用户名: 密码: 验证码:
基于OpenGL的应力波原木内部腐朽断层图像三维重构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材是一种人类使用历史最长的可再生的天然资源。随着社会进步,人们对生产生活质量要求的提高,对木材的需求量逐渐增加。充分有效地利用木材资源,使之产生最大的经济与社会效益,是各国林业科研工作者共同关心和不断研究的课题。应力波无损检测技术作为木材无损检测技术中的一种在过去几十年得到了迅速的发展,国内外研究表明,应力波技术在木材的内部缺陷检测、在线产品的质量控制、树木的保护等方面有广阔的应用前景。本文利用VC++和OpenGL平台实现了原木内部腐朽的三维重构,可以准确地判别出原木内部腐朽立体形状及尺寸,从而为原木缺陷检测、原木合理分级、合理造材与造材加工自动化生产、立木健康评价、木制建筑的强度评价提供应用理论基础和科学依据。研究结果对减少木材的损失和浪费,提高我国原木利用率具有重要的意义。
     三维重建技术是20世纪80年代后期迅速发展起来的一门新兴技术,是科学计算可视化的一个重要研究领域,而科学计算可视化是当前计算机学科的一个重要研究方向。由断层数据重构物体的三维模型是一种常用的数据场可视化技术。其研究目标是把试验或者数值计算获得的大量数据转化为人的视觉可以感受的计算机图像。
     本文首先分析了应力波在原木横截面传播理论、传播规律和应力波木材无损检测系统的工作原理并以此设计实验得到应力波无损检测仪的最佳工作条件,在此基础上,利用ARBOTOM应力波木材无损检测系统获取得到一组原木内部腐朽断层图;其次,应用数字图像处理技术对获取到的断层图像进行预处理,预处理的目的主要是消除图像在采集、储存、传递、提取过程中产生的噪声和伪像,包括滤波降噪处理和图像增强处理,以使原木内部腐朽更加清晰,便于人眼识别和为后续处理作准备,在这里,根据本文的实际需要对现有的图像处理方法进行对比研究,选择出最适合的图像预处理方案;然后,对进行预处理后的断层图像进行图像分割,并利用数学形态学方法对阈值分割后的图像进行处理,消除无用信息,保留有用的信息;利用边缘检测算子提取出原木边界轮廓以及反映原木内部腐朽信息的边缘;在轮廓线的连续性处理中引入B样条曲线来拟和轮廓线以改善其连续性;然后进行了轮廓线拼接计算工作,并且以三角形形状最优为目标提出了基于Delaunay三角剖分的轮廓线的拼接算法。最后对断层图像进行层间插值并在OpenGL平台下完成原木内部腐朽的三维重构,确定原木内部腐朽三维结构形状,实现原木内腐缺陷检测,从而为原木缺陷检测、原木合理分级、合理造材与造材加工自动化生产、立木健康评价、木制建筑的强度评价提供应用理论基础和科学依据。
Wood is a human use history's longest renewable natural resources. With the social progress, people to production, life quality requirements enhancement, to lumber demand to increase gradually. Fully effectively use timber resources, to produce the maximum economic and social benefits of forestry science research workers, is the world care together and continuously research topic. Stress wave nondestructive testing technology as the wood nondestructive testing technology in the past decades obtained a rapid development and the domestic and foreign research shows that stress wave technology in wood of internal defects detection, the online product quality control, trees on protection of have broad application prospects. This paper using vc++and OpenGL platform realized three-dimensional reconstruction internal decaying log, can accurately discriminant out internal decaying log, and three-dimensional shape and size for log defects detection, log reasonable classification, reasonable made material and build material processing LiMu automation production, health evaluation, wooden building strength assessment theoretical basis and provide scientific basis for the application. The results of the study of wood reduction loss and waste, enhances our country log utilization has the vital significance.
     3D reconstruction technique is the late1980s rapidly develop a new technology, is scientific computing visualization one of important research fields, and scientific computing visualization is the current computer science, one of the important research direction. The fault data reconstruction objects by3D model is a common data field visualization technology. The study aims to test or numerical calculation of large quantities of data transformation of human visual can feel computer images.
     This paper first analyzes the stress wave in the logs cross-sectional media theory and spread rule and stress wave wood working principle of nondestructive testing (NDT) system, and based on this ARBOTOM stress wave wood, use nondestructive system obtain get a group of log internal decayed fault figure; Secondly, the application of digital image processing technique, the fault image obtained the main purpose of pretreatment and pretreatment is to eliminate image in acquisition, storage, transfer, extraction process of the noise and pseudo like, including filtering noise reduction processing and image enhancement processing, to make more clear, decaying log internal eye identification for follow-up for preparing and handling, according to the actual need of existing paper image processing method of comparative study, choose the most suitable image preprocessing scheme; Then, after pretreatment of fault for image segmentation image, and by using the method of mathematical morphology after threshold segmentation image processing technology, eliminate useless information, retain useful information; Using edge detection operators extract log boundary contours and reflect the edge of internal decaying log information; The continuity of the Outlines in processing b-spline curve introduced to fit and contour line to improve its continuity; Then, contour line joining together with computational tasks, and the optimal triangular shapes for target was proposed based on Delaunay triangulations profile stitching algorithm. Final between layers of fault image interpolation and finish the workbench in OpenGL3D reconstruction internal decaying log, internal decaying log internal decayed3D structure to determine the shape, realization log corrosion defects detection within, thus for log defects detection, log reasonable classification, reasonable made material and build material processing automation production, trees health evaluation, wooden building strength assessment theoretical basis and provide scientific basis for the application.
引文
[1]国家林业局,http://www.forestry.gov.cn/
    [2]杨慧敏.基于能量法木材孔洞缺陷的超声定量检测研究[D].东北林业大学.2005:1-3
    [3]R.J.Ross, J.C.Ward, A.T.Wolde. Identifying bacterially infected oak by stress wave nondestructive evaluation [J]. USDA Forest Service, Forest Products Laboratory,1962(3): 10-12
    [4]W.M.Bulleit and R.H.Falk. Modeling stress wave passage times in wood utility poles [J]. Wood Science and Technology.1985(19):183-191
    [5]R.J.Ross, J.C.Ward, A.T.Wolde. Stress wave nondestructive evaluation of Wetwood [J]. Forest Products Journal. Madison,1994,44(7):22-24
    [6]Kristin C.Schad, Daniel L.Schmoldt, Robert J.Ross, et al. Nondestructive methods for detecting defects in softwood logs [J]. Res.Pap.FPL-RP-546. Forest Products Laboratory. 1996(13):18-20
    [7]Koichi Yamamoto, Othman Sulaiman and Rokiah Hashim. Nondestructive detection of heart rot of Acacia mangium trees in Malaysia [J]. Forest Products Journal,1998(3):83-86
    [8]Robert J.Ross, Roy F.Pellerin, Norbert Volny, et al. Inspection of timber bridges using stress wave timing nondestructive evaluation tools[J]. Pap. FPL-GTR-114. Forest Products Laboratory.1999:15
    [9]Axmon J, Hansson M. Nondestructive detection of decay in spruces using acoustic signals: evaluation of circumferential modes. Signal Processing Report SPR-45 May,1999,66
    [10]Steffen R. A new tomographic device for the non-destructive testing of trees. In: Proceedings of the 12th International Symposium on Nondestructive Testing of Wood, 2000, September 13-15, Sopron, Hungary,2000,233-237
    [11]Comino E, Martinis R, Nicolotti G, et al. Low current tomography for tree stability assessment,2000.278. In:Backhaus G F, H Balder, and E Idczak (Eds). International symposium on plant health in urban horticulture, Braunschweig, Germany,22-25, May, 2000.
    [12]Xiping W, Ross J R, McClellan M, et al. Nondestructive evaluation of standing trees with stress wave method. Wood and Fiber Science,2001,33(4):522-533.
    [13]Divos F, Szalai L. Tree evaluation by acoustic tomography. In:Proceedings of the 13th International Symposium on Nondestructive Testing of Wood. August 19-21,2002. Berkeley, CA,2002,251-256
    [14]Kang H. and Booker R.E. Variation of stress wave velocity with MC and temperature [J]. Wood Science and Technology.2002,36(1):41-54
    [15]Lee JunJae, Kim KwangChul and Bae MunSung. Patterns of resistographs for evaluating deteriorated structural wood members [J]. Journal of the Korean Wood Science and Technology.2003,31(6):45-54
    [16]Robert J.Ross, John I.Zerbe, Xiping.Wang. Stress wave nondestructive evaluation of Douglas-fir peeler cores [J]. Forest products Journal,2005,55(3):90-94
    [17]Xiping W., Wiedenbeck J., Ross J.R., et al. Nondestructive evaluation of incipient decay in hardwood logs. Gen. Tech. Rep. FPL-GTR-162. Madison, WI:U.S. Department of Agriculture, Forest Service, Forest Products Laboratory,2005,1-11
    [18]Giuliana Deflorio, Karen M. Barry, Craig Johnson, et al. The influence of wound location on decay extent in plantation-grown Eucalyptus globules and Eucalyptus niters [J]. Forest Ecology and Management,2007,242(2/3):353-362
    [19]钟建有,陈载永.人造孔洞对应力波非破坏测定之影响[J].中华林学季刊,1996(4):23-36
    [20]孟瑞华,胡勤龙,刘毅.应力波时间仪的研制和应用[J].南京化工大学学报,2000,22(6):55-57
    [21]杨学春.基于应力波原木内部腐朽检测理论及试验的研究[D].东北林业大学,2004:3-10
    [22]林文树.应力波与超声波在木材内部缺陷检测中的对比研究[D].东北林业大学,2005:15-30
    [23]杨学春,王立海.红松木结构缺陷对应力波传播参数的影响[J].东北林业大学学报,2005,33(1):30-31
    [24]詹明动,曾郁珊,蔡明哲,等.三种非破坏检测仪器应用于柳杉造林木立木木材质之评估.国立台湾大学生物源暨农学院实验林研究报告,2005,19(3):207-216
    [25]林振荣,邱志明,杨德新,等.应用应力波断面影像法评估香杉鼠害立木材质[J].台湾林业科学,2005,20(3):259-264
    [26]王立海,徐华东,闫在兴,等.Effect of sensor quantity on measurement accuracy of log inner defects by using stress wave [J]. Journal of Forestry Research,2007,18(3):221-225
    [27]张希栋.主要测试条件参数对原木孔洞缺陷应力波检测效果的影响[D].东北林业大学,2007:10-40
    [28]闫再兴.基于应力波原木内部缺陷二维图像重建的初步研究[D].东北林业大学,2007:9-31
    [29]梁善庆,王喜平,蔡智勇,等.弹性波层析成像技术检测活立木腐朽[J].林业科学,2008,44(5):109-114
    [30]Shanqing L, Xiping W, Wiedenbeck J, et al. Evaluation of acoustic tomography for tree decay detection[C]. In:Proceedings of 15th International Symposium on Nondestructive Testing of Wood, Sept 10-13,2007, Duluth, MN,2007
    [31]张希栋,王立海,杨学春.冲击条件对原木孔洞缺陷检测效果影响的研究[J].林业科技,2009,34(3):46-48
    [32]张希栋,王立海,杨学春.含水率对原木孔洞缺陷应力波检测效果的影响[J].林业科技,2009,34(4):54-56
    [33]Keppel E. Approximating complex surface by triangulation of contours lines[J]. IBM Develop.1975
    [34]Fuchs H., Kedem Z M. Uselton SP. Optimal surface reconstruction from planar contour comm [J]. CAM,1977
    [35]Lorensen W E, Cline R A. Marching Cube:A high resolution 3D construction algorithm [J]. CG,1987,21(3):163-169
    [36]Boissonnal J D. Shape reconstruction from planar cross-sections [J]. Comp Vis Graph and Image Processing,1988,44(1):1-29
    [37]赵海峰,束学斌.一种有效的序列断层图像的八元树构造算法[J].中国图像图形学报,1999,4(5):18-20
    [38]段宝山,潘振宽.医学断层图像三维重建的辅助轮廓线法[J].计算机辅助设计与图形学学报,2005,17(8):1862-1866
    [39]徐兆军,业宁,王厚立,等.基于样条函数的原木CT图像序列数据重建[J].南京林业人学学报(自然科学版),2005,29(6):132-134
    [40]张汝楠,孙丽萍.利用Matlab实现原木CT断层图像的三维重建[J].木材加工机械,2008,4:24-26
    [41]游祥飞.基于应力波二维图像原木内部腐朽三维重建的初步研究[D].东北林业大学,2010:5-10
    [42]章毓晋.图像工程[M].北京:清华大学出版社,2005.
    [42]秦绪佳,欧宗瑛,纪凤欣,等.医学图像的交互分割及三维表面重建[J].工程图学学报,2001,2:94-101
    [43]许为华,尹学松.医学图像插值算法的研究[J].计算机仿真,2006,23(1):111-114
    [44]Aboutanos G B, Nikanne J, Watkins N, etc. Model creation and deformation for the automatic segmentation of the brain in MR image[J]. IEEE Trans on Eng,1999,46(11): 1346-1356
    [45]朱虹.数字图像处理基础[M].北京:科技出版社,2005
    [46]毛欣炜,尹学松,邹鹏程,等.基于形状的三维图像匹配插值方法[J].计算机仿真,2004,22(3):107-110
    [47]纪凤欣.基于断层图像的几何重建理论与技术研究[D].辽宁:大连理工大学,2001
    [48]Alyn P., Rockwood. Three-dimensional object reconstruction from two-dimensional images. Computer-Aided Design,1997,129(4):279-284
    [49]Bainning G. Surface reconstruction from points to splines. Computer-aided Design,1997, 129(4):269-276
    [50]Hoppe H, Derose T. Surface reconstruction from unorganized points. Computer graphics, 1992,26(2):71-78
    [52]Fuchs H, Kedem Z M, Uselton S P. Optimal surface reconstruction from planar contour comm.. CAM,1977,2:693-702
    [53]Keppel E. Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research Development,1975,19(1):2-11
    [54]Christiansen H N, Sederberg T W. Conversion of complex contour line definitions into polygonal element mosaics. Computer Graphics,1978,12(2):187-192
    [55]Ganapathy S, Dennepy T G.. Anew general triangulation method for planar contours. Computer Graphics,1982,16(3):69-75
    [56]Cook LT., Dwyer S. A three display system for diagnostic imaging application. IEEE CG&A,1983,3(4):121-125
    [57]Kehtarnavaz N. A syntactic/semantic technique for surface reconstruction from cross-sectional contours. CVGIP,1988,4(2):399-409
    [58]Sinclair B. Complex contour organization for surface reconstruction. Computer&Graphics, 1989,13(3):311-319
    [59]Choi Young-Kyn. Band partitioning algorithm for surface reconstruction from planar contours. Electronics Letters,1999,35(20):1713-1714
    [60]Fix James D. Multiresolution banded refinement to accelerate surface reconstruction from polygons. Computational Geometry,1999,13:49-64
    [61]Marsan A L, Dutta D. Computational techniques for automatically tilling and skinning branched objects. Computer Graphics,1999,23:111-126
    [62]Moshfeghi M. Matching of multimodality medieal images. Graphical Model and Image Processing,1991,53(3):53-57
    [63]Guan W G, Ma S D. Matching deformal planar contours. Journal of Automation,1997, 34(6):76-79
    [64]管伟光,马颂德.具有形变的平面轮廓匹配问题[J].自动化学报,1994,226:666-671
    [65]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001:254-294
    [66]黄永丽.基于断层数据的三维重建理论与技术的研究[D].郑州大学,2004:41-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700