰阴性菌比例相当。共分离菌株1186株,77.2%为院内获得性感染;凝固酶阴性葡萄球菌263株(23.5%),其次是大肠埃希菌204株(18.2%),肠球菌属122(10.9%),不动杆菌属107株(9.5%),金黄色葡萄球菌98株(8.7%);真菌71(6.0%)株,念珠菌属60株(84.5%)最多见。原发血流感染最为多见,其次是腹腔感染、下呼吸道感染继发血流感染及导管相关血流感染。254例患者住院期间死亡,粗病死率为27.4%;210例(22.7%)患者出现重度败血症或败血症休克,另有159例患者仅表现为一过性败血症,且其中约一半患者未曾接受合理抗生素治疗。血流感染合并重度败血症或败血症休克的患者病死率明显升高(OR=20.41,95%CI:13.93-29.92,x2=318.60,P<0.001)。多因素回归分析中,慢性肺病、中枢神经系统疾病、保留中心静脉置管、有创机械通气、患者年龄≥65岁、接受ICU治疗、复数菌感染均为血流感染不良预后的独立危险因素;而30天内手术史与血流感染不良预后独立负相关。
     [结论]
     绝大多数血流感染患者存在慢性基础疾病或需要长期住院治疗的疾病,血流感染患者的临床表现和预后不同,部分患者可表现出一过性败血症,即使不给予合理的抗感染治疗,亦能很快治愈;部分患者则表现出重度败血症甚至败血症休克,最终因败血症休克死亡。血流感染的临床表现和预后与患者的基础疾病状态相关。
     [目的]
     比较血流感染致败血症、重症败血症及败血症休克和非感染性SIRS患者外周血淋巴细胞亚群、炎症因子及趋化因子水平差异,以探讨患者免疫功能与血流感染败血症患者临床表现及转归的关系及败血症与非感染性SIRS患者免疫反应的差异。
     [方法]
     通过横断面研究,纳入血流感染所致败血症、重度败血症及败血症休克患者,以非感染性SIRS患者及健康志愿者作为对照组,使用流式细胞术对免疫细胞的比例和计数进行测定,使用流式液相多重蛋白定量技术(CBA)测定细胞因子水平,同时使用设计好的表格收集纳入患者的临床资料。所有数据使用SPSS软件包分析。
     [结果]
     我们收集败血症患者12例,重度败血症及败血症休克患者12例,均为血培养阳性明确血流感染患者,同时纳入11例恶性肿瘤和血管炎导致的非感染性SIRS患者作为对照。三组患者在年龄、基础疾病、所感染病原体、临床表现及外周血白细胞计数均未见显著差异;重症败血症及败血症休克患者淋巴细胞比例降低。三组患者在CD3+T细胞、CD4+T细胞、CD8+T细胞及B细胞的比例及绝对计数上均无显著差异。而无论是NK细胞占淋巴细胞百分比[10.15(7.70,15.35),4.35(2.05,8.05)vs.8.60(4.10,18.10),P=0.041]还是NK细胞绝对计数[114(56,165),50(14,73),103(59,167)cells/mm3;F=4.567,P=0.018],重度败血症及败血症休克组患者均明显降低,重度败血症及败血症休克患者的淋巴细胞降低以NK细胞降低为主。重度败血症及败血症休克较败血症组患者NKT细胞占CD3+T比例明显升高[7.55(4.60,27.70)vs2.45(1.32,4.56),P=0.013]。
     无论是血流感染引起的SIRS还是非感染性疾病引起的SIRS反应,血浆IL-6、IL-8、INF-γ、MCP-1、IP-10、MIG、IL-10水平与健康对照组比较,基本都是升高的,而RANTES水平均较健康对照组降低。非感染性SIRS组患者的血浆MIG[3306.20(285.80,8732.34)vs.383.70(165.29,651.86)pg/ml,P=0.018]、IP-10[2269.67(1568.71,2921.59)vs.883.32(621.91,1536.92)pg/ml,P=0.010]和INF-Y[64.00(39.20,83.35)vs.33.99(8.29,70.06)pg/m1,P=0.001]水平均较血流感染所引起的败血症患者升高更为明显。对于败血症患者,血浆MIG、IL-6水平与疾病的预后相关,重度败血症及败血症休克组死亡患者较存活患者的MIG[1816.18(1027,63,2562.66)vs.94.51(23.30,2803.72)pg/ml,P=0.018]、IL-6[365.57(136.99,424.22)vs.40.52(31.56,131.60)pg/ml,P=0.028]水平明显增高。血浆IL-8[63.41(35.21,95.85)vs.169.02(103.01,302.46),p=0.025]和MCP-1[143.00(71.77,410.30)vs.356.22(260.42,549.26),P=0.016]水平与败血症严重程度相关,即重症败血症患者较败血症患者明显升高。
     [结论]
     重度败血症患者淋巴细胞降低以NK细胞降低更为突出,而重度败血症患者NKT样细胞占CD3+T细胞的比例较败血症组明显升高;血浆工L-8和MCP-1水平与败血症的严重程度相关;MIG和IL-6与重症败血症患者的不良预后相关。MIG、IP-10、INF-γ,在非感染性SIRS时升高较败血症更为明显,提示有进一步研究其作为区分败血症及非感染性SIRS指标的必要性。
[Objective]
     In order to evaluate the clinical and microbial characteristics of bloodstream infection, including the underlying state of the patients, clinical manifestations, microbial spectrum, and prognosis as well as the affecting factors, at Peking Union Medical College Hospital in these years, we conducted the retrospective part of the study, trying to explore the association of the state of patients with the clinical manifestation and prognosis.
     [Methods]
     Retrospectively, we collected the data of the patients with definite BSI, including clinical data microbial data, using standard chart that designed previously. SPSS software was used in the data analysis.
     [Results]
     Totally we included927cases of bloodstream infection,92.7%of whom were with chronic underlying diseases or the diseases needing long-term hospitalization. One hundred and ninety-one (20.6%) patients with polymicrobial bloodstream infection, we isolated1186strains of microbe from the positive blood cultures in927patients,77.2%being hospital acquired. The five most common isolates were coagulase-negative staphylococcus (23.5%), E.coli (18.2%), Enterococcus spp.(10.9%), Acinetobacter spp.(9.5%) and Staphylococcus Aureues (8.7%), while the G+cocci and the G-rods were comparable. Candida spp. accounting for84.5%, seventy-one isolate of fungi were isolated. According to the sources of bloodstream infection, primary bloodstream infection was the most common, followed by bloodstream infection secondary to abdominal infection, bloodstream infection secondary to lower respiratory tract infection and central-line associated bloodstream infection. There were254patients died during hospitalization with a crude mortality rate of27.4%. Among the927cases,210complicated with severe sepsis and septic shock, however, another159cases, about half of who didn't receive appropriate antibiotic treatment, only underwent a transient sepsis. The patients who complicated severe sepsis and septic shock were with a higher mortality rate (OR=20.41;95%CI,13.93-29.915; χ2=318.60, P=0.000). In the multivariate analysis, chronic lung diseases, diseases of central nervous system, reservation of central-line, invasive mechanical ventilation, age≥65years old, ICU treatment and polymicrobial bloodstream infection were the independent risk factors of poor prognosis, but the operation history within30days was inverse correlated to poor prognosis.
     [Conclusions]
     Almost all the patients underwent bloodstream infection had at least one type of chronic underlying disease or the disease need long hospitalization, which may lay the patients in different immune states. Some patients experienced only a transient sepsis, while some manifested as severe sepsis and septic shock, due to the different immune states of the patients.
     [Objective]
     In order to find the immune differences between septic patients and severe septic patients, as well as septic patients and non-infective SIRS patients, we evaluate the subgroups of lymphocytes, proinflammatory cytokines and suppressive inflammatory factors between these patients.
     [Methods]
     In the prospective part of the study, we included the septic and severe septic and septic shock patients due to bloodstream infection, noninfective SIRS patients due to malignant disease or system arteritis. Evaluate the subgroup of lymphocytes and cytokines and chemokines by flow cytometry and CBA,
     [Results]
     In the cross-sectional study, prospectively, we included12cases with sepsis,12cases with severe sepsis and septic shock due to definite bloodstream infection. Simultaneously, we included11patients with non-infective SIRS due to lymphoma and arteritis as the control group. By comparison, there was no difference in the absolute counts in peripheral white blood cells, but the patients in severe septic group were with a lower lymphocyte percentage. There were no difference in the percentage and absolute counts of CD3+T cell, CD4+T cell, CD8+T cell, as well as B lymphocytes, but all the subgroups of lymphocytes mentioned above were lower than healthy patients. Both the percentage [10.15(7.70,15.35),4.35(2.05,8.05) vs.8.60(4.10,18.10), P=0.041] and absolute counts [114(56,165),50(14,73),103(59,167) cells/mm3; P=0.018] of NK cell were lower in the severe sepsis and septic shock patients. As the percentage of NKT/CD3+T, the patients with severe sepsis and septic shock were higher than the patients with sepsis [7.55(4.60,27.70) vs2.45(1.32,4.56), P=0.013].
     The level of plasma IL-6, IL-8, INF-γ, MCP-1, IP-10, MIG, IL-10were higher in septic group, severe sepsis and septic shock group as well as the non-infective SIRS group than healthy controls. But the level of plasma RANTES were lower in the SIRS patients than healthy controls. The level of plasma MIG [3306.20(285.80,8732.34) vs.383.70(165.29,651.86) pg/ml, P=0.018], IP-10[2269.67(1568.71,2921.59) vs.883.32(621.91,1536.92) pg/ml, P=0.010] and INF-y[64.00(39.20,83.35) vs.33.99(8.29,70.06) pg/ml, P=0.001] were higher in the patients non-infective SIRS than the patients with sepsis, which may be potentially as the biomarkers to discriminate sepsis and non-infective SIRS when the clinical manifestations were similar to each other. IL-8[63.41(35.21,95.85) vs.169.02(103.01,302.46), P=0.025] and MCP-1[143.00(71.77,410.30) vs.356.22(260.42,549.26), P=0.016] were higher in the severe sepsis group than sepsis group. The level of plasma IL-6[365.57(136.99,424.22) vs.40.52(31.56,131.60) pg/ml, P=0.028] and MIG [1816.18(1027.63,2562.66) vs.94.51(23.30,2803.72) pg/ml, P=0.018] were related to prognosis in the patients with severe sepsis and septic shock, which were higher in the patients who were died due to bloodstream infection than the survivors. High level of IL-6and MIG in the early stage of severe sepsis and septic shock indicated a bad prognosis.
     [Conclusion]
     The patients with severe sepsis were with lower lymphocytes than the patients with sepsis, and the reduction of NK cell was the most prominent. However, the percentage of NKT like cell/CD3+T cell in patients with severe sepsis was higher than that in patients with sepsis. IL-8and MCP-1were higher in patients with severe sepsis than the patients with sepsis. The plasma level of MIG and IL-6were higher in the patients who died due to severe sepsis than survivors. Having the potential to be the discriminated biomarkers, the plasma level of MIG, IP-10and INF-γ in the patients with non-infective SIRS were higher than the patients with sepsis.
引文
[1]Klevensrm E R E A. Estimatinghealthcare-associated infections anddeathsinU.S.hospitals,2002[J]. Public Health Rep,2007,2(122):160-166.
    [2]Pittet D, Li N, Woolson R F, et al. Microbiological factors influencing the outcome of nosocomial bloodstream infections:a 6-year validated, population-based model[J]. Clin Infect Dis, 1997,24(6):1068-1078.
    [3]Warren D K, Zack J E, Elward A M, et al. Nosocomial primary bloodstream infections in intensive care unit patients in a nonteaching community medical center:a 21-month prospective study[J]. Clin Infect Dis,2001,33(8):1329-1335.
    [4]Collin B A, Leather H L, Wingard J R, et al. Evolution, incidence, and susceptibility of bacterial bloodstream isolates from 519 bone marrow transplant patients[J]. Clin Infect Dis,2001,33(7): 947-953.
    [5]National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992-April 2000, issued June 2000[J]. Am J Infect Control,2000,28(6):429-448.
    [6]Son J S, Song J H, Ko K S, et al. Bloodstream infections and clinical significance of healthcare-associated bacteremia:a multicenter surveillance study in Korean hospitals[J]. J Korean Med Sci,2010,25(7):992-998.
    [7]Umscheid C A, Mitchell M D, Doshi J A, et al. Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs [J]. Infect Control Hosp Epidemiol,2011,32(2):101-114.
    [8]Jensen U S, Knudsen J D, Wehberg S, et al. Risk factors for recurrence and death after bacteraemia:a population-based study[J]. Clin Microbiol Infect,2011,17(8):1148-1154.
    [9]Sogaard M, Norgaard M, Dethlefsen C, et al. Temporal changes in the incidence and 30-day mortality associated with bacteremia in hospitalized patients from 1992 through 2006:a population-based cohort study[J]. Clin Infect Dis,2011,52(1):61-69.
    [10]Hyattsville M. National Center for Health Statistics. Health, United States,2010:With Special Feature on Death and Dying[J].2011.
    [11]Angus D C, Linde-Zwirble W T, Lidicker J, et al. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care[J]. Crit Care Med,2001,29(7): 1303-1310.
    [12]Brun-Buisson C, Meshaka P, Pinton P, et al. EPISEPSIS:a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units[J]. Intensive Care Med,2004,30(4):580-588.
    [13]Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock[J]. N Engl J Med,2001,345(19):1368-1377.
    [14]Dellinger R P, Levy M M, Carlet J M, et al. Surviving Sepsis Campaign:international guidelines for management of severe sepsis and septic shock:2008[J]. Crit Care Med,2008,36(1): 296-327.
    [15]Matsushima A, Tasaki O, Shimizu K, et al. Preemptive antibiotic treatment based on gram staining reduced the incidence of ARDS in mechanically ventilated patients[J]. J Trauma,2008,65(2): 309-315,315.
    [16]Friedman N D, Kaye K S, Stout J E, et al. Health care--associated bloodstream infections in adults:a reason to change the accepted definition of community-acquired infections[J]. Ann Intern Med,2002,137(10):791-797.
    [17]Secondary Bloodstream Infection (BSI) Guide[J]. www.cdc.gov/nhsn/PDFs/Secondary BSI Guide_06_11.pdf.
    [18]Garner J S, Jarvis W R, Emori T G, et al. CDC definitions for nosocomial infections,1988[J]. Am J Infect Control,1988,16(3):128-140.
    [19]Manian F A. IDSA guidelines for the diagnosis and management of intravascular catheter-related bloodstream infection[J]. Clin Infect Dis,2009,49(11):1770-1771,1771-1772.
    [20]Wisplinghoff H, Bischoff T, Tallent S M, et al. Nosocomial bloodstream infections in US hospitals:analysis of 24,179 cases from a prospective nationwide surveillance study[J]. Clin Infect Dis,2004,39(3):309-317.
    [21]Demirdal T, Demirturk N, Cetinkaya Z, et al. Evaluation of bacteremias in a Turkish university hospital:3-year outcomes[J]. Adv Ther,2007,24(4):841-851.
    [22]张捷,宁永忠,叶红.2005至2007年北京大学第三医院血流感染的微生物学分析[J].中华传染病杂志,2009,27(3):161-166.
    [23]刘正印,王爱霞,盛瑞媛.从99例败血症看院内感染的新动向[J].中华内科杂志,1998,(5).
    [24]范洪伟,王爱霞等.113例败血症的病原菌分析[J].中国抗感染化疗杂志,2003,(2).
    [25]Esel D, Doganay M, Alp E, et al. Prospective evaluation of blood cultures in a Turkish university hospital:epidemiology, microbiology and patient outcome[J]. Clin Microbiol Infect,2003, 9(10):1038-1044.
    [26]Tsitsopoulos P P, Iosifidis E, Antachopoulos C, et al. A 5-year epidemiological study of nosocomial bloodstream infections in a neurosurgery department J]. Infect Control Hosp Epidemiol, 2010,31(4):414-417.
    [27]Reddy E A, Shaw A V, Crump J A. Community-acquired bloodstream infections in Africa:a systematic review and meta-analysis[J]. Lancet Infect Dis,2010,10(6):417-432.
    [28]Wu C J, Lee H C, Lee N Y, et al. Predominance of Gram-negative bacilli and increasing antimicrobial resistance in nosocomial bloodstream infections at a university hospital in southern Taiwan,1996-2003[J]. J Microbiol Immunol Infect,2006,39(2):135-143.
    [29]Favre B, Hugonnet S, Correa L, et al. Nosocomial bacteremia:clinical significance of a single blood culture positive for coagulase-negative staphylococci[J]. Infect Control Hosp Epidemiol,2005, 26(8):697-702.
    [30]Blot S, Cankurtaran M, Petrovic M, et al. Epidemiology and outcome of nosocomial bloodstream infection in elderly critically ill patients:a comparison between middle-aged, old, and very old patients[J]. Crit Care Med,2009,37(5):1634-1641.
    [31]Kiani D, Quinn E L, Burch K H, et al. The increasing importance of polymicrobial bacteremia[J]. JAMA,1979,242(10):1044-1047.
    [32]Sancho S, Artero A, Zaragoza R, et al. Impact of nosocomial polymicrobial bloodstream infections on the outcome in critically ill patients[J]. Eur J Clin Microbiol Infect Dis,2011.
    [33]Roberts F J. Definition of polymicrobial bacteremia[J]. Rev Infect Dis,1989,11(6):1029-1030.
    [34]Weinstein M P, Reller L B, Murphy J R, et al. The clinical significance of positive blood cultures:a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. Ⅰ. Laboratory and epidemiologic observations[J]. Rev Infect Dis,1983,5(1):35-53.
    [35]Richards M J, Edwards J R, Culver D H, et al. Nosocomial infections in combined medical-surgical intensive care units in the United States[J]. Infect Control Hosp Epidemiol,2000, 21(8):510-515.
    [36]Pittet D, Li N, Wenzel R P. Association of secondary and polymicrobial nosocomial bloodstream infections with higher mortality[J]. Eur J Clin Microbiol Infect Dis,1993,12(11): 813-819.
    [37].杨启文,王辉,徐英春等.腹腔感染细菌流行病学调查[J].中华普通外科学文献:电子版,3(5):427-433.
    [38]刘朝晖.重视下呼吸道细菌感染的流行趋势[J].中华内科杂志,2008,47:621-622.
    [39]Pedersen G, Schonheyder H C, Sorensen H T. Source of infection and other factors associated with case fatality in community-acquired bacteremia--a Danish population-based cohort study from 1992 to 1997[J]. Clin Microbiol Infect,2003,9(8):793-802.
    [40]骆俊,吴菊芳,朱德妹等.上海市华山医院血流感染患者的病原学和临床研究[J].中华传染病杂志,2006,24(1):29-34.
    [41]Michalopoulos A, Falagas M E, Karatza D C, et al. Epidemiologic, clinical characteristics, and risk factors for adverse outcome in multiresistant gram-negative primary bacteremia of critically ill patients[J]. Am J Infect Control,2011,39(5):396-400.
    [42]Angus D C, Linde-Zwirble W T, Lidicker J, et al. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care[J]. Crit Care Med,2001,29(7): 1303-1310.
    [43]Dellinger R P. Cardiovascular management of septic shock[J]. Crit Care Med,2003,31(3): 946-955.
    [44]Osborn T M, Tracy J K, Dunne J R, et al. Epidemiology of sepsis in patients with traumatic injury[J]. Crit Care Med,2004,32(11):2234-2240.
    [45]Rangel-Frausto M S, Pittet D, Costigan M, et al. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study[J]. JAMA,1995,273(2):117-123.
    [46]Lewkowicz P, Lewkowicz N, Sasiak A, et al. Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death [J]. J Immunol,2006, 177(10):7155-7163.
    [47]Brun-Buisson C, Roudot-Thoraval F, Girou E, et al. The costs of septic syndromes in the intensive care unit and influence of hospital-acquired sepsis[J]. Intensive Care Med,2003,29(9): 1464-1471.
    [48]Bryan C S, Reynolds K L. Bacteremic nosocomial pneumonia. Analysis of 172 episodes from a single metropolitan area[J]. Am Rev Respir Dis,1984,129(5):668-671.
    [49]Weinstein M P, Reller L B, Murphy J R. Clinical importance of polymicrobial bacteremia[J]. Diagn Microbiol Infect Dis,1986,5(3):185-196.
    [50]Ashkenazi S, Leibovici L, Samra Z, et al. Risk factors for mortality due to bacteremia and fungemia in childhood[J]. Clin Infect Dis,1992,14(4):949-951.
    [51]Opal S M, Calandra T. Antibiotic usage and resistance:gaining or losing ground on infections in critically ill patients?[J]. JAMA,2009,302(21):2367-2368.
    [52]Annane D, Bellissant E, Cavaillon J M. Septic shock[J]. Lancet,2005,365(9453):63-78.
    [53]Lin E, Calvano S E, Lowry S F. Inflammatory cytokines and cell response in surgery[J]. Surgery,2000,127(2):117-126.
    [54]Muller K A, Tulleken J E, Zijlstra J G, et al. Leukocyte activation in sepsis; correlations with disease state and mortality[J]. Intensive Care Med,2000,26(7):883-892.
    [55]Munford R S, Pugin J. Normal responses to injury prevent systemic inflammation and can be immunosuppressive[J]. Am J Respir Crit Care Med,2001,163(2):316-321.
    [56]Oberholzer A, Oberholzer C, Moldawer L L. Sepsis syndromes:understanding the role of innate and acquired immunity[J]. Shock,2001,16(2):83-96.
    [57]Eichacker P Q, Parent C, Kalil A, et al. Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis[J]. Am J Respir Crit Care Med,2002,166(9): 1197-1205.
    [58]Volk H D, Reinke P, Docke W D. Clinical aspects:from systemic inflammation to 'immunoparalysis'[J]. Chem Immunol,2000,74:162-177.
    [59]Hotchkiss R S, Swanson P E, Cobb J P, et al. Apoptosis in lymphoid and parenchymal cells during sepsis:findings in normal and T- and B-cell-deficient mice[J]. Crit Care Med,1997,25(8): 1298-1307.
    [60]Hotchkiss R S, Karl I E. The pathophysiology and treatment of sepsis[J]. N Engl J Med,2003, 348(2):138-150.
    [61]Lee P T, Benlagha K, Teyton L, et al. Distinct functional lineages of human V(alpha)24 natural killer T cells[J]. J Exp Med,2002,195(5):637-641.
    [62]Chan A C, Serwecinska L, Cochrane A, et al. Immune characterization of an individual with an exceptionally high natural killer T cell frequency and her immediate family [J]. Clin Exp Immunol, 2009,156(2):238-245.
    [63]Brigl M, Brenner M B. CD1:antigen presentation and T cell function[J]. Annu Rev Immunol, 2004,22:817-890.
    [64]Sakaguchi S. Regulatory T cells:key controllers of immunologic self-tolerance[J]. Cell,2000, 101(5):455-458.
    [65]Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses[J]. Annu Rev Immunol,2004,22:531-562.
    [66]Wood K J, Sakaguchi S. Regulatory T cells in transplantation tolerance[J]. Nat Rev Immunol, 2003,3(3):199-210.
    [67]Monneret G, Debard A L, Venet F, et al. Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis[J]. Crit Care Med,2003,31(7):2068-2071.
    [68]Bone R C, Balk R A, Cerra F B, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine[J]. Chest,1992,101(6): 1644-1655.
    [69]Shevach E M. CD4+ CD25+ suppressor T cells:more questions than answers[J]. Nat Rev Immunol,2002,2(6):389-400.
    [70]Kox W J, Volk T, Kox S N, et al. Immunomodulatory therapies in sepsis[J]. Intensive Care Med, 2000,26 Suppl 1:S124-S128.
    [71]Angele M K, Faist E. Clinical review:immunodepression in the surgical patient and increased susceptibility to infection[J]. Crit Care,2002,6(4):298-305.
    [72]Yende S, Angus D C. Long-term outcomes from sepsis[J]. Curr Infect Dis Rep,2007,9(5): 382-386.
    [73]Nishijima M K, Takezawa J, Hosotsubo K K, et al. Serial changes in cellular immunity of septic patients with multiple organ-system failure[J]. Crit Care Med,1986,14(2):87-91.
    [74]Hoyt D B, Ozkan A N, Ninnemann J L, et al. Trauma peptide induction of lymphocyte changes predictive of sepsis[J]. J Surg Res,1988,45(4):342-348.
    [75]Lin R Y, Astiz M E, Saxon J C, et al. Altered leukocyte immunophenotypes in septic shock. Studies of HLA-DR, CD11b, CD14, and IL-2R expression[J]. Chest,1993,104(3):847-853.
    [76]Hotchkiss R S, Tinsley K W, Swanson P E, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans[J]. J Immunol,2001,166(11): 6952-6963.
    [77]Oberbeck R, Dahlweid M, Koch R, et al. Dehydroepiandrosterone decreases mortality rate and improves cellular immune function during polymicrobial sepsis[J]. Crit Care Med,2001,29(2): 380-384.
    [78]Lyons A, Kelly J L, Rodrick M L, et al. Major injury induces increased production of interleukin-10 by cells of the immune system with a negative impact on resistance to infection[J]. Ann Surg,1997,226(4):450-458,458-460.
    [79]Hotchkiss R S, Coopersmith C M, Karl I E. Prevention of lymphocyte apoptosis--a potential treatment of sepsis?[J]. Clin Infect Dis,2005,41 Suppl 7:S465-S469.
    [80]Chung C S, Watkins L, Funches A, et al. Deficiency of gammadelta T lymphocytes contributes to mortality and immunosuppression in sepsis[J]. Am J Physiol Regul Integr Comp Physiol,2006, 291(5):R1338-R1343.
    [81]Chung D R, Kasper D L, Panzo R J, et al. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism[J]. J Immunol,2003,170(4):1958-1963.
    [82]Martignoni A, Tschop J, Goetzman H S, et al. CD4-expressing cells are early mediators of the innate immune system during sepsis[J]. Shock,2008,29(5):591-597.
    [83]Enoh V T, Lin S H, Lin C Y, et al. Mice depleted of alphabeta but not gammadelta T cells are resistant to mortality caused by cecal ligation and puncture[J]. Shock,2007,27(5):507-519.
    [84]焦洋.中国健康成人不同年龄组外周血淋巴细胞亚群正常参考范围及其临床初步应用[J].北京协和医学院,2009.
    [85]Hein F, Massin F, Cravoisy-Popovic A, et al. The relationship between CD4+CD25+CD127-regulatory T cells and inflammatory response and outcome during shock states[J]. Crit Care,2010, 14(1):R19.
    [86]Gogos C, Kotsaki A, Pelekanou A, et al. Early alterations of the innate and adaptive immune statuses in sepsis according to the type of underlying infection[J]. Crit Care,2010,14(3):R96.
    [87]Holub M, Kluckova Z, Held M, et al. Lymphocyte subset numbers depend on the bacterial origin of sepsisfJ]. Clin Microbiol Infect,2003,9(3):202-211.
    [88]Moore K W, O'Garra A, de Waal M R, et al. Interleukin-10[J]. Annu Rev Immunol,1993,11: 165-190.
    [89]Godshall C J, Scott M J, Burch P T, et al. Natural killer cells participate in bacterial clearance during septic peritonitis through interactions with macrophages[J]. Shock,2003,19(2):144-149.
    [90]Scott M J, Hoth J J, Gardner S A, et al. Natural killer cell activation primes macrophages to clear bacterial infection[J]. Am Surg,2003,69(8):679-686,686-687.
    [91]Goldmann O, Chhatwal G S, Medina E. Contribution of natural killer cells to the pathogenesis of septic shock induced by Streptococcus pyogenes in mice[J]. J Infect Dis,2005,191(8): 1280-1286.
    [92]Heremans H, Van Damme J, Dillen C, et al. Interferon gamma, a mediator of lethal lipopolysaccharide-induced Shwartzman-like shock reactions in mice[J]. J Exp Med,1990,171(6): 1853-1869.
    [93]Seki S, Osada S, Ono S, et al. Role of liver NK cells and peritoneal macrophages in gamma interferon and interleukin-10 production in experimental bacterial peritonitis in mice[J]. Infect Immun, 1998,66(11):5286-5294.
    [94]Raeder R H, Barker-Merrill L, Lester T, et al. A pivotal role for interferon-gamma in protection against group A streptococcal skin infection[J]. J Infect Dis,2000,181(2):639-645.
    [95]Dieli F, Sireci G, Russo D, et al. Resistance of natural killer T cell-deficient mice to systemic Shwartzman reaction[J]. J Exp Med,2000,192(11):1645-1652.
    [96]Emoto M, Miyamoto M, Yoshizawa I, et al. Critical role of NK cells rather than V alpha 14(+)NKT cells in lipopolysaccharide-induced lethal shock in mice[J], J Immunol,2002,169(3): 1426-1432.
    [97]Barkhausen T, Frerker C, Putz C, et al. Depletion of NK cells in a murine polytrauma model is associated with improved outcome and a modulation of the inflammatory response[J]. Shock,2008, 30(4):401-410.
    [98]Carson W E, Yu H, Dierksheide J, et al. A fatal cytokine-induced systemic inflammatory response reveals a critical role for NK cells[J]. J Immunol,1999,162(8):4943-4951.
    [99]Badgwell B, Parihar R, Magro C, et al. Natural killer cells contribute to the lethality of a murine model of Escherichia coli infection[J]. Surgery,2002,132(2):205-212.
    [100]Etogo A O, Nunez J, Lin C Y, et al. NK but not CD1-restricted NKT cells facilitate systemic inflammation during polymicrobial intra-abdominal sepsis[J]. J Immunol,2008,180(9):6334-6345.
    [101]Van Der Vliet H J, Nishi N, Koezuka Y, et al. Effects of alpha-galactosylceramide (KRN7000), interleukin-12 and interleukin-7 on phenotype and cytokine profile of human Valpha24+ Vbeta11+ T cells[J]. Immunology,1999,98(4):557-563.
    [102]Vivier E, Anfossi N. Inhibitory NK-cell receptors on T cells:witness of the past, actors of the future[J]. Nat Rev Immunol,2004,4(3):190-198.
    [103]Bendelac A, Savage P B, Teyton L. The biology of NKT cells[J]. Annu Rev Immunol,2007,25: 297-336.
    [104]Skold M, Behar S M. Role of CD1d-restricted NKT cells in microbial immunity[J]. Infect Immun,2003,71(10):5447-5455.
    [105]Godfrey D I, Kronenberg M. Going both ways:immune regulation via CD1d-dependent NKT cells[J]. J Clin Invest,2004,114(10):1379-1388.
    [106]Sonoda K H, Faunce D E, Taniguchi M, et al. NK T cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance[J]. J Immunol,2001, 166(1):42-50.
    [107]Kawamura T, Takeda K, Mendiratta S K, et al. Critical role of NK1+ T cells in IL-12-induced immune responses in vivo[J]. J Immunol,1998,160(1):16-19.
    [108]Rhee R J, Carlton S, Lomas J L, et al. Inhibition of CDld activation suppresses septic mortality: a role for NK-T cells in septic immune dysfunction[J]. J Surg Res,2003,115(1):74-81.
    [109]Tsujimoto H, Ono S, Matsumoto A, et al. A critical role of CpG motifs in a murine peritonitis model by their binding to highly expressed toll-like receptor-9 on liver NKT cells[J]. J Hepatol,2006, 45(6):836-843.
    [110]Nieuwenhuis E E, Matsumoto T, Exley M, et al. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung[J]. Nat Med,2002,8(6):588-593.
    [111]Kawakami K, Yamamoto N, Kinjo Y, et al. Critical role of Valphal4+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection [J]. Eur J Immunol, 2003,33(12):3322-3330.
    [112]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
    [113]Williams L M, Rudensky A Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3[J]. Nat Immunol,2007,8(3): 277-284.
    [114]Lin W, Haribhai D, Relland L M, et al. Regulatory T cell development in the absence of functional Foxp3[J]. Nat Immunol,2007,8(4):359-368.
    [115]Gavin M A, Rasmussen J P, Fontenot J D, et al. Foxp3-dependent programme of regulatory T-cell differentiation[J]. Nature,2007,445(7129):771-775.
    [116]Campbell D J, Ziegler S F. FOXP3 modifies the phenotypic and functional properties of regulatory T cells[J]. Nat Rev Immunol,2007,7(4):305-310.
    [117]Shevach E M. Regulatory T cells in autoimmmunity*[J]. Annu Rev Immunol,2000,18: 423-449.
    [118]Monneret G, Venet F, Pachot A, et al. Monitoring immune dysfunctions in the septic patient:a new skin for the old ceremony [J]. Mol Med,2008,14(1-2):64-78.
    [119]Shevach E M. Certified professionals:CD4(+)CD25(+) suppressor T cells[J]. J Exp Med,2001, 193(11):F41-F46.
    [120]Taams L S, van Amelsfort J M, Tiemessen M M, et al. Modulation of monocyte/macrophage function by human CD4+CD25+regulatory T cells[J]. Hum Immunol,2005,66(3):222-230.
    [121]Venet F, Pachot A, Debard A L, et al. Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25- lymphocytes[J]. Crit Care Med,2004, 32(11):2329-2331.
    [122]Scumpia P O, Delano M J, Kelly K M, et al. Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis[J]. J Immunol,2006,177(11):7943-7949.
    [123]Hiraki S, Ono S, Tsujimoto H, et al. Neutralization of interleukin-10 or transforming growth factor-beta decreases the percentages of CD4+ CD25+ Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival[J]. Surgery,2012,151(2):313-322.
    [124]Nascimento D C, Alves-Filho J C, Sonego F, et al. Role of regulatory T cells in long-term immune dysfunction associated with severe sepsis[J]. Crit Care Med,2010,38(8):1718-1725.
    [125]Scumpia P O, Delano M J, Kelly K M, et al. Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis[J]. J Immunol,2006,177(11):7943-7949.
    [126]Kretschmer U, Bonhagen K, Debes G F, et al. Expression of selectin ligands on murine effector and IL-10-producing CD4+ T cells from non-infected and infected tissues[J]. Eur J Immunol,2004, 34(11):3070-3081.
    [127]Belkaid Y, Rouse B T. Natural regulatory T cells in infectious disease[J]. Nat Immunol,2005, 6(4):353-360.
    [128]Decker D, Tolba R, Springer W, et al. Abdominal surgical interventions:local and systemic consequences for the immune system--a prospective study on elective gastrointestinal surgery[J]. J Surg Res,2005,126(1):12-18.
    [129]Saito K, Wagatsuma T, Toyama H, et al. Sepsis is characterized by the increases in percentages of circulating CD4+CD25+ regulatory T cells and plasma levels of soluble CD25[J]. Tohoku J Exp Med,2008,216(1):61-68.
    [130]Cohen J. The immunopathogenesis of sepsis[J]. Nature,2002,420(6917):885-891.
    [131]Nathan C. Points of control in inflammation[J]. Nature,2002,420(6917):846-852.
    [132]Adams D H, Lloyd A R. Chemokines:leucocyte recruitment and activation cytokines[J]. Lancet, 1997,349(9050):490-495.
    [133]Pacheco-Rodriguez G, Moss J. The role of chemokines in migration of metastatic-like lymphangioleiomyomatosis cells[J]. Crit Rev Immunol,2010,30(4):387-394.
    [134]Muller M, Carter S, Hofer M J, et al. Review:The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity--a tale of conflict and conundrum[J]. Neuropathol Appl Neurobiol,2010,36(5):368-387.
    [135]Proudfoot A E. Chemokine receptors:multifaceted therapeutic targets[J]. Nat Rev Immunol, 2002,2(2):106-115.
    [136]Sallusto F, Lenig D, Mackay C R, et al. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes [J]. J Exp Med,1998,187(6):875-883.
    [137]Auerbach M B, Shimoda N, Amano H, et al. Monokine induced by interferon-gamma (MIG/CXCL9) is derived from both donor and recipient sources during rejection of class II major histocompatibility complex disparate skin allografts[J]. Am J Pathol,2009,174(6):2172-2181.
    [138]Strieter R M, Polverini P J, Kunkel S L, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis[J]. J Biol Chem,1995,270(45):27348-27357.
    [139]Mcinnes I B, Leung B P, Liew F Y. Cell-cell interactions in synovitis. Interactions between T lymphocytes and synovial cells[J]. Arthritis Res,2000,2(5):374-378.
    [140]Patel D D, Zachariah J P, Whichard L P. CXCR3 and CCR5 ligands in rheumatoid arthritis synovium[J]. Clin Immunol,2001,98(1):39-45.
    [141]Nakashima T, Tanaka R, Yamashita Y, et al. Aranorosin and a novel derivative inhibit the anti-apoptotic functions regulated by Bcl-2[J]. Biochem Biophys Res Commun,2008,377(4): 1085-1090.
    [142]Murakami M, Sakai H, Kodama A, et al. Expression of the anti-apoptotic factors Bcl-2 and survivin in canine vascular tumours[J]. J Comp Pathol,2008,139(1):1-7.
    [143]Ulrich H D. Regulating post-translational modifications of the eukaryotic replication clamp PCNA[J]. DNA Repair (Amst),2009,8(4):461-469.
    [144]Shi L, Chen J, Yang J, et al. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity[J]. Brain Res,2010,1352:255-264.
    [145]Masuda Y, Piao J, Kamiya K. DNA replication-coupled PCNA mono-ubiquitination and polymerase switching in a human in vitro system[J]. J Mol Biol,2010,396(3):487-500.
    [146]Cole A M, Ganz T, Liese A M, et al. Cutting edge:IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity[J]. J Immunol,2001,167(2):623-627.
    [147]Lacotte S, Brun S, Muller S, et al. CXCR3, inflammation, and autoimmune diseases[J]. Ann N Y Acad Sci,2009,1173:310-317.
    [148]Kuan W P, Tam L S, Wong C K, et al. CXCL 9 and CXCL 10 as Sensitive markers of disease activity in patients with rheumatoid arthritis[J]. J Rheumatol,2010,37(2):257-264.
    [149]Azzurri A, Sow O Y, Amedei A, et al. IFN-gamma-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in Mycobacterium tuberculosis infection[J]. Microbes Infect,2005,7(1):1-8.
    [150]Ruhwald M, Bodmer T, Maier C, et al. Evaluating the potential of IP-10 and MCP-2 as biomarkers for the diagnosis of tuberculosis[J]. Eur Respir J,2008,32(6):1607-1615.
    [151]Pape H C, Remmers D, Grotz M, et al. Levels of antibodies to endotoxin and cytokine release in patients with severe trauma:does posttraumatic dysergy contribute to organ failure?[J]. J Trauma, 1999,46(5):907-913.
    [152]Frangogiannis N G, Mendoza L H, Smith C W, et al. Induction of the synthesis of the C-X-C chemokine interferon-gamma-inducible protein-10 in experimental canine endotoxemia[J]. Cell Tissue Res,2000,302(3):365-376.
    [153]Fotopoulos S, Mouchtouri A, Xanthou G, et al. Inflammatory chemokine expression in the peripheral blood of neonates with perinatal asphyxia and perinatal or nosocomial infections[J]. Acta Paediatr,2005,94(6):800-806.
    [154]Ng P C, Li K, Chui K M, et al. IP-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants[J]. Pediatr Res,2007,61(1):93-98.
    [155]Otto G, Burdick M, Strieter R, et al. Chemokine response to febrile urinary tract infection[J]. Kidney Int,2005,68(1):62-70.
    [156]Bajetto A, Bonavia R, Barbero S, et al. Characterization of chemokines and their receptors in the central nervous system:physiopathological implications[J]. J Neurochem,2002,82(6): 1311-1329.
    [157]Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma[J]. Cancer Res,2002,62(10):2937-2941.
    [158]Ferreira M A. Cytokine expression in allergic inflammation:systematic review of in vivo challenge studies[J]. Mediators Inflamm,2003,12(5):259-267.
    [159]Johnson Z, Kosco-Vilbois M H, Herren S, et al. Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system[J]. J Immunol,2004,173(9):5776-5785.
    [160]Moller A S, Bjerre A, Brusletto B, et al. Chemokine patterns in meningococcal disease[J]. J Infect Dis,2005,191(5):768-775.
    [161]Carrol E D, Thomson A P, Mobbs K J, et al. The role of RANTES in meningococcal disease[J]. J Infect Dis,2000,182(1):363-366.
    [162]Ellis M, Al-Ramadi B, Hedstrom U, et al. Significance of the CC chemokine RANTES in patients with haematological malignancy:results from a prospective observational study[J]. Br J Haematol,2005,128(4):482-489.
    [163]Cavaillon J M, Adib-Conquy M, Fitting C, et al. Cytokine cascade in sepsis[J]. Scand J Infect Dis,2003,35(9):535-544.
    [164]Krolak-Olejnik B, Beck B, Olejnik I. Umbilical serum concentrations of chemokines (RANTES and MGSA/GRO-alpha) in preterm and term neonates[J]. Pediatr Int,2006,48(6):586-590.
    [165]Demoule A, Divangahi M, Yahiaoui L, et al. Chemokine receptor and ligand upregulation in the diaphragm during endotoxemia and Pseudomonas lung infection[J]. Mediators Inflamm,2009,2009: 860565.
    [166]Engel A, Knoll S, Kern P, et al. Interleukin-8 serum levels at fever onset in patients with neutropenia predict early medical complications[J]. Infection,2005,33(5-6):380-382.
    [167]Persson L, Engervall P, Magnuson A, et al. Use of inflammatory markers for early detection of bacteraemia in patients with febrile neutropenia[J]. Scand J Infect Dis,2004,36(5):365-371.
    [168]Meduri G U, Headley S, Kohler G, et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time[J]. Chest,1995,107(4):1062-1073.
    [169]Damas P, Canivet J L, de Groote D, et al. Sepsis and serum cytokine concentrations[J]. Crit Care Med,1997,25(3):405-412.
    [170]Friedland J S, Porter J C, Daryanani S, et al. Plasma proinflammatory cytokine concentrations, Acute Physiology and Chronic Health Evaluation (APACHE) Ⅲ scores and survival in patients in an intensive care unit[J]. Crit Care Med,1996,24(11):1775-1781.
    [171]Nast-Kolb D, Waydhas C, Gippner-Steppert C, et al. Indicators of the posttraumatic inflammatory response correlate with organ failure in patients with multiple injuries[J]. J Trauma, 1997,42(3):446-454,454-455.
    [172]Hamano K, Gohra H, Noda H, et al. Increased serum interleukin-8:correlation with poor prognosis in patients with postoperative multiple organ failure[J]. World J Surg,1998,22(10): 1077-1081.
    [173]Engel A, Mack E, Kern P, et al. An analysis of interleukin-8, interleukin-6 and C-reactive protein serum concentrations to predict fever, gram-negative bacteremia and complicated infection in neutropenic cancer patients[J]. Infection,1998,26(4):213-221.
    [174]Rollins B J. Monocyte chemoattractant protein 1:a potential regulator of monocyte recruitment in inflammatory disease[J]. Mol Med Today,1996,2(5):198-204.
    [175]Deshmane S L, Kremlev S, Amini S, et al. Monocyte chemoattractant protein-1 (MCP-1):an overview[J]. J Interferon Cytokine Res,2009,29(6):313-326.
    [176]Melgarejo E, Medina M A, Sanchez-Jimenez F, et al. Monocyte chemoattractant protein-1:a key mediator in inflammatory processes[J]. Int J Biochem Cell Biol,2009,41(5):998-1001.
    [177]Ramnath R D, Ng S W, Guglielmotti A, et al. Role of MCP-1 in endotoxemia and sepsis[J]. Int Immunopharmacol,2008,8(6):810-818.
    [178]Bossink A W, Paemen L, Jansen P M, et al. Plasma levels of the chemokines monocyte chemotactic proteins-1 and -2 are elevated in human sepsis[J]. Blood,1995,86(10):3841-3847.
    [179]E1-Maghraby S M, Moneer M M, Ismail M M, et al. The diagnostic value of C-reactive protein, interleukin-8, and monocyte chemotactic protein in risk stratification of febrile neutropenic children with hematologic malignancies[J]. J Pediatr Hematol Oncol,2007,29(3):131-136.
    [180]Bozza F A, Salluh J I, Japiassu A M, et al. Cytokine profiles as markers of disease severity in sepsis:a multiplex analysis[J]. Crit Care,2007,11(2):R49.
    [181]Sonnier D I, Bailey S R, Schuster R M, et al. Proinflammatory chemokines in the intestinal lumen contribute to intestinal dysfunction during endotoxemia[J]. Shock,2012,37(1):63-69.
    [182]Labbe K, Danialou G, Gvozdic D, et al. Inhibition of monocyte chemoattractant protein-1 prevents diaphragmatic inflammation and maintains contractile function during endotoxemia[J]. Crit Care,2010,14(5):R187.
    [183]Ferrer M, Luquin E, Sanchez-Ibarrola A, et al. Secretion of cytokines, histamine and leukotrienes in chronic urticaria[J]. Int Arch Allergy Immunol,2002,129(3):254-260.
    [184]Lee Y M, Cheng P Y, Chim L S, et al. Baicalein, an active component of Scutellaria baicalensis Georgi, improves cardiac contractile function in endotoxaemic rats via induction of heme oxygenase-1 and suppression of inflammatory responses[J]. J Ethnopharmacol,2011,135(1): 179-185.
    [185]Bhatia M, Ramnath R D, Chevali L, et al. Treatment with bindarit, a blocker of MCP-1 synthesis, protects mice against acute pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol,2005, 288(6):G1259-G1265.
    [186]Alexandraki I, Palacio C. Gram-negative versus Gram-positive bacteremia:what is more alarmin(g)?[J]. Crit Care,2010,14(3):161.
    [187]van der Poll T, van Deventer S J. Cytokines and anticytokines in the pathogenesis of sepsis[J]. Infect Dis Clin North Am,1999,13(2):413-426.
    [188]Ozdemir A, Oygur N, Gultekin M, et al. Neonatal tumor necrosis factor, interleukin-1 alpha, interleukin-1 beta, and interleukin-6 response to infection[J]. Am J Perinatol,1994,11(4):282-285.
    [189]Oguz S S, Sipahi E, Dilmen U. C-reactive protein and interleukin-6 responses for differentiating fungal and bacterial aetiology in late-onset neonatal sepsis[J]. Mycoses,2011,54(3):212-216.
    [190]Zhou M, Wu R, Dong W, et al. Accelerated apoptosis contributes to aging-related hyperinflammation in endotoxemia[J]. Int J Mol Med,2010,25(6):929-935.
    [191]Ikuta S, Ono S, Kinoshita M, et al. Interleukin-18 concentration in the peritoneal fluid correlates with the severity of peritonitis[J]. Am J Surg,2003,185(6):550-555.
    [192]Hiraki S, Ono S, Kinoshita M, et al. Interleukin-18 restores immune suppression in patients with nonseptic surgery, but not with sepsis[J]. Am J Surg,2007,193(6):676-680.
    [193]Oberholzer A, Oberholzer C, Moldawer L L. Cytokine signaling--regulation of the immune response in normal and critically ill states[J]. Crit Care Med,2000,28(4 Suppl):N3-N12.
    [194]Lauw F N, Pajkrt D, Hack C E, et al. Proinflammatory effects of IL-10 during human endotoxemia[J]. J Immunol,2000,165(5):2783-2789.
    [195]de Kruif M D, Lemaire L C, Giebelen I A, et al. Prednisolone dose-dependently influences inflammation and coagulation during human endotoxemia[J]. J Immunol,2007,178(3):1845-1851.
    [196]van der Poll T, Barber A E, Coyle S M, et al. Hypercortisolemia increases plasma interleukin-10 concentrations during human endotoxemia--a clinical research center study[J]. J Clin Endocrinol Metab,1996,81(10):3604-3606.
    [1]Angus D C, Linde-Zwirble W T, Lidicker J, et al. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care[J]. Crit Care Med,2001,29(7): 1303-1310.
    [2]Brun-Buisson C, Meshaka P, Pinton P, et al. EPISEPSIS:a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units[J]. Intensive Care Med,2004,30(4):580-588.
    [3]Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock[J]. N Engl J Med,2001,345(19):1368-1377.
    [4]Dellinger R P, Levy M M, Carlet J M, et al. Surviving Sepsis Campaign:international guidelines for management of severe sepsis and septic shock:2008[J]. Crit Care Med,2008,36(1):296-327.
    [5]Hyattsville M. National Center for Health Statistics. Health, United States,2010:With Special Feature on Death and Dying[J].2011.
    [6]Van Der Vliet H J, Nishi N, Koezuka Y, et al. Effects of alpha-galactosylceramide (KRN7000), interleukin-12 and interleukin-7 on phenotype and cytokine profile of human Valpha24+ Vbetal 1+ T cells[J]. Immunology,1999,98(4):557-563.
    [7]Vivier E, Anfossi N. Inhibitory NK-cell receptors on T cells:witness of the past, actors of the future[J]. Nat Rev Immunol,2004,4(3):190-198.
    [8]Bendelac A, Savage P B, Teyton L. The biology of NKT cells[J]. Annu Rev Immunol,2007,25: 297-336.
    [9]Godfrey D I, Hammond K J, Poulton L D, et al. NKT cells:facts, functions and fallacies[J]. Immunol Today,2000,21(11):573-583.
    [10]Godfrey D I, Macdonald H R, Kronenberg M, et al. NKT cells:what's in a name?[J]. Nat Rev Immunol,2004,4(3):231-237.
    [11]Berzins S P, Smyth M J, Baxter A G. Presumed guilty:natural killer T cell defects and human disease[J]. Nat Rev Immunol,2011,11(2):131-142.
    [12]Godfrey D I, Stankovic S, Baxter A G. Raising the NKT cell family[J]. Nat Immunol,2010, 11(3):197-206.
    [13]Beckman E M, Porcelli S A, Morita C T, et al. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells[J]. Nature,1994,372(6507):691-694.
    [14]Pereira P, Boucontet L. Innate NKTgammadelta and NKTalphabeta cells exert similar functions and compete for a thymic niche[J]. Eur J Immunol,2012,42(5):1272-1281.
    [15]Speak A O, Salio M, Neville D C, et al. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals[J]. Proc Natl Acad Sci U S A, 2007,104(14):5971-5976.
    [16]Porubsky S, Speak A O, Luckow B, et al. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency[J]. Proc Natl Acad Sci U S A,2007,104(14):5977-5982.
    [17]Matsuda J L, Naidenko O V, Gapin L, et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers[J]. J Exp Med,2000,192(5):741-754.
    [18]Tsukahara A, Seki S, Iiai T, et al. Mouse liver T cells:their change with aging and in comparison with peripheral T cells[J]. Hepatology,1997,26(2):301-309.
    [19]Kronenberg M. Toward an understanding of NKT cell biology:progress and paradoxes[J]. Annu Rev Immunol,2005,23:877-900.
    [20]Smyth M J, Thia K Y, Street S E, et al. Differential tumor surveillance by natural killer (NK) and NKT cells[J]. J Exp Med,2000,191(4):661-668.
    [21]Gumperz J E, Miyake S, Yamamura T, et al. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining[J]. J Exp Med,2002,195(5):625-636.
    [22]Coquet J M, Chakravarti S, Kyparissoudis K, et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population[J]. Proc Natl Acad Sci U S A,2008,105(32):11287-11292.
    [23]Lee P T, Benlagha K, Teyton L, et al. Distinct functional lineages of human V(alpha)24 natural killer T cells[J]. J Exp Med,2002,195(5):637-641.
    [24]Chan A C, Serwecinska L, Cochrane A, et al. Immune characterization of an individual with an exceptionally high natural killer T cell frequency and her immediate family[J]. Clin Exp Immunol, 2009,156(2):238-245.
    [25]Brigl M, Brenner M B. CD1:antigen presentation and T cell function[J]. Annu Rev Immunol, 2004,22:817-890.
    [26]Wu L, Van Kaer L. Natural killer T cells and autoimmune disease[J]. Curr Mol Med,2009,9(1): 4-14.
    [27]Prlic M, Hohl T M. iNKTs foil fungi [J]. Cell Host Microbe,2011,10(5):421-422.
    [28]Nieuwenhuis E E, Matsumoto T, Exley M, et al. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung[J]. Nat Med,2002,8(6):588-593.
    [29]Skold M, Behar S M. Role of CD1d-restricted NKT cells in microbial immunity[J]. Infect Immun,2003,71(10):5447-5455.
    [30]Godfrey D I, Kronenberg M. Going both ways:immune regulation via CD1d-dependent NKT cells[J]. J Clin Invest,2004,114(10):1379-1388.
    [31]Sonoda K H, Faunce D E, Taniguchi M, et al. NK T cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance[J]. J Immunol,2001,166(1): 42-50.
    [32]Sutherland J S, Jeffries D J, Donkor S, et al. High granulocyte/lymphocyte ratio and paucity of NKT cells defines TB disease in a TB-endemic setting[J]. Tuberculosis (Edinb),2009,89(6): 398-404.
    [33]Cohen N R, Tatituri R V, Rivera A, et al. Innate recognition of cell wall beta-glucans drives invariant natural killer T cell responses against fungi[J]. Cell Host Microbe,2011,10(5):437-450.
    [34]Matsuda J L, Gapin L, Baron JL, et al. Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo[J]. Proc Natl Acad Sci U S A,2003,100(14):8395-8400.
    [35]Faunce D E, Gamelli R L, Choudhry M A, et al. A role for CD1d-restricted NKT cells in injury-associated T cell suppression[J]. J Leukoc Biol,2003,73(6):747-755.
    [36]Lyons A, Kelly J L, Rodrick M L, et al. Major injury induces increased production of interleukin-10 by cells of the immune system with a negative impact on resistance to infection[J]. Ann Surg,1997,226(4):450-458,458-460.
    [37]Hotchkiss R S, Coopersmith C M, Karl I E. Prevention of lymphocyte apoptosis--a potential treatment of sepsis?[J]. Clin Infect Dis,2005,41 Suppl 7:S465-S469.
    [38]Chung C S, Watkins L, Funches A, et al. Deficiency of gammadelta T lymphocytes contributes to mortality and immunosuppression in sepsis[J]. Am J Physiol Regul Integr Comp Physiol,2006, 291(5):R1338-R1343.
    [39]Taveira D S A, Kaulbach H C, Chuidian F S, et al. Brief report:shock and multiple-organ dysfunction after self-administration of Salmonella endotoxin[J]. N Engl J Med,1993,328(20): 1457-1460.
    [40]Suffredini A F, Fromm R E, Parker M M, et al. The cardiovascular response of normal humans to the administration of endotoxin[J]. N Engl J Med,1989,321(5):280-287.
    [41]Wysocka M, Kubin M, Vieira L Q, et al. Interleukin-12 is required for interferon-gamma production and lethality in lipopolysaccharide-induced shock in mice[J]. Eur J Immunol,1995,25(3): 672-676.
    [42]Ito H, Koide N, Hassan F, et al. Lethal endotoxic shock using alpha-galactosylceramide sensitization as a new experimental model of septic shock[J]. Lab Invest,2006,86(3):254-261.
    [43]Dieli F, Sireci G, Russo D, et al. Resistance of natural killer T cell-deficient mice to systemic Shwartzman reaction[J]. J Exp Med,2000,192(11):1645-1652.
    [44]Sireci G, La Manna M P, Di Liberto D, et al. Prophylaxis of lipopolysaccharide-induced shock by alpha-galactosylceramide[J]. J Leukoc Biol,2008,84(2):550-560.
    [45]Sireci G, La Manna M P, Di Sano C, et al. Pivotal advance:alpha-galactosylceramide induces protection against lipopolysaccharide-induced shock[J]. J Leukoc Biol,2007,81(3):607-622.
    [46]Yu K O, Porcelli S A. The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy[J]. Immunol Lett,2005,100(1):42-55.
    [47]Kawakami K, Yamamoto N, Kinjo Y, et al. Critical role of Valphal 4+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection[J]. Eur J Immunol,2003, 33(12):3322-3330.
    [48]Tsujimoto H, Ono S, Matsumoto A, et al. A critical role of CpG motifs in a murine peritonitis model by their binding to highly expressed toll-like receptor-9 on liver NKT cells[J]. J Hepatol,2006, 45(6):836-843.
    [49]Sherwood E R, Lin C Y, Tao W, et al. Beta 2 microglobulin knockout mice are resistant to lethal intraabdominal sepsis[J]. Am J Respir Crit Care Med,2003,167(12):1641-1649.
    [50]Rhee R J, Carlton S, Lomas J L, et al. Inhibition of CD1d activation suppresses septic mortality: a role for NK-T cells in septic immune dysfunction[J]. J Surg Res,2003,115(1):74-81.
    [51]Motohashi S, Okamoto Y, Yoshino I, et al. Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer[J]. Clin Immunol,2011,140(2): 167-176.
    [52]Lombardi V, Stock P, Singh A K, et al. A CD1d-dependent antagonist inhibits the activation of invariant NKT cells and prevents development of allergen-induced airway hyperreactivity[J]. J Immunol,2010,184(4):2107-2115.
    [53]Kunii N, Horiguchi S, Motohashi S, et al. Combination therapy of in vitro-expanded natural killer T cells and alpha-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma[J]. Cancer Sci,2009,100(6):1092-1098.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700