用户名: 密码: 验证码:
体外冲击波治疗上尿路结石的疗效预测:人工神经网络和Logistic回归模型的建立与比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     泌尿系结石是泌尿外科的常见病与多发病,尤其在我国南方的部分省份,发病率较高。随着人们生活水平的提高,近年来上尿路结石的发病率明显增高。自上个世纪80年代问世以来,体外冲击波碎石(Extracorporeal Shockwave Lithotripsy,ESWL)经过三十年的技术改进和临床经验积累,使得很大一部分的上尿路结石患者免除开刀之苦,其治疗上尿路结石具有安全、有效、痛苦小、恢复快和费用不高的特点。然而,对于较大上尿路结石的治疗,可能需要多次碎石,一方面,可能增加肾脏不可逆损伤的风险;另一方面,排石过程中经常会伴随肾绞痛、发热、血尿、石街等并发症,从而不得不转为其它外科方法治疗,影响ESWL的疗效。临床实践证明,并不是所有的上尿路结石都适合ESWL治疗,有些结石ESWL无法击碎,有些结石ESWL击碎后病人无法自行排出。伴随ESWL不成功而带来的问题是,病人可能会为失败的ESWL承担经济、时间及痛苦就医经历的后果,从而使得ESWL的优势不能最大化。如果在体外冲击波碎石前,能对其治疗效果准确预测,一方面可以制定相对正确的治疗方案,避免减少病人不必要的痛苦和经济损失、降低医疗服务成本;另一方面也有利于在治疗前向病人充分告知,有利于医患的沟通和理解。
     尽管对于ESWL治疗上尿路结石疗效预测的研究不少,然而,因受限于研究条件,存在以下不足:1)个别病例数较少,仅局限在方法学上的探索,并未广泛应用在临床实践中;2)受研究条件等限制,纳入的疗效影响因素不全面,因此预测的准确性还有待提高;3)部分研究对病例没有分层,将肾结石与输尿管结石合并在一起研究,临床应用意义不大。本研究分别运用logistic回归分析和人工神经网络建立ESWL治疗肾结石和输尿管结石的疗效预测模型,确定ESWL治疗上尿路结石疗效的重要影响因素和预测变量重要性评价,并对人工神经网络和Logistic回归分析方法、预测效果和优缺点进行比较,最后,确定预测效果较好的模型的工作概率分界值,使研究成果直接转化为临床应用。
     方法
     对325例肾结石患者和1,065例输尿管结石ESWL治疗前的临床资料如性别、尿路刺激症、治疗前血尿、肾绞痛、结石位置、结石患侧、年龄、身高、体重、病程时间、结石长径、结石宽径等影响因素和ESWL治疗结局进行回顾性分析。
     首先,将ESWL治疗的肾结石和输尿管结石的病例资料分别进行无偏随机化分组,对于Logistic回归分析和建模,约70%的病例分配至训练样本,约30%病例分配至坚持样本;而对于人工神经网络,则是约56%的病例分配至训练样本,约14%的病例分配至检验样本,约30%的病例分配至坚持样本。
     采用χ2检验对分类变量如性别、尿路刺激症、治疗前血尿、肾绞痛、结石位置、结石患侧等进行每个预测变量与应变量(ESWL治疗结局)关系的显著性检验。通过拟合单变量logistic回归取得连续预测变量(年龄、体重指数、病程时间、结石长径与短径的乘积)的显著性检验,初步找出对应变量(ESWL治疗结局)有影响的因素,再将上述预测变量显著性检验分析中P<0.25者,与其它重要预测变量一起,纳入多元模型的候选预测变量。然后采用logistic逐步回归分析(前向法:LR法)多因素分析,建立logistic回归预测模型,并将训练样本组和坚持样本组回代至此模型,得到ESWL治疗结局预测概率,绘制ROC曲线,计算曲线下面积(AUC),并计算敏感度,特异度和总准确度,评价预测模型的准确性。
     建立3层前向型神经网络模型,隐含层设置为1层,输入层的参数为所有10项可能有临床意义的预测指标,预测因子设置依次为性别、尿路刺激症、治疗前血尿、肾绞痛、结石位置、结石患侧,预测协变量依次为年龄、体重指数、病程时间、结石长径与结石宽径的乘积(文中简称“结石大小”),标准化协变量。其中,性别编码为“男”=1、“女”=2;尿路刺激症、治疗前血尿、肾绞痛编码为‘有”=1、“无”=2;结石位置编码为“肾上盏”=1、“中盏”=2、“下盏”=3、“肾盂”=4、“混合”=5或“输尿管上段”=1、“中段”=2,“下段”=3。输出层为ESWL治疗结局,“成功”编码为1,“失败”编码为0。以前述“分区变量”分配病例样本,选择“自动体系结构选择”,隐含层中最小单位数为1,最大单位数为50,训练类型为“批处理”(肾结石组)或“袖珍批处理”(输尿管结石组),优化算法选用“调整的共轭梯度”(肾结石组)或“梯度下降”(输尿管结石组),间隔中心点为0,间隔偏移量为±0.5。运行神经网络后,获得ESWL治疗结局预测的拟概率,以0.50为预测分界值,计算预测的总准确率、灵敏度和特异度,绘制ROC(Receiver Operating Characteristic curve, ROC)曲线,计算曲线下面积(Area Under Curve,AUC),评价人工神经网络预测的准确性。
     最后,从建模原理与方法、预测效果、优缺点三方面比较logistic回归预测模型和人工神经网络。
     统计学软件包
     应用IBM(?)公司出品的统计软件包SPSS20.0进行χ2检验,单变量Logistic回归和多元logistic分析和建立模型,并以其附带的神经网络模块中的多层感知器建立人工神经网络。采用Hosmer-Lemeshow进行logistic回归拟合优度检验,并以χ2检验进行模型的显著性检验。P值精确到小数点后3位,以P<0.05为有统计学差异。
     用统计软件包Medcal(?)进行ROC曲线的绘制和ROC曲线下面积的比较,进行约登指数的计算和预测概率分界值的筛选。
     结果
     1) ESWL治疗肾结石组
     共325例肾结石,最长随访3个月,碎石成功250例,转为其它方法治疗75例,总成功率76.9%。对全部肾结石患者性别、结石患侧、结石位置、尿路刺激症状、血尿或肾绞痛进行单因素分析,我们发现结石患侧、结石位置、尿路刺激症状、血尿对ESWL治疗结局有显著性影响。对本组患者年龄、体重指数、病程时间、结石大小进行单因素logistic回归拟合,结果排除体重指数,其余预测因素均纳入候选变量。
     进一步用logistic逐步回归进行多因素分析,发现病程时间、血尿和结石大小,是ESWL治疗肾结石疗效的独立影响因素(P<0.05),其AOR(Adjusted OddsRatio)值(95%可信区间)依次是0.977(0.964-0.989)、12.388(3.44-44.565)、0.192(0.113-0.323)。
     建立以训练样本为基础的logistsic预测模型。对预测模型进行χ2检验验证其显著性,χ2值为108.938,P<0.001,预测变量对应变量(ESWL碎石结局)有显著的解释能力。通过分类交互表计算Hosmer-Lemeshow拟合优度检验统计量,得到χ2=6.927,df=8,P=0.545,无统计学显著性差异,因此认为模型拟合观测数据良好。通过预测-观察分类表,对于模型预测的准确性进行评价。将训练样本和坚持样本的观察数据分别回代到模型,得到模型对训练样本和坚持样本的预测概率值,以0.5作为预测结果的分界值,结果显示模型对训练样本的灵敏度为94.4%,特异度63.3%,总体准确率为86.0%,而对坚持样本的灵敏度100%,特异度20.0%,总体准确率为88.4%。
     人工神经网络自动剔除建模过程中典型的“冗余”单元后,输入层共建立19个单元。自动体系结构选择了建立一个隐含层,隐含层内共有6个单元,激活函数为hyperbolic tangent,输出层共有2个单元,激活函数为softmax。将预测变量重要性指标除以最大指标值,得到标准化的预测变量重要性排序,发现列于前五位的是:结石大小、病程时间、血尿、结石位置、体重指数。以0.5作为预测拟概率分界值,运用人工神经网络对全部样本进行预测,结果显示训练样本的敏感度、特异度和总体准确率为98.4%、72.5%和90.8%;检验样本的敏感度、特异度和总体准确率为97.4%、55.6%和89.6%;坚持样本的敏感度、特异度和总体准确率为93.3%、46.7%和86.5%。
     Logistic回归模型的AUC为0.625,95%可信区间为0.525-0.718;人工神经网络AUC为0.856,95%可信区间为0.774-0.917,与AUC为0.5进行显著性检验,前者P值为0.122,后者为P<0.001。两者AUC差异的非参数显著性检验,z值为3.988,P=0.0001,两者AUC存在统计学上显著性差异,意味着logistic回归模型的预测效果差,ANN的预测效果优于logistic回归模型。
     计算约登指数并权衡敏感度与特异度后,发现概率分界值为0.595时,肾结石ESWL疗效预测的ANN模型的敏感度和特异度达到较为理想状态,分别为92%和60%。
     2) ESWL治疗输尿管结石组
     共纳入1065例输尿管结石,最长随访3个月,碎石成功874例,转为其它方法治疗191例,总成功率82.1%。用χ2检验对本组患者性别、结石患侧、结石位置、尿路刺激症状、血尿或肾绞痛进行单因素分析,按着P<0.25的预测变量筛选标准,我们发现除治疗前是否出现血尿外,其余预测因素对ESWL治疗结局有显著性影响。对本组患者年龄、体重指数、病程时间、结石大小进行单因素logistic回归逐一拟合,均纳入候选预测变量。
     用logistic回归对进行多因素分析,结果显示治疗前肾绞痛、结石位置(输尿管上段、输尿管中段)结石大小为ESWL治疗输尿管结石疗效的独立影响因素,其AOR值(95%可信区间)分别是1.508(0.999-2.277)、0.651(0.391-1.086)、0.374(0.191-0.731)、0.246(0.152-0.396)。Logistic回归预测模型的χ2值为54.460,P值<0.001,提示纳入模型的预测变量对治疗结局有显著的解释能力。预测模型的拟合优度通过Hosmer-Lemeshow检验,显示模型拟合程度尚好(χ2=8.406,df=8,P=0.395)。将训练样本和坚持样本分别回代至预测模型,得到对训练样本和坚持样本进行预测概率值,以0.5作为预测概率分界值,结果显示训练样本灵敏度98.1%,特异度4.2%,总体准确率为82.9%。坚持样本灵敏度99.3%,特异度11.3%,总体准确率为84.7%。
     人工神经网络自动剔除建模过程中典型的“冗余”单元后,输入层共建立17个单元。自动体系结构选择了建立一个隐含层,隐含层内共有5个单元,激活函数为hyperbolic tangent,输出层共有2个单元,激活函数为softmax。将预测变量重要性指标除以最大指标值,得到标准化的预测变量重要性排序,结石大小、结石位置、病程时间、年龄和体重指数列于前五位。
     应用人工神经网络对全部样本进行预测,以0.5作为预测拟概率分界值,结果显示训练样本的敏感度、特异度和总体准确率分别为98.8%,12.7%和84.0%;检验样本的敏感度、特异度和总体准确率分别为99.2%,16.7%和89.3%;坚持样本的敏感度、特异度和总体准确率分别为97.8%,9.4%和83.2%。
     Logistic回归模型的AUC为0.729,人工神经网络的AUC为0.751,与AUC为0.5进行显著性检验,前者P值<0.001,95%可信区间为0.676-0.777,后者为P值<0.001,95%可信区间为0.700-0.797,借助统计软件包MedCalc(?)对AUC进行非参数显著性检验,计算z统计量为0.750,对应的P值为0.4534,即两种预测模型的AUC面积在统计学上无显著性差异,换言之,输尿管结石ESWL疗效的logistic回归模型和ANN模型的预测效果相差不大。权衡敏感度与特异度后,确定概率分界值为0.769时,ESWL治疗肾结石疗效预测的ANN模型的敏感度和特异度达到较为理想状态,分别为81%和60%。
     结论
     本研究发现,患者病程时间、结石大小、治疗前血尿是影响肾结石ESWL疗效的独立影响因素,而影响输尿管结石的ESWL疗效的重要因素为性别、肾绞痛、结石位置和结石大小。和Logistic逐步回归法建立的预测模型相比较,人工神经网络具有自学习、并行计算的功能,虽对预测变量的解释性不如logistic回归模型,但预测效果较好,仍可做为预测ESWL成功率的有利工具,有助于筛选更加适用ESWL治疗的患者,有利于患者充分知情,与患者共同制定治疗方案,减轻患者医疗风险和经济负担。
Background and Objection:
     Urinary stone is a common disorder of urology, and the prevalence of urolithiasis is higher in some provinces of southern China. Following the improvement of nutritional condition, the incidence of upper urinary tract stone became significantly higher in the recent decade. Since the advent in the early80s of the last century, extracorporeal shock wave lithotripsy (ESWL)cured numerous patients with upper urinary tract stones, who had to undergo surgery before. ESWL has been proved to be safe, effective, less painful, rapid to recovery and inexpensivedue to its minimally invasive character, and low morbidity. However, for larger upper urinary tract stones, ESWL may need to repeat several times or combine others methods of treatment. But repetition of ESWL may lead to irreversible damage to kidney. Furthermore, the process of stone fragments removing is often accompanied by some complications such as renal colic, fever, hematuria, steinstrasse, which may also result in conversion to surgery. These morbidities may compromise the clinical outcome of ESWL-treated calculi, thus not all upper urinary tract calculi are suitable for ESWL.The patient would pay for the consequences of unsuccessful ESWL with a cost of money, time, and an experience of distressful medical treatment.
     If the outcome of ESWL can be predicted, on one hand, the clinicians could develop relatively correct strategy to avoid the patient's unnecessary cost, to reduce the cost of medical services; On the other hand, the prediction could help patients be well informed and help doctors share the decision-making with patients.
     In this study, logistic regression (LR) analysis and artificial neural network (ANN) were used to establish the predictive model of ESWL for renal and ureteral calculi, respectively.Under logistic regression models, the important impact factors influencing outcome of ESWL for upper urinary tract stones were determined. By ANN, the importance of predictor variables was evaluated. A comparative study afterwards was done between LR model and ANN to compare the accuracy of prediction and pros&cons between these two models of prediction. Eventually the cut-off values of optimal probabilities were identified to facilitate the clinical application.
     Methods and materials
     Pre-ESWL clinical data of325cases of kidney stones treated with ESWL and those of1065cases of ureteral calculi were included retrospectively. The information of gender, urinary irritation symptom, hematuria, renal colic, stone location, stone side, age, height, weight, history of stone, stone length, stone width was collected.
     All cases of kidney stones and ureteral stones were grouped separately with a randomized method. For LR analysis and modeling, about70%of cases were assigned to training-sample group, and approximate30percent of cases were assigned to holdout-sample group. For ANN, about56%of the cases were assigned to training-sample group, and about14%of the cases assigned to test-sample group, about30%of cases were assigned to the holdout-sample group.
     χ2test was performed for the significance test of relationship between the ESWL outcome and every categorical variable (gender, urinary irritation symptom, hematuria, renal colic, stone location, stone side).The significant test of continuous predictive variables (age, body mass index, history of stone, the product of stone length&width) were done by univariate logistic regression to initially identify the corresponding influential factors of ESWL outcome.
     Then all the predictive variables which have P<0.25, together with other important predictive variables were included as candidate predictive variables for multivariate analysis. Thereafter logistic stepwise regression analysis (forward:LR) was performed. The training sample and the holdout sample were respectively substituted to the LR model, and the respective predictive probabilities for ESWL outcome were obtained. Then the area under curve (AUC), sensitivity, specificity and were calculated to evaluate the accuracy of prediction after drawing receiver operating characteristic curve (ROC).
     Three-layer forward neural network model was constructed. Hidden layer was set to1layer; the parameters of the input layer comprise all10predictive variables. Predictive factors were set to be gender, urinary irritation symptom, hematuria, renal colic, stone location, and stone side. Predictive covariates were age, BMI, history of stone, stone size. Value of gender was coded by male=1, female=2. And the value of urinary irritation symptom, hematuria, renal colic were set to yes=1, no=2. In the cases of kidney stone, location of stone in the kidney was set to the upper calyces=1, the middle calyces=2, the lower calyces=3, the pelvis=4, combined location=5. In the cases of ureter stone, it was set to upper ureter=1, middle ureter=2, lower ureter=3.
     The output layer is ESWL-treated calculi outcome. Successful and failed outcome is set to1and0, respectively. All cases were assigned randomly basing on partitioning variable aforementioned."Automatic architecture selection" was chosen, implying that the minimum number of units in hidden layer is1, and the maximum number is50. The type of training was chosen as "batch"(for renal calculi sample) or "mini-batch"(for ureteral calculi sample),"optimization algorithm selection"(for renal calculi sample) and "scaled conjugate gradient"(for ureteral calculi sample). Initial Lambda value is0.0000005, and the initial Sigma value of is0.00005, the interval center is0, the interval offset is±0.5.
     The predictive pseudo probabilities of ESWL outcome were obtained.0.50was set as the cut-off value of predictive pseudo probabilities, and the area under curve (AUC), sensitivity, and specificity were calculated to evaluate the accuracy of prediction after drawing receiver operating characteristic curve (ROC). The efficacy together with advantages&disadvantages of LR predictive model and ANN were then evaluated and compared.
     The statistical package of SPSS20.0published by IBM(?) were used statistically, by which χ2test, univariate logistic regression, multivariate logistic analysis and modeling were performed. Hosmer-Lemeshow goodness of fit test for LR model and the χ2test are used for significance test of LR model. P value is accurate to three decimal. P<0.05is for significant difference. The statistical package of Medcalc(?) was used for drawing of ROC curve and the comparison of AUC and for calculation of Youden index, then the cut-offs value of optimal predictive probabilities were identified.
     Results:
     A. Prediction of ESWL outcome for kidney stones cases
     Among a total of325cases of kidney stones,250cases (76.9%) were free of stones at3months.Post-ESWL auxiliary treatment was required in75cases who failed to respond to the ESWL treatment. The longest follow-up attained three months.
     The success rate of ESWL was significantly affected by stones side, stone location, urinary irritation symptom, and hematuria.Additionally, after further LR multivariate analysis to the training-sample, history of stone, hematuria and the product of stone length&width were found to be3independent impact factors of the outcome of ESWL treatment of kidney stones (P<0.05) with AOR (Adjusted Odds Ratio)(95%confidence interval) being0.977(0.964-0.989),12.388(3.443-44.565),0.192(0.113-0.323), respectively.
     χ2value of LR prediction model is108.938(P<0.001), which means the predictive variables have significant explanatory power for the dependent variable (ESWL outcome). The result of Hosmer-Lemeshow goodness of fit test indicated that the prediction model could represent the data well (χ2=6.927, df=8, P=0.545).
     To evaluate the accuracy of prediction of LR model, the prediction-observation cross classification table was employed. The cut-off value of probabilitywas set at0.5. The results showed that the training sample's sensitivity, specificity, overall accuracy rate were94.4%63.3%86.0%, respectively. The sensitivity, specificity, overall accuracy rate of holdout samples were100%,20.0%,88.4%, respectively.
     The ANN automatically removed the typical modeling process "redundant" unit, and established an input layer with of19units, a hidden layer of6units and an output layer of2units. The activation function of input was set as "hyperbolic tangent", The activation function of output was set as "softmax". The order of importance of predictive variables showed that stone size, history of stone, hematuria, stone location were listed on the top five. At0.5of cutoff value of probability, the prediction of ANN showed that the sensitivity, specificity, overall accuracy rate of the training sample were98.4%,72.5%and90.8%,respectively; Those of the testing sample were97.4%,55.6%and89.6%. Those of holdout sample were93.3%,46.7%and86.5%.
     The AUC of the LR model is0.625(95%confidence interval:0.525-0.718), whereas ANN model is0.856(95%confidence interval:0.774-0.917). Comparing with AUC=0.5, the former's P value is0.122, and the latter's P value0.001. The medical statistics Packages Medcalc was employed for testing the difference of two AUCs, the z value is3.988, P=0.0001, which means there exist statistically significant differences between the AUCs of two models. That is to say, the prediction of ANN model has higher ability than that of the LR model.
     The optimal cutoff value of probability of ANN was identified to0.595, with consideration of balancing the sensitivity and specificity. At this cutoff value, the sensitivity and specificity of ANN model were thought to be92%and60%, respectively.
     Prediction of ESWL outcome for ureter stones cases
     Among a total of1,065cases of ureter stones,874cases (82.1%) were free of stones at3months,191cases failed of ESWL. All failed cased were converted to other auxiliarytreatments. The longest follow-up duration reached3months. Gender, stone side, stone location, urinary irritation symptom, renal colic were found to have significant impacts on the outcome of ESWL. Univariate logistic regressions indicated age, BMI, history of stone, stone size were among the significant contributors to the success rate of ESWL.
     Further using LR multivariate analysis to training samples, renal colic, stone location (upper part of ureter and middle part of ureter), stone size were found to be4independent impact factors of outcome of ESWL treatment for ureter stones, with AOR (95%confidence interval) were1.508(0.999-2.277),0.651(0.391-1.086), 0.374(0.191-0.731),0.246(0.151-0.396), respectively.
     χ2test was applied to verify the significance of LR prediction model, χ2value was54.460(P<0.001), which means these predictive variables have significant explanatory power for the dependent variable (ESWL outcome). Hosmer-Lemeshow goodness of fit indicated that there was no statistically significant difference (χ2=8.406,df=8,P=0.395).
     To evaluate the accuracy of prediction of LR model, the prediction-observation cross classification table was employed. The cut-off value is set at0.5. The results showed that the training sample's sensitivity, specificity, overall accuracy rate were98.1%,4.2%,82.9%, respectively, meanwhile the sensitivity, specificity, overall accuracy rate of the holdout samples were99.3%,11.3%,84.7%, respectively.
     The ANN automatically removed the typical modeling process "redundant" unit, and established an input layer with of17units, a hidden layer of5units and an output layer of2units."Hyperbolic tangent" was selected as the activation function of input. The activation function of output was "softmax". The order of importance of predictive variables showed that stone size, stone location, history of stone time, age and BMI were listed on the top five. Atthe cutoff value of0.5, the prediction of ANN showed that the sensitivity, specificity, overall accuracy rate of the training sample were98.8%,12.7%,84.0%.respectively; Those of the testing sample were99.2%,16.7%,89.3%. Those of the holdout sample were97.8%,9.4%,83.2%.
     The AUC of the logistic regression model was0.729(95% confidence interval:0.676-0.777), whereas ANN model was0.751(95% confidence interval:0.700-0.797). Comparing with AUC=0.5, theirs P values were less than0.001. With the medical statistics Packages Medcalc(?) for non-parametric tests, the z value is0.750, P=0.4534, which means there is no statistically significant differences between the two AUC. That is to say, the prediction of ANN model may have the same predictive efficacy as that of the LR model.
     The cutoff value of probabilities of ANN was identified to0.7694, in consideration of balancing the sensitivity and specificity. The optimal sensitivity and specificity were thought to be81%and60%, respectively.
     Conclusion:
     This study found that history of stone.the product of stone length&width, hematuria are important impact factors for outcome of ESWL for kidney stones, whereas renal colic, stone location in ureter, and stone size have independent impacts on outcome of ESWL for ureter stones. Logistic stepwise regression prediction model and ANN were also constructed. In comparison with LR model, ANN with self-learning, parallel computing functions has a predictive ability. Although the meaning of predictive variables of ANN is hard to explain, it could still be used to predict ESWL efficacy as a powerful tool. ANN should contribute to the screening of patients more suitable for ESWL treatment. It may help fully share decision-making with patients, and reduce patients' care costs and economic burden.
引文
[1]顾方六.尿石症的流行病学和病因学.中华泌尿外科杂志.2003.24(10):717-719.
    [2]米华,邓耀良.中国尿石症的流行病学特征.中华泌尿外科杂志.2003.24(10):715-716.
    [3]吴阶平.吴阶平泌尿外科学.2004.第1版.济南.山东科学技术出版社.745.
    [4]Christian Bach NB. Shock Wave Lithotripsy for Renal and Ureteric Stones. European Urology supplements.2011.10(5):423-432.
    [5]Robinson SN, Crane VS, Jones DG, Cochran JS, Williams OB. Principles and application of extracorporeal shock wave lithotripsy. Am J Hosp Pharm.1987. 44(4):805-10.
    [6]张坤毅.碎石机的技术特点与进展和应用.中国医疗设备.2009.24(5):56-57.
    [7]杨东.碎石机的技术和进展.中国医疗器械杂志.2000.24(1):33-35.
    [8]王济川、郭志刚logistic回归模型-方法与应用.2003.北京.高等教育出版社.1-11.
    [9]Abdel-Khalek M, Sheir K, Elsobky E, Showkey S, Kenawy M. Prognostic factors for extracorporeal shock-wave lithotripsy of ureteric stones--a multivariate analysis study. Scand J Urol Nephrol.2003.37(5):413-8.
    [10]刘成山,邵志强,张鹏,郑少斌.影响上尿路结石体外冲击波碎石预后的因素.南方医科大学学报.2008.(11):2063-2065.
    [11]Abdel-Khalek M, Sheir KZ, Mokhtar AA, Eraky I, Kenawy M, Bazeed M. Prediction of success rate after extracorporeal shock-wave lithotripsy of renal stones--a multivariate analysis model. Scand J Urol Nephrol.2004.38(2): 161-7.
    [12]杨昆,史启铎,刘金玲,单琨,左杰,张殿举.输尿管结石体外冲击波碎石术疗效分析及预测模型的建立.山东医药.2009.(20):69-70.
    [13]Kanao K, Nakashima J, Nakagawa K, et al. Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy. J Urol. 2006.176(4 Pt 1):1453-6; discussion 1456-7.
    [14]张宏,陈启光,沈其君.病例对照研究中logistic回归参数估计的应用条件研究.中国卫生统计.2006.(03):206-208.
    [15]张宏,陈启光.前瞻研究中Logistic回归参数估计的应用条件.中国公共卫生.2004.(08):126-127.
    [16]韩家炜.数据挖掘:概念与技术.2006.机械工业出版社.8-10.
    [17]徐俊芳,周晓农.人工神经网络在传染病研究中的应用.中国寄生虫学与 寄生虫病杂志.2011.(01):49-54.
    [18]梁华金,陈海雯.基于决策树的选案分析模型设计.现代计算机(专业版).2002.(06):21-23.
    [19]张文彤.分类树中QUEST算法与多水平logistic模型的联合应用与比较.中国卫生统计.2004.(01):30-32+37.
    [20]张锦华,原思聪,张晓钟,郭海燕.基于人工神经网络响应面技术的多学科优化方法研究及应用.西安建筑科技大学学报(自然科学版).2011.(03):451-456.
    [21]周利锋,金丕焕.BP神经网络与logistic回归对比初探.中国卫生统计.1998.(01):3-6.
    [22]刘鑫,赵家刚,刘絮子.人工神经网络之BP模型算法实现.科技信息.2011.(30):285-286.
    [23]Cummings JM, Boullier JA, Izenberg SD, Kitchens DM, Kothandapani RV. Prediction of spontaneous ureteral calculous passage by an artificial neural network. J Urol.2000.164(2):326-8.
    [24]Dal Moro F, Abate A, Lanckriet GR, et al. A novel approach for accurate prediction of spontaneous passage of ureteral stones:support vector machines. Kidney Int.2006.69(1):157-60.
    [25]Poulakis V, Dahm P, Witzsch U, de Vries R, Remplik J, Becht E. Prediction of lower pole stone clearance after shock wave lithotripsy using an artificial neural network. J Urol.2003.169(4):1250-6.
    [26]Gomha MA, Sheir KZ, Showky S, Abdel-Khalek M, Mokhtar AA, Madbouly K. Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or a statistical model. J Urol.2004.172(1):175-9.
    [1]卢向虎Logistic曲线模型在经济预测中的应用——以重庆市城镇居民收入预测为例.重庆商学院学报.2002.(03):29-30+33.
    [2]王济川、郭志刚logistic回归模型-方法与应用.2003.北京.高等教育出版社.152.
    [3]徐俊芳,周晓农.人工神经网络在传染病研究中的应用.中国寄生虫学与寄生虫病杂志.2011.(01):49-54.
    [4]Wikipedia. Neural network. http://en.wikipedia.org/wiki/Neural_networks.
    [5]薛禾生.人工神经网络方法.中国医院统计.1999.(02):100-102.
    [6]朱妙章等.大学生理学.2002.第1版.北京.高等教育出版社.51-62.
    [7]Simon Haykin(著).神经网络原理.2004.北京.机械工业出版社.
    [8]李丽霞,范逢曦.BP神经网络与logistic回归的比较研究.中国卫生统计.2005.(03):138-140.
    [9]周利锋,金丕焕.BP神经网络与logistic回归对比初探.中国卫生统计.1998.(01):3-6.
    [10]IBM Corporation. IBM neural network 20,2011.
    [1]Delvecchio FC, Preminger GM. Management of residual stones. Urol Clin North Am.2000.27(2):347-54.
    [2]王济川、郭志刚logistic回归模型-方法与应用.2003.北京.高等教育出版社.152.
    [3]刘剑新,夏仁惠,傅吾等ESWL治疗肾结石排空率的预测.临床泌尿外科杂志.2008.23(7):525-528.
    [4]Elkoushy MA, Hassan JA, Morehouse DD, Anidjar M, Andonian S. Factors determining stone-free rate in shock wave lithotripsy using standard focus of Storz Modulith SLX-F2 lithotripter. Urology.2011.78(4):759-63.
    [5]杨昆,史启铎,刘金玲,单琨,左杰,张殿举.输尿管结石体外冲击波碎石术疗效分析及预测模型的建立.山东医药.2009.49(20):69-70.
    [6]肖耀军,邵志强,郑少斌,齐桓,刘成山.上尿路结石单次ESWL成功率预测模型的建立及应用效果评价.山东医药.2011.51(22):53-55.
    [7]Wang M, Shi Q, Wang X, Yang K, Yang R. Prediction of outcome of extracorporeal shock wave lithotripsy in the management of ureteric calculi. Urol Res.2011.39(1):51-7.
    [8]Augustin H. Prediction of stone-free rate after ESWL. Eur Urol.2007.52(2): 318-20.
    [9]Lalak NJ, Moussa SA, Smith G, Tolley DA. The Dornier Compact Delta lithotripter:the first 500 renal calculi. J Endourol.2002.16(1):3-7.
    [10]Sorensen CM. Chandhoke PS. Is lower pole caliceal anatomy predictive of extracorporeal shock wave lithotripsy success for primary lower pole kidney stones. J Urol.2002.168(6):2377-82; discussion 2382.
    [11]Ng CF, Wong A, Tolley D. Is extracorporeal shock wave lithotripsy the preferred treatment option for elderly patients with urinary stone? A multivariate analysis of the effect of patient age on treatment outcome. BJU Int. 2007.100(2):392-5.
    [12]Abdel-Khalek M, Sheir KZ, Mokhtar AA, Eraky I, Kenawy M, Bazeed M. Prediction of success rate after extracorporeal shock-wave lithotripsy of renal stones--a multivariate analysis model. Scand J Urol Nephrol.2004.38(2): 161-7.
    [13]Ackermann DK, Fuhrimann R, Pfluger D, Studer UE, Zingg EJ. Prognosis after extracorporeal shock wave lithotripsy of radiopaque renal calculi:a multivariate analysis. Eur Urol.1994.25(2):105-9.
    [14]Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol.1998. 159(3):673-5.
    [15]Deveci S, Coskun M, Tekin MI, Peskircioglu L, Tarhan NC, Ozkardes H. Spiral computed tomography:role in determination of chemical compositions of pure and mixed urinary stones--an in vitro study. Urology.2004.64(2):237-40.
    [16]Ryan PC, Lennon GM, McLean PA, Fitzpatrick JM. The effects of acute and chronic JJ stent placement on upper urinary tract motility and calculus transit. Br J Urol.1994.74(4):434-9.
    [1]Delvecchio FC, Preminger GM. Management of residual stones. Urol Clin North Am.2000.27(2):347-54.
    [2]王济川、郭志刚logistic回归模型-方法与应用.2003.北京.高等教育出版社.152.
    [3]Turk C KT, Petrik A SK, Straub M SC. Guidelines on urolithiasis:European Association of Urology Web site.
    [4]Preminger GM, Tiselius HG, Assimos DG, et al.2007 Guideline for the management of ureteral calculi. Eur Urol.2007.52(6):1610-31.
    [5]Seitz C. Medical Expulsive Therapy of Ureteral Calculi and Supportive Therapy After Extracorporeal Shock Wave Lithotripsy. European Urology Supplements.2011.9(12):807-813.
    [6]Christian Bach NB. Shock Wave Lithotripsy for Renal and Ureteric Stones. European Urology supplements.2011.10(5):423-432.
    [7]Gomha MA, Sheir KZ, Showky S, Abdel-Khalek M, Mokhtar AA, Madbouly K. Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or a statistical model. J Urol.2004.172(1):175-9.
    [8]el-Assmy A, el-Nahas AR, Youssef RF, el-Hefnawy AS, Sheir KZ. Does degree of hydronephrosis affect success of extracorporeal shock wave lithotripsy for distal ureteral stones. Urology.2007.69(3):431-5.
    [9]Wang M, Shi Q, Wang X, Yang K, Yang R. Prediction of outcome of extracorporeal shock wave lithotripsy in the management of ureteric calculi. Urol Res.2011.39(1):51-7.
    [10]刘剑新,夏仁惠,傅吾等ESWL治疗肾结石排空率的预测.临床泌尿外科杂志.2008.23(7):525-528.
    [11]Elkoushy MA, Hassan JA, Morehouse DD, Anidjar M, Andonian S. Factors determining stone-free rate in shock wave lithotripsy using standard focus of Storz Modulith SLX-F2 lithotripter. Urology.2011.78(4):759-63.
    [12]Augustin H. Prediction of stone-free rate after ESWL. Eur Urol.2007.52(2): 318-20.
    [13]杨昆,史启铎,刘金玲,单琨,左杰,张殿举.输尿管结石体外冲击波碎石术疗效分析及预测模型的建立.山东医药.2009.(20):69-70.
    [14]李东辉.体外冲击波碎石术治疗输尿管结石排空率的预测.中国民康医学.2009.21(22):2789,2930.
    [15]Kim HH, Lee JH, Park MS, Lee SE, Kim SW. In situ extracorporeal shockwave lithotripsy for ureteral calculi:investigation of factors influencing stone fragmentation and appropriate number of sessions for changing treatment modality. J Endourol.1996.10(6):501-5.
    [16]Abdel-Khalek M, Sheir K, Elsobky E, Showkey S, Kenawy M. Prognostic factors for extracorporeal shock-wave lithotripsy of ureteric stones--a multivariate analysis study. Scand J Urol Nephrol.2003.37(5):413-8.
    [17]Morgentaler A, Bridge SS, Dretler SP. Management of the impacted ureteral calculus. J Urol.1990.143(2):263-6.
    [18]何家扬.泌尿系梗阻性疾病.2005.上海.上海科学技术文献出版社.21-45.
    [19]于志坚,王刚.输尿管结石合并息肉64例临床分析.浙江临床医学.2004.6(9):777.
    [20]Gnanapragasam VJ, Ramsden PD, Murthy LS, Thomas DJ. Primary in situ extracorporeal shock wave lithotripsy in the management of ureteric calculi: results with a third-generation lithotripter. BJU Int.1999.84(7):770-4.
    [21]Delakas D, Karyotis I, Daskalopoulos G, Lianos E, Mavromanolakis E. Independent predictors of failure of shockwave lithotripsy for ureteral stones employing a second-generation lithotripter. J Endourol.2003.17(4):201-5.
    [22]Patel T, Kozakowski K, Hruby G, Gupta M. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol.2009.23(9):1383-5.
    [23]Gofrit ON, Pode D, Meretyk S, et al. Is the pediatric ureter as efficient as the adult ureter in transporting fragments following extracorporeal shock wave lithotripsy for renal calculi larger than 10 mm. J Urol.2001.166(5):1862-4.
    [24]Ikegaya H, Kato A, Kumano S, Tominaga T. Correlation between age and the efficacy of ESWL. BJU Int.2005.96(7):1145.
    [25]李新德,许力为,余大敏,张大宏,丁国庆.影响体外冲击波碎石术疗效的因素分析.中华泌尿外科杂志.2005.(05):321-323.
    [26]Ng CF, Wong A, Tolley D. Is extracorporeal shock wave lithotripsy the preferred treatment option for elderly patients with urinary stone? A multivariate analysis of the effect of patient age on treatment outcome. BJU Int. 2007.100(2):392-5.
    [27]Srivastava A, Ahlawat R, Kumar A, Kapoor R. Bhandari M. Management of impacted upper ureteric calculi:results of lithotripsy and percutaneous litholapaxy. Br J Urol.1992.70(3):252-7.
    [28]Turna B, Akbay K, Ekren F, et al. Comparative study of extracorporeal shock wave lithotripsy outcomes for proximal and distal ureteric stones. Int Urol Nephrol.2008.40(1):23-9.
    [29]Ackermann DK, Fuhrimann R, Pfluger D. Studer UE, Zingg EJ. Prognosis after extracorporeal shock wave lithotripsy of radiopaque renal calculi:a multivariate analysis. Eur Urol.1994.25(2):105-9.
    [30]Abdel-Khalek M, Sheir KZ, Mokhtar AA, Eraky I, Kenawy M, Bazeed M. Prediction of success rate after extracorporeal shock-wave lithotripsy of renal stones--a multivariate analysis model. Scand J Urol Nephrol.2004.38(2): 161-7.
    [31]Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol.1998. 159(3):673-5.
    [32]Deveci S, Coskun M, Tekin MI, Peskircioglu L, Tarhan NC, Ozkardes H. Spiral computed tomography:role in determination of chemical compositions of pure and mixed urinary stones--an in vitro study. Urology.2004.64(2):237-40.
    [33]Delvecchio FC, Preminger GM. Management of residual stones. Urol Clin North Am.2000.27(2):347-54.
    [34]El-Assmy A, El-Nahas AR, Sheir KZ. Is pre-shock wave lithotripsy stenting necessary for ureteral stones with moderate or severe hydronephrosis. J Urol. 2006.176(5):2059-62; discussion 2062.
    [35]Musa AA. Use of double-J stents prior to extracorporeal shock wave lithotripsy is not beneficial:results of a prospective randomized study. Int Urol Nephrol. 2008.40(1):19-22.
    [36]Ryan PC, Lennon GM, McLean PA, Fitzpatrick JM. The effects of acute and chronic JJ stent placement on upper urinary tract motility and calculus transit. Br J Urol.1994.74(4):434-9.
    [1]徐俊芳,周晓农.人工神经网络在传染病研究中的应用.中国寄生虫学与寄生虫病杂志.2011.(0]):49-54.
    [2]李丽霞,张敏,郜艳晖,张丕德,周舒冬.人工神经网络在医学研究中的应用.数理医药学杂志.2009.(01):80-82.
    [3]张全平,吴耿锋.基于人工免疫网络的神经网络集成方法.计算机工程.2008.(23):199-201.
    [4]张文彤等SPSS11.0统计分析教程(高级篇).2002.第1版.北京.北京希望电子出版社.92.
    [5]王济川、郭志刚logistic回归模型-方法与应用.2003.北京.高等教育出版社.152.
    [6]DeLong ER DDM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves:a nonparametric approach. Biometrics.1988.44(3):837-45.
    [1]王济川、郭志刚logistic回归模型-方法与应用.2003.北京.高等教育出版社.152.
    [2]张文彤等SPSS11.0统计分析教程(高级篇).2002.第1版.北京.北京希望电子出版社.92.
    [3]邵志强,刘成山,齐桓,郑少斌.体外冲击波治疗肾结石的疗效分析.南方医科大学学报.2008.(12):2239-2240+2243.
    [4]Ackermann DK, Fuhrimann R, Pfluger D, Studer UE, Zingg EJ. Prognosis after extracorporeal shock wave lithotripsy of radiopaque renal calculi:a multivariate analysis. Eur Urol.1994.25(2):105-9.
    [5]Mattelaer P, Schroder T, Fischer N, Jakse G. In situ extracorporeal shockwave lithotripsy of distal ureteral stones:parameters for therapeutic success. Urol Int. 1994.53(2):87-91.
    [6]刘剑新,夏仁惠,傅吾等ESWL治疗肾结石排空率的预测.临床泌尿外科杂志.2008.23(7):525-528.
    [7]Gomha MA, Sheir KZ, Showky S, Abdel-Khalek M, Mokhtar AA, Madbouly K. Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or a statistical model. J Urol.2004.172(1):175-9.
    [1]Chaussy C, Eisenberger F, Forssmann B. Extracorporeal shockwave lithotripsy (ESWL):a chronology. J Endourol.2007.21(11):1249-53.
    [2]刘剑新,夏仁惠,傅吾等ESWL治疗肾结石排空率的预测.临床泌尿外科杂志.2008.23(7):525-528.
    [3]Elkoushy MA, Hassan JA, Morehouse DD, Anidjar M, Andonian S. Factors determining stone-free rate in shock wave lithotripsy using standard focus of Storz Modulith SLX-F2 lithotripter. Urology.2011.78(4):759-63.
    [4]杨昆,史启铎,刘金玲,单琨,左杰,张殿举.输尿管结石体外冲击波碎石 术疗效分析及预测模型的建立.山东医药.2009.49(20):69-70.
    [5]肖耀军,邵志强,郑少斌,齐桓,刘成山.上尿路结石单次ESWL成功率预测模型的建立及应用效果评价.山东医药.2011.51(22):53-55.
    [6]Wang M, Shi Q, Wang X, Yang K, Yang R. Prediction of outcome of extracorporeal shock wave lithotripsy in the management of ureteric calculi. Urol Res.2011.39(1):51-7.
    [7]Augustin H. Prediction of stone-free rate after ESWL. Eur Urol.2007.52(2): 318-20.
    [8]李新德,许力为,余大敏,张大宏,丁国庆.影响体外冲击波碎石术疗效的因素分析.中华泌尿外科杂志.2005.(05):321-323.
    [9]Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol.1998. 159(3):673-5.
    [10]Deveci S. Coskun M, Tekin MI, Peskircioglu L, Tarhan NC, Ozkardes H. Spiral computed tomography:role in determination of chemical compositions of pure and mixed urinary stones--an in vitro study. Urology.2004.64(2):237-40.
    [11]Kim HH, Lee JH, Park MS, Lee SE, Kim SW. In situ extracorporeal shockwave lithotripsy for ureteral calculi:investigation of factors influencing stone fragmentation and appropriate number of sessions for changing treatment modality. J Endourol.1996.10(6):501-5.
    [12]Abdel-Khalek M, Sheir K, Elsobky E, Showkey S, Kenawy M. Prognostic factors for extracorporeal shock-wave lithotripsy of ureteric stones--a multivariate analysis study. Scand J Urol Nephrol.2003.37(5):413-8.
    [13]于志坚,王刚.输尿管结石合并息肉64例临床分析.浙江临床医学.2004.6(9):777.
    [14]李洪洲,苑登强.输尿管结石并发输尿管息肉58例分析.临床泌尿外科杂 志.2001.(04):162-163.
    [15]李培军,余洋,米占虎,司红兵.输尿管息肉的诊断与治疗(附22例报告).中华泌尿外科杂志.2001.22(6):382.
    [16]Kohrmann KU. Comparison of lithotripters. Business Briefing:European Pharmacotherapy 2005,2005.90-93.
    [17]Kokrmann KU. Principles of extracorporeal shock wave lithotripsy. Business briefing:global surgery-future directions 2005.2005:107-108.
    [18]Teichman JM, Portis AJ, Cecconi PP, et al. In vitro comparison of shock wave lithotripsy machines. J Urol.2000.164(4):1259-64.
    [19]Gillitzer R, Neisius A, Wollner J, et al. Low-frequency extracorporeal shock wave lithotripsy improves renal pelvic stone disintegration in a pig model. BJU Int.2009.103(9):1284-8.
    [20]Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy:a meta-analysis. J Urol.2008.179(1): 194-7; discussion 197.
    [21]Logarakis NF, Jewett MA, Luymes J, Honey RJ. Variation in clinical outcome following shock wave lithotripsy. J Urol.2000.163(3):721-5.
    [22]Delakas D, Karyotis I, Daskalopoulos G, Lianos E, Mavromanolakis E. Independent predictors of failure of shockwave lithotripsy for ureteral stones employing a second-generation lithotripter. J Endourol.2003.17(4):201-5.
    [23]Patel T, Kozakowski K, Hruby G, Gupta M. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol.2009.23(9):1383-5.
    [24]Christian Bach NB. Shock Wave Lithotripsy for Renal and Ureteric Stones. European Urology supplements.2011.10(5):423-432.
    [25]Elbahnasy AM, Clayman RV, Shalhav AL, et al. Lower-pole caliceal stone clearance after shockwave lithotripsy. percutaneous nephrolithotomy, and flexible ureteroscopy:impact of radiographic spatial anatomy. J Endourol.1998. 12(2):113-9.
    [26]Turk C KT, Petrik A SK, Straub M SC. Guidelines on urolithiasis:European Association of Urology Web site.
    [27]杨昆,史启铎,刘金玲,单琨,左杰,张殿举.输尿管结石体外冲击波碎石术疗效分析及预测模型的建立.山东医药.2009.(20):69-70.
    [28]Turna B, Akbay K, Ekren F, et al. Comparative study of extracorporeal shock wave lithotripsy outcomes for proximal and distal ureteric stones. Int Urol Nephrol.2008.40(1):23-9.
    [29]杨立刚,石永雄ESWL治疗输尿管结石938例报告.中国现代医学杂志.2002.12(4):106,108.
    [30]Delvecchio FC, Preminger GM. Management of residual stones. Urol Clin North Am.2000.27(2):347-54.
    [31]El-Assmy A, El-Nahas AR, Sheir KZ. Is pre-shock wave lithotripsy stenting necessary for ureteral stones with moderate or severe hydronephrosis. J Urol. 2006.176(5):2059-62; discussion 2062.
    [32]Musa AA. Use of double-J stents prior to extracorporeal shock wave lithotripsy is not beneficial:results of a prospective randomized study. Int Urol Nephrol. 2008.40(1):19-22.
    [33]Ryan PC. Lennon GM, McLean PA, Fitzpatrick JM. The effects of acute and chronic JJ stent placement on upper urinary tract motility and calculus transit. Br J Urol.1994.74(4):434-9.
    [34]Miller OF, Kane CJ. Time to stone passage for observed ureteral calculi:a guide for patient education. J Urol.1999.162(3 Pt 1):688-90; discussion 690-1.
    [35]Preminger GM, Tiselius HG, Assimos DG, et al.2007 Guideline for the management of ureteral calculi. Eur Urol.2007.52(6):1610-31.
    [36]Seitz C. Medical Expulsive Therapy of Ureteral Calculi and Supportive Therapy After Extracorporeal Shock Wave Lithotripsy. European Urology Supplements.2011.9(12):807-813.
    [37]Gravina GL, Costa AM, Ronchi P, et al. Tamsulosin treatment increases clinical success rate of single extracorporeal shock wave lithotripsy of renal stones. Urology.2005.66(1):24-8.
    [38]廖泽明,工超,陈志强,叶章群.坦索罗辛和硝苯地平治疗远端输尿管结石的疗效比较.现代中西医结合杂志.2011.(09):1046-1047+1050.
    [39]吕家驹,尉立京,张辉,丁森泰,丁克家.坦索罗辛和硝苯地平在输尿管下段结石辅助排石中作用的比较.中华泌尿外科杂志.2006.(09):612-614.
    [40]Gravina GL, Costa AM, Ronchi P, et al. Tamsulosin treatment increases clinical success rate of single extracorporeal shock wave lithotripsy of renal stones. Urology.2005.66(1):24-8.
    [41]Bhagat SK, Chacko NK, Kekre NS, Gopalakrishnan G, Antonisamy B, Devasia A. Is there a role for tamsulosin in shock wave lithotripsy for renal and ureteral calculi. J Urol.2007.177(6):2185-8.
    [42]Naja V, Agarwal MM, Mandal AK, et al. Tamsulosin facilitates earlier clearance of stone fragments and reduces pain after shockwave lithotripsy for renal calculi: results from an open-label randomized study. Urology.2008.72(5):1006-11.
    [43]Hussein MM. Does tamsulosin increase stone clearance after shockwave lithotripsy of renal stones? A prospective, randomized controlled study. Scand J Urol Nephrol.2010.44(1):27-31.
    [44]Porpiglia F, Destefanis P, Fiori C, Scarpa RM, Fontana D. Role of adjunctive medical therapy with nifedipine and deflazacort after extracorporeal shock wave lithotripsy of ureteral stones. Urology.2002.59(6):835-8.
    [45]Gofrit ON, Pode D. Meretyk S, et al. Is the pediatric ureter as efficient as the adult ureter in transporting fragments following extracorporeal shock wave lithotripsy for renal calculi larger than 10 mm. J Urol.2001.166(5):1862-4.
    [46]Ikegaya H, Kato A, Kumano S, Tominaga T. Correlation between age and the efficacy of ESWL. BJU Int.2005.96(7):1145.
    [47]Ng CF, Wong A, Tolley D. Is extracorporeal shock wave lithotripsy the preferred treatment option for elderly patients with urinary stone? A multivariate analysis of the effect of patient age on treatment outcome. BJU Int. 2007.100(2):392-5.
    [48]王济川、郭志刚logistic回归模型-方法与应用.2003.北京.高等教育出版社.1-11.
    [49]刘成山,邵志强,张鹏,郑少斌.影响上尿路结石体外冲击波碎石预后的因素.南方医科大学学报.2008.(11):2063-2065.
    [50]Abdel-Khalek M, Sheir KZ, Mokhtar AA, Eraky I, Kenawy M, Bazeed M. Prediction of success rate after extracorporeal shock-wave lithotripsy of renal stones--a multivariate analysis model. Scand J Urol Nephrol.2004.38(2): 161-7.
    [51]Kanao K. Nakashima J, Nakagawa K, et al. Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy. J Urol. 2006.176(4 Pt 1):1453-6; discussion 1456-7.
    [52]张宏,陈启光,沈其君.病例对照研究中logistic回归参数估计的应用条件研究.中国卫生统计.2006.(03):206-208.
    [53]张宏,陈启光.前瞻研究中Logistic回归参数估计的应用条件.中国公共卫生.2004.(08):126-127.
    [54]韩家炜.数据挖掘:概念与技术.2006.机械工业出版社.8-10.
    [55]徐俊芳,周晓农.人工神经网络在传染病研究中的应用.中国寄生虫学与 寄生虫病杂志.2011.(01):49-54.
    [56]梁华金,陈海雯.基于决策树的选案分析模型设计.现代计算机(专业版).2002.(06):21-23.
    [57]张文彤.分类树中QUEST算法与多水平logistic模型的联合应用与比较.中国卫生统计.2004.(01):30-32+37.
    [58]张锦华,原思聪,张晓钟,郭海燕.基于人工神经网络响应面技术的多学科优化方法研究及应用.西安建筑科技大学学报(自然科学版).2011.(03):451-456.
    [59]周利锋,金丕焕.BP神经网络与logistic回归对比初探.中国卫生统计.1998.(01):3-6.
    [60]刘鑫,赵家刚,刘絮子.人工神经网络之BP模型算法实现.科技信息.2011.(30):285-286.
    [61]Cummings JM, Boullier JA, Izenberg SD, Kitchens DM, Kothandapani RV. Prediction of spontaneous ureteral calculous passage by an artificial neural network. J Urol.2000.164(2):326-8.
    [62]Dal Moro F, Abate A, Lanckriet GR, et al. A novel approach for accurate prediction of spontaneous passage of ureteral stones:support vector machines. Kidney Int.2006.69(1):157-60.
    [63]Poulakis V, Dahm P, Witzsch U, de Vries R, Remplik J, Becht E. Prediction of lower pole stone clearance after shock wave lithotripsy using an artificial neural network. J Urol.2003.169(4):1250-6.
    [64]Gomha MA, Sheir KZ, Showky S, Abdel-Khalek M, Mokhtar AA, Madbouly K. Can we improve the prediction of stone-free status after extracorporeal shock wave lithotripsy for ureteral stones? A neural network or a statistical model. J Urol.2004.172(1):175-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700