用户名: 密码: 验证码:
无线传感器网络栅栏覆盖关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是由大量低功耗、低成本、集信息获取、处理和传输于一体的微型传感器节点通过自组织方式形成的网络,在军事国防、工农业控制、环境监控、生物医疗、抢险救灾等领域有着非常广泛的应用前景,近年受到广泛关注。覆盖控制是无线传感器网络的基本研究问题。通过覆盖控制技术,能够有效地利用无线传感器网络的有限资源,实现改善感知服务质量或延长网络生存周期等目的。栅栏覆盖是无线传感器网络覆盖控制的研究热点之一。栅栏覆盖考虑移动目标沿任意路径穿越无线传感器网络的部署区域时,如何保证移动目标被网络检测的问题,在边境监测、阵地布防、工业安保等方面具有广泛的应用需求。栅栏覆盖与传统的区域覆盖相比,在部署区域、监控目标、监控方式等方面显著不同,传统区域覆盖领域的研究工作不能直接应用于栅栏覆盖,栅栏覆盖目前仍是开放的研究领域,因此对无线传感器网络栅栏覆盖关键技术进行研究具有积极的理论意义和应用价值。
     本文在弱栅栏覆盖节点调度策略、支持多节点信息融合的栅栏信息覆盖、全移动传感器网络k-栅栏覆盖、混合传感器网络k-栅栏覆盖等方面展开研究,主要研究工作包括:
     (1)针对无线传感器网络节点能量有限、能量补充困难的特点,本文研究了无线传感器网络弱栅栏覆盖最大化网络生存周期的节点调度问题。首先引入条格划分思想,提出了面向弱k-栅栏覆盖应用的栅栏覆盖调度问题BCSP,证明了该问题是NP-Hard的。然后提出了一种集中式的启发式节点调度算法HBCS,该算法优先选择能够栅栏覆盖最多条格的节点加入栅栏覆盖集。最后提出了一种完全分布式的最大化生存周期调度算法DBCS,该算法中各节点仅需通过获取邻居节点所覆盖条格的信息即可确定自身工作状态,计算简单、通信开销小,适合于大规模无线传感器网络应用。仿真实验表明两种调度算法均能够有效地调度冗余节点实现弱k-栅栏覆盖,节省网络能量,显著延长网络生存周期。
     (2)相邻多个物理传感器节点通过感知信息的融合,组成虚拟节点,将能够弥补节点间的物理覆盖空隙,增加栅栏投影长度,提高栅栏覆盖性能。本文研究了如何进行虚拟节点组合以最大化栅栏投影长度的栅栏信息覆盖虚拟节点组合问题。主要工作包括:1)针对虚拟节点协作度的情况,推导出了虚拟节点信息覆盖区域的栅栏投影长度的近似下界,提出了一种对协作度k无限制的计算栅栏投影近似下界的通用方法。2)基于合作博弈理论,建立了虚拟节点组合博弈模型,提出了一种分布式的虚拟节点组合算法DVSF,证明了DVSF算法的收敛性和最终网络结构的稳定性。3)仿真实验证明DVSF算法能够显著增加网络的栅栏投影长度之和,提高栅栏信息覆盖性能,DVSF能够与分布式的节点调度机制良好地结合,大幅增加网络生存时间。
     (3)针对所有节点都具有有限移动能力的全移动传感器网络,目前尚无解决能量高效的k-栅栏覆盖构建问题的研究工作。本文研究了随机部署的全移动传感器网络能量高效地构建k-栅栏覆盖的问题,主要工作包括:1)提出了1-栅栏覆盖最小移动距离和问题(1-BCMS问题)。基于网格划分模型,将1-BCMS问题近似为1-网格栅栏最小移动距离和问题(1-GBMS问题),给出了1-GBMS问题的整数线性规划描述,证明了1-GBMS问题是NP-hard的。2)提出了一种能量高效的1-栅栏覆盖构建算法CBGB。仿真实验表明CBGB算法的求解结果与最优解接近,有效减少了节点移动距离。与CBarrier算法相比,CBGB算法性能更优。3)提出了基于分治策略的k-栅栏覆盖构建算法。与全局算法相比,该算法大幅减小了通信和计算开销。仿真实验表明该算法能够有效地形成k-栅栏覆盖,节点平均移动距离不随网络规模的扩大而增加,具有良好的可扩展性,适用于大规模无线传感器网络
     (4)针对由大量静态节点和少量移动传感器节点组成的混合传感器网络,本文研究了移动节点辅助下的k-栅栏覆盖构建问题。主要工作包括:1)提出了一种集中式的混合传感器网络k-栅栏覆盖构建算法BCHN。该算法首先利用最小费用流算法寻找最少数量的待修补空隙,然后对每个待修补空隙,选取具有最短移动距离的邻近移动节点进行修补。2)提出了一种分布式的L-局部k-栅栏覆盖构建算法DLBC。各静态节点首先计算自身局部2d长度范围内的待修补空隙集合,然后利用移动节点修补空隙,在自身局部2d长度范围内形成k-栅栏覆盖,整个网络即可形成L-局部k-栅栏覆盖。3)基于渗透理论,分析了移动节点的部署条件:如果监控区域宽度与长度满足条件,则当静态节点密度时,无须部署移动节点。如果,则必须部署移动节点,才能保证形成栅栏覆盖。4)实验结果表明BCHN算法在平均移动距离、平均使用的移动节点数量等方面均优于MB算法;DLBC算法在较大d值的情况下,能够通过形成L-局部k-栅栏覆盖,间接保证全局k-栅栏覆盖的形成。
     综上,本文针对栅栏覆盖如何与节点调度、信息融合、移动传感器等技术紧密结合提出了相应的解决方案,充分发挥了栅栏覆盖的优势,有效利用了无线传感器的有限资源,达到节省无线传感器节点数量、延长无线传感器网络生存周期的目的,对进一步推动无线传感器网络的研究和实用化具有一定的理论意义和应用价值。
Wireless sensor networks (WSNs),which consist of hundreds to thousands of low-power, low-cost tiny sensor nodes,can perform various tasks including information gathering, processing, and delivering. Recently, WSNs have attracted great attention due to their broad applications in military affairs, industry and agriculture automation, environment monitoring, biomedicine, and disaster succoring. Among the techniques in WSNs, coverage control acts as a fundamental method to improve the sensing quality or prolong the network lifetime, via exploring the limited resources in WSNs efficiently. This thesis focuses on a hot issue in the research areas of coverage control, namely, the barrier coverage. Barrier coverage, which guarantees that every movement that is crossing a barrier of sensors to be detected right away, is known as an appropriate coverage model for movement detection applications, such as border detection, bastion defense, and security of industry, etc. Comparing with the traditional area coverage model, barrier coverage is different in the shape of the deployment region, the goal of coverage, and the manner of surveillance. Note that the previous work on area coverage can not be transplanted to barrier coverage, and barrier coverage is still an open research topic. Thus, the research on barrier coverage in WSNs has its academic and practical value.
     This thesis studies several important problems in barrier coverage, which includes the scheduling strategy for weak barrier coverage, barrier information coverage that supports information fusion of more than two sensors, k-barrier coverage in all mobile sensor networks, and k-barrier coverage in hybrid sensor networks. The main contributions are summarized as follows:
     (1) Since the energy of wireless sensors is limited and it is very difficult to recharge, we propose a scheduling problem on how to prolong the network lifetime for weak barrier coverage. Firstly, the surveillance region is divided into small vertical segment, which is called‘slice’. Based on this discretization, we address a problem of how to schedule sensors to achieve weak barrier coverage, such that the network lifetime is maximized. We then formulate the problem as BCSP (Barrier Coverage Scheduling Problem). Secondly, a heuristic scheduling algorithm HBCS is proposed. The idea behind the proposed algorithm is to ensure the node which covers more slices has higher priority to join the set of barrier coverage in HBCS. Finally, a distributed scheduling algorithm DBCS is presented, in which each node can decide to be active or sleep only by its neighbors’information. DBCS is applicable for large scale wireless sensor network. Extensive simulations demonstrate that HBCS and DBCS can both prolong the network lifetime significantly while maintain the quality of weak barrier coverage.
     (2) Adjacent physical sensors can form a virtual sensor based on the technique of sensing information fusion, thus the sensing gap between neighboring physical nodes can be covered,. the projection length of sensor barriers can be increased and the performance of barrier coverage can be finally improved. This thesis addresses a virtual sensor formation problem to maximize the barrier projection length in barrier information coverage. The main works are as follows. (1) We first derive the lower bound of the barrier projection length of a virtual sensor when collaboration degree k>2. A generic calculation algorithm for is presented at last. (2) Based on coalitional game, we establish a virtual sensor formation game model and devise a distributed algorithm DVSF for virtual sensor formation in barrier information coverage. It is proved that the final network structure resulting from algorithm DVSF is stable. Simulations show that DVSF significantly increases the total barrier projection length and prolongs the network lifetime, on condition that the distributed scheduling algorithm DBCS described above is jointed exploited.
     (3) We observe that there are no works dealing with constructing k-barriers of sensors energy-efficiently for mobile sensor networks where all nodes have limited mobility. Thus, this thesis studies the problem of how to relocate mobile sensors to construct k sensor barriers with minimum energy consumption in randomly deployed sensor networks. The main works are as follows.(1) First, we formulate this problem as an 1-BCMS problem, then approximate it to the 1-GBMS problem based on grid division and give the Integer Linear Programming Model of 1-GBMS. (2) Second, we devise an approximation algorithm CBGB to construct one sensor barrier energy-efficiently. Simulations show that CBGB delivers a solution that is extremely close to the optimal solution, and performs better than that gained by the CBarrier algorithm. (3) Last, a divide-and-conquer algorithm for constructing k-barrier coverage is presented. Comparing with the global algorithm, the proposed algorithm reduces the communication overhead and computation cost significantly. Moreover, simulation results demonstrate that the Divide-and-Conquer algorithm can construct k-barrier coverage effectively and is applicable to large scale sensor networks.
     (4) This thesis also studies the problem of how to achieve k-barrier coverage assisted by mobile sensors in hybrid sensor networks, which consist of lots of static sensors and few mobile sensors. The main contributions are as follows. (1) We propose a centralized algorithm BCHN for constructing k sensor barriers in hybrid sensor networks. BCHN firstly finds the minimum gaps that is required to repair by the minimum cost flow algorithm, then for each gap, it selects the nearest node to repair it. (2) A distributed algorithm DLBC for achieving L-local k-barrier coverage is then presented. To achieve k-barrier coverage in 2d region, each static node first calculates the set of repairing gaps in its 2d region, what followed is by scheduling the movement of mobile sensors, thus in the whole networks , L-local k-barrier coverage.is achieved. (3) Based on percolation theory, we analyze the condition of deployment of mobile sensors: If the width of the surveillance region is , it is not necessary to deploy mobile sensors when static deployment density meets , while if , it is required to deploy mobile sensors so that k-barrier coverage is guaranteed. (4) Simulation results show that algorithm BCHN not only outperforms algorithm MB in average moving distance, but decreases the number of average mobile nodes required. If algorithm DLBC achieves L-local k-barrier coverage, the global k-barrier coverage can be achieved with large probability, provided that d is large enough.
     In summary, in order to improve the quality of barrier coverage and prolong the network lifetime of wireless sensor networks, this thesis proposes effective solutions for barrier coverage that incorperates the state-of-the-art technologies including the node scheduling, information fusion, and mobile sensors. Our works have their academic and practical value on promoting the advancement of the researches and applications in wireless sensor networks.
引文
[1] Akyildiz, I.F., W. Su, Y. Sankarasubramaniam, E. Cayirci. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40(8): p. 101-114.
    [2] Perkins, C.E. Ad Hoc Networking[M]: Addison-Wesley, 2001.
    [3]孙利民,李建中,陈渝,朱红松.无线传感器网络[M]:清华大学出版社, 2005.
    [4] Polastre, J.R.,D. Culler.Design and Implementation of Wireless Sensor Networks for Habitat Monitoring[R].University of California at Berkeley,2003.
    [5] Bonnet, P., J. Gehrke, P. Seshadri. Querying the physical world[J]. IEEE Personal Communications, 2000, 7: p. 10-15.
    [6] http://techresearch.intel.com/articles/Exploratory/1501.htm.
    [7] Liang, S.H.L., V. Tao, A. Croitoru. The Design and Prototype of a Distributed Geospatial Infrastructure for Smart Sensor Webs[C]// the 6th AGILE Conference on Geographic Information Science. Lyon, France, 2003.
    [8] Hewish, M. Reformatting fighter tactics[J]. Jane's International Defense Review, June,2001.
    [9] Arora, A., P. Dutta, S. Bapat. A Line in the Sand:A Wireless Sensor Network for Target Detection, Classifcation, and Tracking[J]. Computer Networks: The International Journal of Computer and Telecommunications Networking - Special issue: Military communications systems and technologies archive, 2004, 46(5).
    [10] www.nsf.gov/.
    [11] http://www.cs.virginia.edu/wsn/vigilnet/.
    [12] http://motelab.eecs.harvard.edu/index.php.
    [13] Dutta, P., J. Hui, J. Jeong. Trio: Enabling Sustainable and Scalable Outdoor Wireless Sensor Network Deployments[C]// International Conference of Information Processing on Sensor Networks(IPSN). Nashville, Tennessee, USA, 2006.
    [14] http://www.cast.cse.ohio-state.edu/exscal/.
    [15] http://www.ece.gatech.edu/research/labs/bwn/index.html.
    [16] http://projects.cerias.purdue.edu/esp/.
    [17] http://www.eng.yale.edu/enalab/.
    [18] http://nms.csail.mit.edu/.
    [19] http://www-mtl.mit.edu/researchgroups/icsystems/uamps/.
    [20] http://bwrc.eecs.berkeley.edu.
    [21] http://local.cs.berkeley.edu/webs/.
    [22] http://research.cens.ucla.edu/.
    [23] http://wsnl.stanford.edu/.
    [24] http://lion.cs.uiuc.edu/index.html.
    [25] http://techresearch.intel.com/articles/Exploratory/1501.htm.
    [26] http://www.zurich.ibm.com/sys/communication/sensors.html.
    [27] http://research.microsoft.com/nec/.
    [28] www.zigbee.org/.
    [29] ISO/IEC 802.15.4. IEEE standard for Wireless Medium Access Control(MAC)and Physical Layer(PHY) Specifications for Low-Rate Wireless Personal Area Networks(WPANs)[S], 2006.
    [30] http://techresearch.intel.com/articles/Exploratory/1503.htm.
    [31] http://www.xbow.com/Products/wproductsoverview.aspx.
    [32] http://bwrc.eecs.berkeley.edu/Research/Pico_Radio/Default.htm.
    [33] http://nesl.ee.ucla.edu/projects/ahlos/.
    [34] http://www.tinyos.net/.
    [35] https://projects.nesl.ucla.edu/public/sos-2x.
    [36] www.nsfc.gov.cn/.
    [37]任丰原,黄海宁,林闯.无线传感器网络[J]. Journal of Software, 2003, 14(7): p. 1282-1291.
    [38]刘永强,严伟,代亚非.一种无线网络路径容量分析模型[J].软件学报, 2005, 17: p. 854-859.
    [39]彭伟,卢锡城.一个新的分布式最小连通支配集近似算法[J].计算机学报, 2001, 24: p. 254-258.
    [40]蒋杰,方力,张鹤颖,窦文华.无线传感器网络最小连通覆盖集问题求解算法[J].软件学报, 2006, 17(2): p. 175-184.
    [41]温俊,蒋杰,窦文华.公平的有向传感器网络方向优化和节点调度算法[J].软件学报, 2009, 20(3): p. 644-659.
    [42]崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展, 2005, 42(1): p. 163-174.
    [43]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报, 2003, 14: p. 1717-1727.
    [44]李贵林,高宏.传感器网络中基于环的负载平衡数据存储方法[J].软件学报, 2007, 18(5): p. 1173-1185.
    [45]李燕君,王智,孙优贤.资源受限的无线传感器网络基于衰减信道的决策融合[J].软件学报, 2007, 18(5): p. 1130-1137.
    [46] Zheng, Z., Z. Wu, H. Lin, K. Zheng. WDM: An Energy-Efficient Multi-hop Routing Algorithm for Wireless Sensor Networks[C]// International Conference on Computational Science. 2005.
    [47] Cai, Y., W. Lou, M. Li, X.-Y. Li. Target-Oriented Scheduling in Directional Sensor Networks[C]// the 26th Annual Joint Conference of the IEEE Conference on Computer and Communications(IEEE INFOCOM). Alaska,USA, 2007.
    [48]毛莺池,刘明,陈力军,陈道蓄,谢立. DELIc:一种高效节能的与节点位置无关的传感器网络覆盖协议[J].计算机研究与发展, 2006, 43(2): p. 187~195.
    [49]沈波,张世永,钟亦平.无线传感器网络分簇路由协议[J].软件学报, 2006(1): p. 1588-1600.
    [50]任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法[J].软件学报, 2006, 17(3): p. 422-433.
    [51]陶丹,马华东,刘.亮.基于虚拟势场的有向传感器网络覆盖增强算法[J].软件学报, 2007, 18(5): p. 1152?1163.
    [52]马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报, 2006, 17: p. 2013-2028.
    [53]林亚平,王雷,陈宇.传感器网络中一种分布式数据汇聚层次路由算法[J].电子学报, 2004, 32: p. 1801-1805.
    [54] http://www.cs.ust.hk/~liu/Ocean/index.html.
    [55] http://greenorbs.org/.
    [56]刘云浩.绿野千传:突破自组织传感网大规模应用壁垒[J].中国计算机学会通讯, 2010, 6(4): p. 35-37.
    [57] http://politics.people.com.cn/GB/1026/10373923.html.
    [58] Kumar, S., T.H. Lai, A. Arora. Barrier Coverage With Wireless Sensors[C]// in Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking (ACM MobiCom). Cologne, Germany, 2005.
    [59] Hsu, S.S. 'Virtual Fence' Along Border To Be Delayed[N].2008,Thursday, February 28, A01.
    [60] Kumar, S., T.H. Lai, A. Arora. Barrier coverage with wireless sensors[J]. Wireless Networks, 2007, 13(6): p. 817-834.
    [61] Chen, A., S. Kumar, T.H. Lai. Local barrier coverage in wireless sensor networks[J]. IEEE Transactions on Mobile Computing, 2008, 9(4): p. 491-504.
    [62] Kumar, S., T.H. Lai, J. Balogh. On k-coverage in a mostly sleeping sensor network.[C]// International Conference on Mobile Computing and Networking (ACM MobiCom). Philadelphia, PA, 2004.
    [63] Gage., D.W. Command control for many-robot systems[C]// AUVS92. Huntsville AL, 1992.
    [64] Balister, P., B. Bollobas, A. Sarkar, S. Kumar. Reliable Density Estimates for Achieving Coverage and Connectivity in Thin Strips of Finite Length[C]// the 13th annual ACM international conference on Mobile computing and networking(Mobicom). Montreal, 2007.
    [65] Chen, A., T.H. Lai, D. Xuan. Measuring and guaranteeing quality of barrier-coverage in wireless sensor networks[C]// Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc). Hong KongSAR, China: Association for Computing Machinery, 2008.
    [66] Chen, A., T.H. Lai, D. Xuan. Measuring and guaranteeing quality of barrier coverage for general belts with wireless sensors[J]. ACM Transactions on Sensor Networks, 2009, 6(1).
    [67] Kumar, S.,T.H. Lai. Optimal Sleep-Wakeup Algorithms for Barriers of Wireless Sensors[C]// the fourth International Conference on Broadband Communications, Networks,and Systems (IEEE BROADNETS). Raleigh, NC, 2007.
    [68] Liu, B., O. Dousse, J. Wang, A. Saipulla. Strong barrier coverage of wireless sensor networks[C]// Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc). Hong Kong SAR, China: Association for Computing Machinery, 2008.
    [69] Bereg, S.,D. Kirkpatrick. Approximating Barrier Resilience in Wireless Sensor Networks[J]. ALGOSENSORS, LNCS 2009, 5804: p. 29–40.
    [70] Saipulla, A., C. Westphal, B. Liu, J. Wang. Barrier coverage of line-based deployed wireless sensor networks[C]// Proceedings - IEEE INFOCOM. Rio de Janeiro, Brazil: Institute of Electrical and Electronics Engineers Inc., 2009.
    [71] Yang, G.,D. Qiao. Multi-Round Sensor Deployment for Guaranteed Barrier Coverage[C]// the 29th Annual Joint Conference of the IEEE Conference on Computer and Communications( IEEE INFOCOM). 2010.
    [72] S.Meguerdichian, F.Koushanfar, M.Potkonjak, M.Srivastava. Coverage Problems in Wireless Ad-Hoc Sensor Networks[C]// the 20th Annual Joint Conference of the IEEE Conference on Computer and Communications(IEEE INFOCOM). 2001.
    [73] Liu, B.,D. Towsley. A Study of the Coverage of Large-scale Sensor Networks[C]// The 1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems(MASS). Fort Lauderdale, Florida, USA, 2004.
    [74] Bhattacharya, B., M. Burmester, Y. Hu, E. Kranakis, Q. Shi. Optimal Movement of Mobile Sensors for Barrier Coverage of a Planar Region[C]// International Conference on Combinatorial Optimaziton and Applications(COCOA) 2008.
    [75] Tan, X.,G. Wu. New Algorithms for Barrier Coverage with Mobile Sensors[J]. FAW2010 , LNCS, 2010, 6213: p. 327-338.
    [76] Yang, G., W. Zhou, D. Qiao. Defending Against Barrier Intrusions with Mobile Sensors[C]// International Conference on Wireless Algorithms, Systems and Applications(WASA). Chicago, 2007.
    [77] Czyzowicz, J., E. Kranakis, D. Krizanc. On Minimizing the Sum of Sensor Movements for Barrier Coverage of a Line Segment[C]// ADHOC. 2010.
    [78] Saipulla, A., B. Liu, G. Xing, X. Fu, J. Wang. Barrier Coverage with Sensors of Limited Mobility[C]// the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc). Chicago, Illinois, USA, 2010.
    [79] Barr, S., B. Liu, J. Wang. Constructing underwater sensor based barriers usingdistributed auctions[C]// the 28th IEEE conference on Military communications(MILCOM). 2009.
    [80] Yang, G.,D. Qiao. Barrier information coverage with wireless sensors[C]// the 28th Annual Joint Conference of the IEEE Conference on Computer and Communications( IEEE INFOCOM). Rio de Janeiro, Brazil: Institute of Electrical and Electronics Engineers Inc., 2009.
    [81] Zhang, L., J. Tang, W. Zhang. Strong Barrier Coverage with Directional Sensors[C]// IEEE Global Communications Conference,Exhibition & Industry Forum(Globecom). 2009.
    [82] Kloder, S.,S. Hutchinson. Barrier Coverage for Variable Bounded-Range Line-Of-Sight Guards[C]// International Conference on Robotics and Automation(ICRA). Rome, Italy, 2007.
    [83] CD, J.,C. GL. Double Barrier Coverage in Dense Sensor Networks[J]. Journal of Computer Science and Technology(JCST), 2008, 23(1): p. 154-165.
    [84] Shen, C., W. Cheng, X. Liao, S. Peng. Barrier coverage with mobile sensor[C]// International Conference Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN). 2008.
    [85]范高俊,金士尧.任意感知模型的传感器网络栅栏覆盖研究[C]//中国计算机大会.天津, 2009.
    [86] Kong, L., X. Liu, Z. Li, M.-Y. Wu. Automatic Barrier Coverage Formation with Mobile Sensor Networks[C]// ICC. 2010.
    [87] Zhi-qiang, P., X. Chang-qing, T. Jin. A Study on the Degree of Barrier Coverage in Wireless Sensor Networks[J]. Jounral of Shanghai Jiaotong University, 2009, 14(4): p. 497-502.
    [88]孙继忠.无线传感器网络栅栏覆盖的研究[D].成都:西南交通大学, 2010.
    [89] Chang, C.-Y., L.-L. Hung, Y.-C. Chen. On-Supporting Energy Balanced K-Barrier Coverage In Wireless Sensor Networks[C]// International Conference on Wireless Communication and Mobile Computing (IWCMC). Leipzig, Germany, 2009.
    [90]秦宁宁.无线传感器网络栅栏覆盖的研究[D].无锡:江南大学, 2008.
    [91]秦宁宁,张林,山秀明,徐保国.无线传感器网络启发式移动轨迹策略的研究[J].电子与信息学报, 2008, 30(3): p. 707-711.
    [92]秦宁宁,盖伟,张林,蒋敏峰,徐保国. Voronoi图在无线传感器网络栅栏覆盖中的应用研究[J].计算机应用研究, 2008, 25(3): p. 863-865.
    [93]孙继忠,马永强,胡艳,孔旭.分布式Delaunay三角剖分在栅栏覆盖中的应用[J].计算机工程与应用, 2010, 46(26): p. 76-79.
    [94]蒋杰.无线传感器网络覆盖控制研究[D].长沙:国防科技大学, 2005.
    [95]温俊.能量高效的无线传感器网络覆盖控制技术研究[D].长沙:国防科技大学,2009.
    [96] http://www.globalsecurity.org/intell/systems/acs.htm.
    [97] Akildiz, I.F., D. Pompili, T. Melodia. Underwater Acoustic Sensor Networks: Research Challenges[J]. Ad Hoc Networks, 2005, 3(260).
    [98] Andersen, T.,S. Tirthapura. Wireless sensor deployment for 3D coverage with constraints[C]// INSS2009 - 6th International Conference on Networked Sensing Systems. Pittsburgh, PA, United states: IEEE Computer Society, 2009.
    [99] Jiang, Z.,S. Yan. Deployment with sampling coverage in three-dimensional wireless sensor networks[C]// Applied Mechanics and Materials. Zhenjiang, China: Trans Tech Publications, 2010.
    [100] Huang, J.-J., L.-J. Sun, R.-C. Wang, H.-P. Huang. Virtual potential field and covering factor based coverage-enhancing algorithm for three-dimensional wireless sensor networks[J]. Tongxin Xuebao/Journal on Communications, 2010, 31(9 A): p. 16-21.
    [101] Mishra, M.K.,M.M. Gore. On optimal space tessellation with deterministic deployment for coverage in three-dimensional wireless sensor networks[J]. LNCS, 2010(5966 ): p. 72-83.
    [102] Ammari, H.M.,S. Das. A study of k-coverage and measures of connectivity in 3D wireless sensor networks[J]. IEEE Transactions on Computers, 59(2): p. 243-257.
    [103] Aslam, N.,W. Robertson. Distributed coverage and connectivity in three dimensional Wireless Sensor Networks[C]// IWCMC 2010 - Proceedings of the 6th International Wireless Communications and Mobile Computing Conference. Caen, France: Association for Computing Machinery.
    [104] Bai, X., C. Zhang, D. Xuan, J. Teng, W. Jia. Low-connectivity and full-coverage three dimensional wireless sensor networks[C]// Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc). New Orleans, LA, United states: Association for Computing Machinery, 2009.
    [105] Alam, S.M.N.,Z.J. Haas. Coverage and connectivity in threedimensional networks[C]// the ACM/IEEE International Conference on Mobile Computing and Networking(MobiCom). 2006.
    [106] Bai, X., C. Zhang, D. Xuan, W. Jia. Full-Coverage and k-Connectivity (k = 14, 6) Three Dimensional Networks[C]// Joint Conference of the IEEE Conference on Computer and Communications(IEEE INFOCOM). 2009.
    [107] Ammari, H.M.,S.K. Das. Critical density for coverage and connectivity in three-dimensional wireless sensor networks using continuum percolation[J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(6): p. 872-885.
    [108] Watfa, M.K.,S. Commuri. A coverage algorithm in 3d wireless sensor networks[C]// 1st International Symposium on Wireless Pervasive Computing. 2006.
    [109] Huang, C.-F., Y.-C. Tseng, a.L.-C. Lo. The coverage problem in three-dimensionalwireless sensor networks[C]// IEEE Global Communications Conference,Exhibition & Industry Forum(Globecom). 2004.
    [110]张宝利,于峰崎,张足生.一种能量有效的三维传感器网络覆盖控制算法[J].传感技术学报, 2009, 22(2): p. 258-263.
    [111] HD, M.,L. YH. On Coverage Problems of Directional Sensor Networks[C]// Internal Conference on Mobile Ad-hoc and Sensor networks. 2005.
    [112] Osais, Y.E., M. St-Hilaire, F.R. Riu. Directional Sensor Placement with Optimal Sensing Ranging, Field of View and Orientation[J]. Mobile Network Application, 2010, 15: p. 216-225.
    [113] Han, X., X. Cao, E.L. Lloyd, C.-C. Shen. Deploying Directional Sensor Networks with Guaranteed Connectivity and Coverage[C]// 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. 2008.
    [114] Tao, H.M.,L. Liu. Coverage-Enhancing Algorithm for Directional Sensor Networks[C]// International Conference on Mobile Ad Hoc Sensor Networks (MSN). 2006.
    [115] Ai, J.,A.A. Abouzeid. Coverage by Directional Sensors in Randomly Deployed Wireless Sensors Networks[J]. Jounral of Combinatorial Optimazition, 2006(11): p. 21-41.
    [116] Fusco, G.,H. Gupta. Selection and Orientation of Directional Sensors for Coverage Maximization[C]// SECON. 2009.
    [117] Ma, H., X. Zhang, A. Ming. A Coverage-Enhancing Method for 3D Directional Sensor Networks[C]// the 28th Annual Joint Conference of the IEEE Conference on Computer and Communications(IEEE INFOCOM). 2009.
    [118] Zhao, M.-C., J. Lei, M.-Y. Wu, Y. Liu, W. Shu. Surface coverage in wireless sensor networks[C]// the 28th Annual Joint Conference of the IEEE Conference on Computer and Communications(IEEE INFOCOM). Rio de Janeiro, Brazil, 2009.
    [119] Bereketli, A.,O.B. Akan. Communication coverage in wireless passive sensor networks[J]. IEEE Communications Letters, 2009, 13(2): p. 133-135.
    [120] N, A., K. S, J. S. Probabilistic coverage in wireless SeNsor networks[C]// the 30th Anniversary IEEE Conference on Local Computer Networks(LCN). New York, 2005.
    [121] S, M.,K. F. Exposure in wireless ad-hoc sensor networks[C]// the ACM/IEEE International Conference on Mobile Computing and Networking(MobiCom). 2001.
    [122] Rui, W., X. Zhang, C. Wenmin, X. Weixin. Fuzzy coverage for sensor networks[J]. Chinese Journal of Scientific Instrument, 2009, 30(5): p. 954-959.
    [123] Rui, W., C. Wenmin, X. Weixin. Sensor density for fuzzy coverage in sensor networks[J]. Chinese Journal of Scientific Instrument, 2007, 28(8): p. 171-174.
    [124] Wang, P.-C., T.-W. Hou, R.-H. Yan. Maintaining coverage by progressive crystallattice permutation in mobile wireless sensor networks[C]// InternationalConference on Systems and Networks Communication (ICSNC). 2006.
    [125] Gong, W.-B., Y.-L. Chang, Z. Shen, Y. Zhang. Mobile deployment based on minimum coverage overlap in wireless sensor networks[J]. Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20(13): p. 3604-3609.
    [126] Howard, A., M.J. Mataric, G.S. Sukhatme. Mobile Sensor Network Deployment using Potential Fields: A Distributed, Scalable Solution to the Area Coverage Problem[C]// In DARS 02. Fukuoka, Japan, 2002.
    [127] A.Howard, M.J. Mataric, G.S. Sukhatme. An Incremental Self-Deployment Algorithm for Mobile Sensor Networks[J]. Autonomous Robots, Special Issue on Intelligent Embedded Systems, 2002, 13(2): p. 113-126.
    [128] Zou, Y.,K. Chakrabarty. Uncertainty-Aware and Coverage-Oriented Deployment for Sensor Networks[J]. Journal of Parallel and Distributed Computing, 2004, 64(7): p. 788-798.
    [129] S.Poduri,G.S.Sukhatme. Constrained Coverage for Mobile Sensor Networks[C]// Proceedings of IEEE International Conference on Robotics and Automation(ICRA'04). New Orleans, LA,USA, 2004.
    [130] Porta, T.F.L., G. Cao, G. Wang. Movement-Assisted Sensor Deployment[J]. IEEE Transactions on Mobile Computing, 2006, 5(6): p. 640-652.
    [131] Bartolini, N., T. Calamoneri, T.L. Porta. Autonomous deployment of heterogeneous mobile sensors[C]// International Conference on Network Protocol (ICNP). 2009.
    [132] Guiling, W., C. Guohong, P. Tom La. A Bidding Protocol for Deploying Mobile Sensors[C]// Proceedings of the 11th IEEE International Conference on Network Protocols(ICNP). IEEE Computer Society, 2003.
    [133] Wang, W., V. Srinivasan, K.-C. Chua. Coverage in Hybrid Mobile Sensor Networks[J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2008, 7(77): p. 1374-1387.
    [134] Wang, Y.-C., W.-C. Peng, M.-H. Chang, Y.-C. Tseng. Exploring load-balance to dispatch mobile sensors in wireless sensor networks[C]// IEEE the 16th International Conference on Computer Communications and Networks(ICCCN). 2007.
    [135] Butler, Z.,D. Rus. Event-based motion control for mobile-sensor networks[J]. IEEE Pervasive Computing Magazine, 2003, 2(4): p. 34–42.
    [136] Cheng, W., M. Li, K. Liu, Y. Liu, X.-Y. Li, X. Liao. Sweep Coverage with Mobile Sensors[C]// IEEE International Parallel&Distributed Processing Symposium(IPDPS). Miami,Florida USA, 2008.
    [137] Li, X., H. Frey, N. Santoro, I. Stojmenovic. Focused-Coverage by Mobile Sensor Networks[C]// IEEE 6th International Conference on Mobile Adhoc and Sensor Systems(MASS). 2009.
    [138] Luo, J., D. Wang, Q. Zhang. Double Mobility: Coverage of the Sea Surface withMobile Sensor Networks[C]// the 28th Annual Joint Conference of the IEEE Conference on Computer and Communications(IEEE INFOCOM). Rio de Janeiro, Brazil, 2009.
    [139] Ye, F., G. Zhong, S. Lu, L.Zhang. PEAS: A Robust Energy Conserving Protocol for Long-lived Sensor Networks[C]// in IEEE International Conference on Network Protocols(ICNP). 2003.
    [140] Zhang, M., M.C. Chan, A.L. Ananda. Coverage Protocol for Wireless Sensor Networks Using Distance Estimates[C]// mesh and Ad Hoc Communications and Networks(SECON). San Diego, California, 2007.
    [141] Kui, W., G. Yong, L. Fulu. Lightweight Deployment-Aware Scheduling for Wireless Sensor Networks[J]. Mobile Network and Application, 2005, 10(6): p. 837-852.
    [142] M.Cardei,D.-Z.Du. Improving Wireless Sensor Network Lifetime through Power Aware Organization[C]// ACM Wireless Networks. 2005.
    [143]顾小丰,孙世新,卢光辉.计算复杂性[M].北京:机械工业出版社, 2005.
    [144] http://www.interq.or.jp/japan/se-inoue/epyro.htm.
    [145] http://www.xbow.com/products/wireless sensor networks.htm.
    [146] Henzelman, W.Application-Specific Protocol Architectures for Wireless Networks[D].Massachusetts: Massachusetts Institute of Technology, 2000.
    [147] Wang, B., W.Wang, V.Srinivasan, K.C.Chua. Information Coverage for Wireless Sensor Networks[J]. IEEE COMMUNICATIONS LETTERS, 2005, 9(11): p. 967-969.
    [148] Wang, B., K.C. Chua, V. Srinivasan, W. Wang. Information coverage in randomly deployed wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2007, 6(8): p. 2994-3004.
    [149] Wang, W., V. Srinivasan, K.-C. Chua, B. Wang. Energy-efficient Coverage for Target Detection in Wireless Sensor Networks[C]// The International Conference on Information Processing in Sensor Networks (IPSN). Cambridge, Massachusetts, 2007.
    [150] Xing, G., R. Tan, B. Liu, J. Wang, X. Jia, C.-W. Yi. Data fusion improves the coverage of wireless sensor networks[C]// Proceedings of the Annual International Conference on Mobile Computing and Networking( MOBICOM). Beijing, China, 2009.
    [151] Varshney, P.K. Distributed Detection and Data Fusion[M].Berlin: Springer, 1997.
    [152] Luo, X., M. Dong, Y. Huang. On Distributed Fault-tolerant Detection in Wireless Sensor Networks[J]. IEEE Transactions on Computers, 2006, 55(1): p. 58-70.
    [153] Clouqueur, T., K.K. Saluja, P. Ramanathan. Fault Tolerance in Collaborative Sensor Networks for Target Detection[J]. IEEE Transactions on Computers, 2004, 53(3): p. 320-333.
    [154]王建华.应用数学丛书:对策论[M].北京:清华大学出版社, 1986.
    [155] Kannan, R.,S.S. Iyengar. Game-theoretic models for reliable pathlength and energy-constrained routing with data aggregation in wireless sensor networks[J]. IEEEJournal of Selected Areas in Communications, 2004: p. 1141–1150.
    [156] Crosby, G.V.,N. Pissinou. Evolution of cooperation in multi-class wireless sensor networks[C]// the 32nd IEEE Conference on Local Computer Networks(LCN). 2007.
    [157] Sadagopan, N., M. Singh, B. Krishnamachari. Decentralized utility based sensor network design[J]. Journal of ACM Mobile Networks and Applications, 2006(3): p. 341-350.
    [158] Kodialam, M.,T.V. Lakshman. Detecting network intrusions via sampling: a game theoretic approach[C]// the 20th Annual Joint Conference of the IEEE Conference on Computer and Communications(IEEE INFOCOM). 2003.
    [159] McCune, J.M., E. Shi, A. Perrig, M.K. Reiter. Detection of denial-ofmessage attacks on sensor network broadcasts[C]// IEEE Symposium on Security and Privacy. 2005.
    [160] Kloder, S.,S. Hutchinson. Partial barrier coverage: Using game theory to optimize probability of undetected intrusion in polygonal environments[C]// IEEE International Conference on Robotics and Automation(ICRA). Pasadena, CA, USA, 2008.
    [161]谢政.对策论导论[M].北京:科学出版社, 2010.
    [162]孙康.n人合作博弈理论、方法及其在战略联盟上的应用[D].大连:大连理工大学, 2005.
    [163] Apt, K.,A. Witzel. A generic approach to coalition formation[C]// the International Workshop on Computational Social Choice (COMSOC). Amsterdam, Netherlands, 2006.
    [164] K.Apt,T.Radzik. Stable partitions in coalitional games[C]// arXiv:cs/0605132v1 [cs.GT]. 2006.
    [165] http://cnds.ece.nus.edu.sg/mobile/mobile4.mpg.
    [166] Chellappan, S., X. Bai, B. Ma, D. Xuan. Sensor networks deployment using flip-based sensors[C]// IEEE International Conference on Mobile Adhoc and Sensor Systems Conference (MASS). 2005.
    [167] G.Wang, G.Cao, T.Porta, W.Zhang. Sensor Relocation in Mobile Sensor Networks[C]// the 24th Annual Joint Conference of the IEEE Conference on Computer and Communications(IEEE INFOCOM). Miami,Florida,USA, 2005.
    [168] Chakrabarty, K., S.S. Iyengar, H. Qi, E.C. Cho. Grid Coverage of Surveillance and Target location in Distributed Sensor Networks[J]. IEEE Transaction on Computers, 2002.
    [169]谢金星,邢文训.网络优化[M].北京:清华大学出版社, 2000.
    [170] Lawler, E.L. Combinatorial Optimization:Networks and Matroids[M].NewYork: Renehart and Winston Press, 1977.
    [171] Grimmett, G. Percoaltion[M].Berlin: Springer-Verlag, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700