用户名: 密码: 验证码:
人体三维远红外成像及其测温的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是危害人体健康的一大杀手。面向肿瘤的预防、检测和治疗的先进医学成像器械是目前生物医学工程领域的重要研究内容之一。远红外成像能以无损、实时、动态的功能成像,为医师提供许多疾病的诊断依据。然而单纯的二维远红外热像图仅能反应出人体体表有限的热场信息。故将人体体表三维数据与二维远红外热像图相融合来实现人体局部/全身三维远红外成像,并进一步求得体内异常热源的深度、形状与温度等信息,将有重要的医学应用前景。但是,该研究存在的关键问题是高速、高解析度、高精度的人体体表的三维数据获取、人体体表的三维远红外成像及三维远红外热像图与体内异常热源的关系。
     因此,本文的技术路线和研究目标是:第一阶段,发展高解析度的人体局部/全身三维测量技术;第二阶段,发展高解析度的人体局部/全身三维远红外成像技术;第三阶段,针对人体局部特定部位的传热特性,结合热量传递的基本理论,发展三维远红外无损测温技术。由此,本文着重开展了以下六个方面的研究工作:
     1、基于移动面阵投影的人体局部高解析度三维成像技术
     在分析基于三角法的结构光三维成像原理的基础上,阐述了其成像特性,发明了投影仪生成纵向移动面阵投影条纹及其累积细分的方法;提出避免相邻结构光在成像时互搭的条件和面阵投影结构光的优化布局方法;分析三维成像的空间有效视场范围;设计和制作了多套实验装置,并进行比较,实现了高解析度的人体局部三维成像
     2、基于面阵投影同步光路旋转的人体大视角三维成像技术
     在分析两种同步扫描三维成像方案的基础上,发明了基于面阵投影与同步光路旋转的三维成像方法;分析了该类型成像系统的空间扫描轨迹和有效视场范围;建立了其运动场景序列图像采集中避免运动模糊现象的数学模型;优化设计和制作了实验装置,实现了对特定景深范围内目标的高速、高解析度的大视角三维成像
     3、结构光三维测量系统的标定技术
     针对上述两项研究工作,发明了采用平面显示屏生成主动光源标定板的方法;先后提出“基于已知标定板空间位置”和“基于立体视觉原理”的多点拟合结构光的标定方法;提出了同步光路旋转大视角成像系统的标定方法;并通过实验验证了上述理论能有效提高三维测量系统的精度。
     4、人体局部高解析度三维真彩色/远红外成像技术
     阐述了不同视觉传感器间图像融合的过程,建立了二维远红外热像图与二维真彩色图中划定小区域间的映射关系;设计和制作了实验装置,实现了高解析度的人体三维真彩色/远红外成像,获取了高精度的三维远红外热像图。
     5、基于金膜反射光路旋转的大视角远红外立体成像技术
     发明了基于光路旋转的远红外立体成像的方法,讨论了其运动场景序列图像采集中避免运动模糊现象的数学模型;设计和制作了面向人体全身应用的基于金膜反射光路旋转的远红外成像的实验装置,实验证明该方法能够实现大视角远红外成像和基于立体视觉原理的三维远红外成像,并且能够集成于基于同步光路旋转的大视角三维远红外成像系统中。
     6、三维远红外热像图实现内部热源无损测温技术
     介绍了面向人体局部近似均匀组织的传热学基本理论;实验验证了点(球)状热源在同种均匀组织中是以等温球面的形式进行热传递的;在三维远红外热像图中提取了等温球面上非共面的点集,求取了在均匀组织中点(球)状热源的空间位置和各等温球面的半径;以傅立叶定律等温球壁模型为基础,实现了三维热像图对点(球)状热源在蜡块和离体动物组织中的无损测温;同时,以傅立叶定律双层等温圆筒壁模型为基础,实现了三维热像图对线(柱)状热源在两层离体动物组织中的无损测温。
     上述研究成果能够被广泛应用于医学和其他工程领域,通过产业化的推广与改进,能够更好的服务于社会和人类。
Any of the various kinds of malignant neoplasms is a killer of humanbeings. Research on the novel medical imaging approaches for tumourimmunization, detection and therapy has become a hot topic in the biomedicalengineering community. The far-infrared (FIR) thermography, characterized bynoninvasive, real-time, dynamic functional imaging, can assist doctors indiagnosing different diseases. However,2D thermography can only providelimited information concerning the skin surface temperature. Therefore, it isassumed that the3D partial-and whole-body thermography can be realizedthrough combining3D surface models with2D thermal images. Furthermore,the3D thermography can obtain information of the inner abnormal heat sourcewhich includes the depth, shape and temperature. In spite of the obvioussignificance of these techniques, there remain some questions unanswered suchas the high-speed, high-resolution, accurate body surface acquisition, the3DFIR thermography and the non-invasive inner temperature measurements.
     To answer these questions, we carried out the following technicalprocedures to achieve the goals. Step1: The high-resolution3D measurementshave been developed for surface acquisition of the partial-and whole-body. Step2: The high-resolution3D FIR imaging technique has also been developed for3D thermography of the partial-and whole-body. Step3: The non-invasive innertemperature measurements based on3D FIR thermography have been proposed.To better understand the technical procedure, the following six problems havebeen addressed.
     1. High-resolution3D body imaging technique based on fringe projection
     The characteristics of the3D imaging system based on trigonometry havebeen analyzed. The innovation of the vertical-shifted pattern projection methodrealizes high-resolution3D imaging for parts of the body at a high speed. Then,optimal layout of fringe projection for3D measurements has been developed toavoid ambiguity. Therefore, the effective view of the3D measurement systemhas been modeled for optimal design.
     2.3D whole-body scanner based on fringe projection and synchronous opticalpath rotation
     The novel wide angle-of-view3D imaging system based on rotation ofoptical paths and vertical-shifted fringe projection has been developed. Theoptical paths of the projector and the receiver can be rotated synchronously when the scanning mirror sways under stepping motor control. The wideangle-of-view3D imaging system achieves3D dada acquisition of whole-bodysurface. Then, we have achieved the modeling mathematical analyses of blurringphenomena in the image sequence by scanning the whole-body at the maximumspeed.
     3. Calibration of3D imaging systems
     A novel calibration board based on the plane display screen has beeninvented. Then, the system calibration has been performed, which includeslocation and shape calibration of structured light slices. Meanwhile, we haveproposed two methods of structured light calibration through multi-point fittingof the light slices: one is based on the known location of the target plane and theother is the stereo vision idea. Afterwards, the calibration procedure of thewhole-body imaging system has also been developed. According to ourexperimental results, the proposed method improves3D measurement accuracysignificantly in comparison with previous methods.
     4. A high-resolution3D FIR thermal and true-color imaging system
     The paper has developed an imaging-sensor integrated system that cansynchronously acquire high-resolution3D FIR thermal and true-color images ofthe body surface. The proposed system integrates one FIR camera and one colorcamera with a3D structured light binocular profilometer. Afterwards, the precise 3D surface was fused with undistorted thermal and color images. Thus, over40,0003D thermal and over150,0003D color points can be obtained afterreconstruction. For the further application, the ROI (Region of Interest) in the2D temperature or color image can be checked and located on the correspondingposition on the other image through coordinate system transformation.
     5. A wide angle-of-view thermal imaging utilizing optical path rotation
     A wide angle-of-view FIR system based on the method of optical pathrotation has also been invented. The system has integrated one FIR camera andone rotating gold-sprayed mirror controlled by one stepping motor. The FIRcamera takes the image sequence from the rotating mirror in the real-timecapture mode. Meanwhile, the speed of pixel movement on the FIR imagingplane has been analyzed to obtain the fastest data acquisition without blurring.Besides, the view range of the proposed system is considered. Then, theprototype has been designed according to the simulation results. The experimentdata has verified the theory of motion blur and3D imaging. This thermalimaging technique can be integrated with3D whole-body scanner.
     6. Non-invasion inner temperature measurements based on3D FIRthermography
     The principles of the heat transfer have been introduced. A series ofexperiments have validated that the temperature field of the point heated source is distributed in the form of isothermal spherical surface. The isothermal curvecan be acquired by the3D thermography. Then, the variation of the isothermalcurves with different parameters of the heat sources involving the depth, shape,and temperature have also been investigated. Afterwards, according to theFourier’s law, non-invasive temperature measurements based on3D FIRthermography for the inner heated source can be achieved in the invariable heatfield. And the performance of this method has been experimentally evaluated.
     These research results can be widely applied to clinical medical engineeringand industrial automation.
引文
[1]世界卫生组织WHO,《世界癌症报告》,日内瓦,2003年.
    [2]南京市农民工大病医疗保险保障范围,http://www.js.xinhuanet.com/xin_wen_zhong_xin/2006-11/09/content_8478087.htm.
    [3]关于福州市城镇职工大病统筹基本医疗保险暂行办法的通知,http://www.mwyb.com/zc/zc27.htm.
    [4]上海市门诊大病医疗登记的范围,http://ybj.sh.gov.cn/guide/detailGuide.jsp?pkoid=25146
    [5]北京市大病医保项目,http://finance.sina.com.cn/money/insurance/bxdt/20070624/09043719145.shtml.
    [6]浙江省企业职工大病医疗保险暂行办法,http://www.hope.net.cn/medicare/20070604/157.html.
    [7]上海市城保参保人员的门诊大病治疗项目,http://ybj.sh.gov.cn/faq/detailFaq.jsp?pkoid=25328.
    [8]我国每年约有新发乳腺癌病例15万人,解放日报,2007年7月2日.
    [9]国家中长期科学和技术发展规划纲要(2006━2020年),中华人民共和国国务院,新华社北京2月9日电.
    [10] Cenica A., Nabavia G. D., Craena A. R. Et al. A CT Method to Measure Hemodynamics in BrainTumors: Validation and Application of Cerebral Blood Flow Maps[J]. American Journal of Neuroradiology2000,21:462-470.
    [11] Liu F., Zhao H., Crozier S. On the induced electric field gradients in the human body for magneticstimulation by gradient coils in MRI[J]. IEEE Trans. Biomedical Engineering2003,50(7):804-815.
    [12] Sriprasad S, Kooiman G.. G., Muir G. H. and Sidhu P. S. Acute segmental testicular infarction:differentiation from tumour using high frequency colour Doppler ultrasound[J]. British Journal ofRadiology2001,74:965-967.
    [13] Pareto D., Aguiar P., Pavama J. et al., Assessment of SPM in Perfusion Brain SPECT Studies: ANumerical Simulation Study Using Bootstrap Resampling Methods[J]. IEEE Trans. BiomedicalEngineering2008,55(7):1849-1853.
    [14] Alacam B., Yazici B., Intes X. et al., Extended Kalman Filtering for the Modeling and Analysis of ICGPharmacokinetics in Cancerous Tumors Using NIR Optical Methods[J]. IEEE Trans. BiomedicalEngineering2006,53(10):1861-1871.
    [15] Marine Soret, Stephen L. Bacharach and Irène Buvat. Partial-Volume Effect in PET Tumor Imaging[J].Journal of Nuclear Medicine2007,48(6):932-945.
    [16]关于自主研制我国精密医疗仪器的研究报告,中国工程院医学部,2005年5月.
    [17] Sterling B.B., Braig R. J., Goldberger S.D. et al. Non-invasive infrared absorption spectrometer formeasuring glucose or other constituents in a human or other body[P]. U.S. patent number:6,025,597.
    [18] Jones F. Bryan. A reappraisal of the use of infrared thermal image analysis in medicine[J]. IEEETransactions on Medical Imaging1998,17(6):1019-1027.
    [19]丁光宏,姚伟,褚君浩等.人体手臂部几个穴位与非穴位区红外辐射光谱特征[J],科学通报,2000,45(23):2531-2536.
    [20]胡翔龙,汪培清,许金森等.人体体表循经红外辐射轨迹的主要特征和显现规律研究[J],红外与毫米波学报,2001,20(5):325-328.
    [21]胡翔龙,许金森,叶蕾.人体体表循经红外辐射轨迹的加热诱发[J],红外与毫米波学报,2002,21(1):6-8.
    [22] Yasukiko O. and Isao U. Applying dynamic thermography in the diagnosis of breast cancer[J], IEEEEngineering in Medicine and Biology Magazine2000,19(3):42-51.
    [23] Jones BF, Plassmann P. Digital infrared thermal imaging of human skin[J], IEEE Engineering inMedicine and Biology Magazine2002,21(6):41-48.
    [24] Frize M., Herry C., Scales N. Processing thermal images to detect breast cancer and assess pain[C].4th International IEEE EMBS Special Topic Conference on Information Technology Applications inBiomedicine,2003April:234–237.
    [25] Rumiński J, Kaczmarek M, Renkielska A, and Nowakowski A. Thermal parametric imaging in theevaluation of skin burn depth. IEEE Trans Biomed Eng2007;54(2):303-12.
    [26] Nowakowski A., Kaczmarek M., Renkielska A. et al. Reaction of normal and burned tissue to coldexcitation[C].29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and BiologySociety, EMBC'07, Article number4352268:239-242.
    [27] S nmez B., Arbatli H., Tansal S.et al. Real-time patency control with thermal coronary angiography in1401coronary artery bypass grafting patients[J]. European Journal of Cardio-thoracic Surgery,2003,24(6):961-966.
    [28] Emery R.W., Emery A.M., Flavin T.F. et al. Revascularization using angioplasty and minimallyinvasive techniques documented by thermal imaging[J]. Annals of Thoracic Surgery,1996,62(2):591-593.
    [29] Wang H., Dwight R., Wade J. et al. IR imaging of blood circulation of patients with vasculardisease[C]. Proc. SPIE, Vol.5405,115(2004):115-123.
    [30] Wang W., Zeng Y., Ma D. et al. Clinical study on using thermal texture maps in SARS diagnosis[C].Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings26VII:5258-5264.
    [31] Vimeux F.C., Zwart D., Palussiere J. et al. C.T. Real-time control of focused ultrasound heating basedon rapid MR thermometry[J]. Invest Radiol.1999,34(3):190-193.
    [32] Gorny K.R., Hangiandreou N.J., Hesley G.K. et al. MR guided focused ultrasound: technicalacceptance measures for a clinical system[J]. Phys Med Biol.2006,51(12):3155-3173.
    [33]陈亚珠.口腔额面部恶性肿瘤超声热疗系统及其热化疗应用[R].项目成果鉴定报告,2004年11月.
    [34] Clement G.T. Perspectives in clinical uses of high-intensity focused ultrasound[J]. Ultrasonics.2004,42(10):1087-1093.
    [35] Coughlin C.T., Wong T.Z.,Ryan T.P. et al. Interstitial microwave in duced hyperthermia and iridiumbrachytherapyfor the treatment of obstructing biliary carcinomas[J]. Int J Hyperthermia1992,8:157-171.
    [36] Sato M.,Watanabe Y., Ueda S et al. Microwave coagulation therapy for hepatocellular carcinoma[J].Gastroenterology1996,110:1507-1514.
    [37] Murakami R.,Yoshimatsu S.,Yamashita Y. et al. Treatment of hepatocellular carcinoma: valueofpercutaneous microwave coagulation[J]. AJR AmJ Roentgenol1995,164:1159–1164.
    [38] Hamazoe R,Hirooka Y,Ohlani S,et al. Intraoperative microwave tissue coagulation astreatment forpatients with nonresectable hepatocellular carcinoma.Cancer,1995,75:794-800.
    [39] Goldberg S.N., Gazelle G.S. Radiofrequency tissue ablation: physical principles and techniques forincreasing coagulation necrosis [J]. Hepalogaslroenterology,2001,48(38):359-367.
    [40] Goldberg S.N., Stein M.C., Gazelle G.S., et al. Percutaneous radio frequency tissue ablation:optimization of pulsed-radiofrequency technique to increase coagulation necrosis [J]. J vase Interv Radiol,1999,10(7):907-916
    [41] Le V. RF. Laser hyperthermia and radio frequency ablation of hepatic lesions. Semin IntervRadiol,1997,14:313-324.
    [42] Goldberg S.N. Radiofrequency tumor ablation: principles and techniques. Eur J Ultrasound,2001,13(2):129-47.
    [43]陈亚珠,黄耀熊主编.医学物理学(研究生教学用书)[M].高等教育出版,2005年11月.
    [44] James E. K. High-intensity focused ultrasound in the treatment of solid tumours[J]. NATURE ReviewsCancer,2005,5(4):321-327.
    [45] Gertner M.R., Worthington A.E., Wilson B.C. et al. Ultrasound imaging of thermal therapy in in vitroliver[J]. Ultrasound in Medicine and Biology,1998,24(7):1023-1032.
    [46] Varghese T., Zagzebski J.A., Chen Q. et al. Ultrasound monitoring of temperature change duringradiofrequency ablation: Preliminary in-vivo results[J]. Ultrasound in Medicine and Biology,2002,28(3):321-329.
    [47] Salomir R., Vimeux F.C., Zwart J. et al. Hyperthermia by MR-Guided Focused Ultrasound:AccurateTemperature Control Based on Fast MRI and a Physical Model of Local Energy Deposition and HeatConduction[J]. Magnetic Resonance in Medicine,2000,43:342–347.
    [48] Weidensteiner C., Kerioui N., Quesson B. et al. Stability of Real-Time MR Temperature Mapping inHealthy and Diseased Human Liver, J. Magnetic Resibabce Imaging2004,19:438-446.
    [49] Hokland S., Pedersen M., Salomir R. et al. MRI-Guided Focused Ultrasound: Methodology andApplications, IEEE Trans. Medical Imaging2006,25(6):723-731.
    [50] Aksenov P., Clark I., Grant D. et al.3D thermography for quantification of heat generation resultingfrom inflammation[C]. Proc.8th3D modelling symposium, Paris, France,2003.
    [51] Blais F. Review of20years of range sensor development[J]. Journal of Electronic Imaging,2004,13(1):231-243.
    [52] Chen F., Brown G.M., and Song M. Overview of three-dimensional shape measurement using opticalmethods[J]. Optical Engineering2000,39(1):10–22.
    [53] Sansoni G., Carocci M., and Rodella R. Calibration and Performance Evaluation of a3-D ImagingSensor Based on the Projection of Structured Light[J]. IEEE Transactions on Instrumentation andMeasurement2000,49:628-636.
    [54] Wu X.F., Li D.H., Gang J. et al. A structured light-based system for human heads[J]. Optics and laserTech.2004,36(5):387-391.
    [55] Cheng V.S., Yang Q., Hui C., Chen Y.Z. Optimal layout of fringe projection for three dimensionalmeasurements[J]. Optical Engineering2008,47(5),050503,2008.
    [56] Lilley F., Lalor M.J., Burton D.R. Robust fringe analysis system for human body shapemeasurement[J]. Opt. Eng.2000,39(1):187-195.
    [57] Treleaven P. Sizing us up, IEEE Spectrum[J],2004,41(4):16-19.
    [58] http://www.tc2.com
    [59]邱文科.应用三度空间人体扫瞄技术于皮表面积模式之探讨[R].2001.http://www.iosh.gov.tw/data/f16/shp11_2_7.pdf
    [60] http://www.vitus.de/english/index.html
    [61] Daanen H. and Water J. Whole body scanners[J]. Displays1998,19(3):111-120.
    [62] Lu J.M. and Wang M.J. Automated anthropometric data collection using3D whole body scanners[J].Expert Systems with Applications2008,35(1-2):407-414.
    [63] http://www.jp.hamamatsu.com/products/opto-meas/pd369/c9036/index_en.html
    [64] Dekker L., Douros I., Buxton, B. et al. Building symbolic information for3D human body modelingfrom range data[C]. In: Proc. the second International Conference on3D Digital Imaging andModeling:388–397.
    [65] Xu B.G., Huang Y., Yu W., and Chen T. Three-dimensional body scanning system for apparel masscustomization[J]. Opt. Eng.2002,41,1475-1479.
    [66] Ge B.Z., Sun Y.C., Lv Q.N. et al. Data registration and integration of three-dimensional sensors[J]. Opt.Eng.2005,44,053601.
    [67] Giansanti D., Maccioni G., Gigante G.E. A comparative study for the development of a thermalodoscope for the wearable dynamic thermography monitoring[J]. Medical Engineering and Physics2006,28(4):363-371.
    [68] Giansanti D, Maccioni D. Design and construction of a closed loop phantom for skin-contactthermography. Med Eng Phys2008;30:41–47.
    [69] Zhao Q., Zhang J., Wang R. et al. Use of a thermocouple for malignant tumor detection[J]. IEEEEngineering in Medicine and Biology Magazine2008,27(1):64-66.
    [70]张克勤主编,乳腺癌的简易诊断方法液晶热图诊断及图谱[M].天津科技翻译出版社,1994年6月第1版.
    [71] Xiao H., Zhang Y.B., Wang A.B. Multispectral three-dimensional digital infrared thermal imaging[J].Opt. Eng.2003,42(4):906–911.
    [72]刘忠齐.热断层(TTM)医学评估技术的现状及展望[C],香山科学会议第207次学术报告文集主题报告,2003年9月3日~5日. http://www.bioyear.net/by0309/add/香山科学会议-报告文集.pdf.
    [73] Liu Z.A.,Wang C. Method and apparatus for thermal radiation imaging[P], U.S. Patent No6,023,637.
    [74] Qi H.R.,Liu Z.Q.,Wang C. Breast cancer identification through shape analysis in thermal texturemaps[C]. Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings,v2,2002, p1129-1130.
    [75] Qi H.R., Kuruganti P.T., Liu Z.Q. Early detection of breast cancer using thermal texture maps[C].2002IEEE International Symposium on Biomedical Imaging,7-10July2002:309-312.
    [76]江国泰.热断层(TTM)技术医学应用的现状及展望[C],中国生物医学电子学学术年会’2003:XV-XVI.
    [77] Jiang G..T., Qu T.T., Shang Z.G., Zhang X.Y. A Circuit Simulating Method for Heat Transferring inHuman Body Mechanism[C]. The26th Annual International Conference of the IEEE EMBS, CA, USASept.2004,1-5,5274-5276.
    [78]刘静,王存诚编著.生物传热学[M].科技出版社,1997年第一版.
    [79] Deng Z.S., and Liu J., Mathematical modeling on temperature mapping over skin surface and itsimplementation in disease diagnostics[J]. Computers in Biology and Medicine2004,34,495-521.
    [80] Deng Z.S.,Liu J. Analytical study on bioheat transfer problems with spatial or transient heating on skinsurface or inside biological bodies[J]. ASME Journal of Biome-chanical Engineering2002,124:638-649.
    [81] Arkin H., Xu L.X., Holmes K.R. Recent developments in modeling heat transfer in blood perfusedtissues[J]. IEEE Transactions on Biomedical Engineering1994,41(2):97-107.
    [82] Zhang A.L., Xu L.X., Sandison G.A. et al. A microscale model for prediction of breast cancer celldamage during cryosurgery[J]. Cryobiology2003,47(2):143-154.
    [83] Liu J., Chen X., Xu L.X. New thermal wave aspects on burn evaluation of skin subjected toinstantaneous heating[J]. IEEE Transactions on Biomedical Engineering1999,46(4):420-428.
    [84] Nakayama A., and Kuwahara F. A general bioheat transfer model based on the theory of porousmedia[J]. International Journal of Heat and Mass Transfer2007,51(11):3190-3199.
    [85] Lv Y.G., Liu J. Measurement of local tissue perfusion through a minimally invasive heating bead[J].Heat and Mass Transfer/Waerme-und Stoffuebertragung2007,44(2):201-211.
    [86] Neufeld E., Chavannes N., Samaras T. et al. Novel conformal technique to reduce staircasing artifactsat material boundaries for FDTD modeling of the bioheat equation[J]. Physics in Medicine and Biology2007,52(15), art. no.001:4371-4381.
    [87] Mital M., and Scott E.P. Thermal Detection of Embedded Tumors Using Infrared Imaging[J]. Journalof Biomechanical Engineering2007,129(1):33-39.
    [88] Zhao J.J., Zhang J., Kang N. et al. A two level finite difference scheme for one dimensional Pennes'bioheat equation[J]. Applied Mathematics and Computation2005,171(1):320-331.
    [89] Cheng S., Tu D., Li G. et al. Data fusion in machine vision integrated sensor[C]. Proceedings of SPIE,2002, Vol.4919:135-143.
    [90]金国藩,李景镇.激光测量学[M],第一版.北京:科学出版社,1998.
    [91] Chang M., Chang W.C., and Lin K.H. High speed three-dimensional profilometry utilizing laser diodearrays[J]. Opt. Eng.,2003,42(12),3595-3599.
    [92] Dipanda A. and Woo S. Efficient correspondence problem-solving in3-D shape reconstruction using astructured light system[J]. Opt. Eng.,200544(9),093602.
    [93]王宝光,贺忠海.结构光传感器模型及特性分析[J].光学学报2002,22(4):481-484.
    [94] Hyun K., and Gerthardt L.A. The use of laser structured light for3D surface measurement andinspection[C]. Proc. of the forth international conf. on CIMS and Auto. Tech.1994:215-221.
    [95] Gühring J. Dense3-D surface acquisition by structured light using off-the-shelf components[C].Proceedings of SPIE, vol.4309:220-31.
    [96] Park S.K., and Rahman R.Z. Fidelity analysis of sampled imaging systems[J]. Opt. Eng.1999,38(5):786-800.
    [97] Srinivasan V, Liu H C, Halioua M. Automated Phase-Measuring Profilometry of3-D DiffuseObjects[J]. Appl. Opt.,1984;23:3105-3108.
    [98] Arai Y., Yokozeki S., and Yamada T., Fringe-scanning method using a general function for ShadowMoiré[J]. Appl. Opt.1995,34,4877–4882.
    [99] D’Acquisto L., Fratini L., and Siddiolo A.M. A modified Moiré technique for three-dimensionalsurface topography[J]. Meas. Sci. Tech.2002,13:613–622.
    [100] http://www.thenerds.net/1/3/lcd-projector
    [101] http://www.mintron.com.cn/webapp/main.asp?sid=203
    [102] Rioux M. Laser range finder based on synchronized scanners[J]. Appl Opti.1984,11:3837-3844.
    [103] Rioux M. Design of large depth of view three-dimensional camera for robot vision[J]. OpticalEngineering1987,26(12):1245-1256.
    [104] Amann M.C., Bosch T., Lescure M. et al. Laser ranging: a critical review of usual techniques fordistance measurement[J]. Opt. Eng.2001,40(1):10–19.
    [105] Beraldin J.A., Blais F., Rioux M. et al. Eye-safe digital3-D sensing for space applications[J]. Opt.Eng.2000,39(1):196-211.
    [106] Reid G. T., Marshall S. J., Rioxon R. C. and Stewart H. A laser scanning camera for range dataacquisition. Journal of Physics D: Applied Physics1988,21,S1-S3/ECOOSA’88.
    [107] Golnabi H. Design and operation of a laser scanning system[J]. Optics&laser technology2000,32(4):267-272.
    [108] Reid I.D. Projective calibration of a laser-stripe range finder[J]. Image and vision computing1996,14:659-666.
    [109]王永仲,踽新军,胡心.智能光电系统[M].科技出版社,第一版,1999.
    [110] McAnally G. Beware the claims when shopping for a scientific camera[J]. LASER FOCUS WORLD,38(1):147.
    [111] Dinev P. Digital cameras balance resolution and speed[J]. LASER FOCUS WORLD2006,42(10):105-107.
    [112] Baykal I.C., and Jullien G.A. Self-synchronization of time delay and integration cameras[J]. J. Electr.Imag.2004,13(4):680-687.
    [113] Tsai R.Y. A versatile camera calibration technique for high accuracy3D machine vision metrologyusing off the shelf TV camera and lenses,1987,IEEE J RA-3(4):323-344.
    [114] Hao L.J., Cheng S., Chen Y.Z. Calibration for3D structured light measurement[J]. Journal ofShanghai Jiaotong University (Science)2007,12E (5):572-576.
    [115]马颂德,张正友.计算机视觉—计算理论与算法基础,科学出版社第一版,1997.
    [116] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence2000,22(11):1330-1334.
    [117] Heikkilay J. and Silven O., A Four-step Camera Calibration Procedure with Implicit ImageCorrection[C].1997Proceedings of the CVPR:1106-1112.
    [118] Stoyanov D., Camera Calibration Toolbox for Matlab, Available:http://www.vision.caltech.edu/bouguetj/calib_doc/
    [119] Maybank, S.J., Faugeras, O.D. A theory of self-calibration of a moving camera[J]. InternationalJournal of Computer Vision1992,8(2):123-151.
    [120] Luong Q.T., Faugeras O.D. Self-Calibration of a Moving Camera from Point Correspondences andFundamental Matrices[J]. International Journal of Computer Vision1997,22(3):261-289.
    [121] Zhang Z., Luong Q.T., Faugeras O. Motion of an uncalibrated stereo rig: Self-calibration and metricreconstruction[J]. IEEE Transactions on Robotics and Automation1996,12(1):103-113.
    [122] Luong Q.T., Viéville T. Canonical representations for the geometries of multiple projective views[J].Computer Vision and Image Understanding1996,64(2):193-229.
    [123] Maybank S.J. A theory of self-calibration of a moving camera[J]. International Journal of ComputerVision1992,8(2):123-151.
    [124] Zhang Z.Y. Flexible camera calibration by viewing a plane from unknown orientations[C].1999Proceedings of the IEEE ICCV,1:666-673.
    [125] Marita, T., Oniga, F., Nedevschi, S. et al. Camera calibration method for far range stereovisionsensors used in vehicles[C].2006IEEE Intelligent Vehicles Symposium, Proceedings, art. no.1689654:356-363.
    [126] Huang P.S., and Han X. On improving the accuracy of structured light systems[C].2006Proceedings of SPIE-The International Society for Optical Engineering6382, art. no.63820H.
    [127] Lin Z., Wong T.T., Shum H.-Y. Relighting with the reflected irradiance field: Representation,sampling and reconstruction[C].2001Proceedings of the IEEE Computer Society Conference on ComputerVision and Pattern Recognition1: I561-I567.
    [128] http://www.checkcost.co.uk/ag-neovo-ts-15s-15-xga-tft-lcd-monitor/p/158037/
    [129] Zhang S. and Huang P.S., Novel method for structured light system calibration[J]. OpticalEngineering,2006.45(8),Art No.083601-1-8.
    [130] Sansoni G., Carocci M., and Rodella R., Calibration and Performance Evaluation of a3-D ImagingSensor Based on the Projection of Structured Light[J]. IEEE Transactions on Instrumentation andMeasurement2000.49:628-636.
    [131] Cheng S., Tu D.W., Li G.Z. et al. Data fusion in machine vision integrated sensor[C]. SPIE Vol.4919:135-143.
    [132] Xu L. A Three Dimensional Shape Measurement Method: Structured Light Space-time Stereo.SPIE-IS&T,2006. Vol.6066: Art No.60660Q-1-8.
    [133] Norton J, Donaldson N, Dekker L.3D whole body scanning to determine mass properties of legs. JBiomech2002;35:81–6.
    [134] Dekker L., Buxton B. Automated landmarking for virtual human modelling[J]. IEEColloquium1998.433:81-83.
    [135] Dumas R., Aissaoui R., Mitton D. et al. Personalized body segment parameters from biplanarlow-dose radiography[J]. IEEE Transactions on Biomedical Engineering2005,52(10):1756-1763.
    [136] Runte C., Dirksen D., Deleré H. et al. Optical Data Acquisition for Computer-Assisted Design ofFacial Prostheses[J]. International Journal of Prosthodontics2002,15(2):129-132.
    [137] Palomar A.P., Calvo B., Doblaré M. An accurate finite element model of the cervical spine underquasi-static loading[J], Journal of Biomechanics2008,41(3):523-531.
    [138] Palomar AP, Calvo B, Herrero J, Lopez J, Doblare M. A finite element model to accurately predictreal deformations of the breast. Med Eng Phys2008; doi:10.1016/j.medengphy.2008.01.005.
    [139] Kimoto, K., and Garrett, N.R. Evaluation of a3D digital photographic imaging system of the humanface[J]. Journal of Oral Rehabilitation2007,34(3):201-205.
    [140] Westh user M, Bischoff G, B r cz Z, Kleinheinz J, Bally G, Dirksen D. Optimizing colorreproduction of a topometric measurement system for medical applications. Med Eng Phys2008;doi:10.1016/j.medengphy.2007.12.014.
    [141] Deng Z.S., Liu J. Enhancement of thermal diagnostics on tumors underneath the skin by inducedevaporation,2005Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings Vol.7, Art. No.1616253:7525-7528.
    [142] Nowakowski A.Z. Role of IR-thermal imaging and electroimpedance measurements in medicaldiagnostics[C].2005Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings Vol.7, Art. No.1616511:706-709.
    [143] Spalding S.J., Kent C.K., Boudreau R. Three-dimensional and thermal surface imaging producesreliable measures of joint shape and temperature: A potential tool for quantifying arthritis. ArthritisResearch and Therapy2008,10(1): Art. No. R10.
    [144] Cheng V.S., Zhang S., Chen Y.Z et al. A Stereo Thermographic System for Intra-operativeSurgery[C]. Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings Vol.7, Art. No.1616843,2005:1984-1987.
    [145] Song J., Na S., Kim H.G. et al. A depth measurement system associated with a mono-camera and arotating mirror[C].Lecture Notes in Computer Science, Vol.2532:1145-1152.
    [146] Cheng V.S., Zhang S., Lu X.S. et al. A wide angle-of-view thermal imaging system utilizing therotation of optical path[C]. Lecture Notes in Control and Information Sciences2007, Vol.362:99-104.
    [147] Ju X., Nebel J.-C., Siebert J.P.3D thermography imaging standardization technique for inflammationdiagnosis[C],2005Proceedings of SPIE, Vol.5640, art. no.46:266-273.
    [148] Bubien R.S., Knotts S.M., McLaughlin S. What you need to know about radiofrequency ablation[J].American Journal of Nursing1993,93(7):30-36.
    [149] Kudo M., Ding H., Onda H. et al. Detection of recurring lesion of hepatocellular carcinoma aftertherapy using Levovist enhanced second harmonic power Doppler/B mode imaging[J]. Ultrasound inMedicine and Biology2000,26(SUPPL.2): A162.
    [150] Minami Y., Kudo M., Kawasaki T. et al. Treatment of hepatocellular carcinoma with percutaneousradiofrequency ablation: Usefulness of contrast harmonic sonography for lesions poorly defined withB-mode sonography[J]. American Journal of Roentgenology2004,183(1):153-156.
    [151] Minami Y., Chung H., Kudo M. et al. Radiofrequency ablation of hepatocellular carcinoma: Value ofvirtual CT sonography with magnetic navigation[J]. American Journal of Roentgenology2008,190(6):W335-W341.
    [152] Cantwell C.P., Kenny P., Eustace S. Low radiation dose CT technique for guidance of radiofrequencyablation of osteoid osteoma[J]. Clinical Radiology2008,63(4):449-452.
    [153] Zhu, J.C., Yan, T.D., Morris, D.L. A systematic review of radiofrequency ablation for lung tumors[J]Annals of Surgical Oncology2008,15(6):1765-1774.
    [154] Steinke, K. Radiofrequency ablation of pulmonary tumours: Current status[J]. Cancer Imaging2008,8(1):27-35.
    [155] Gillams, A.R. Should hepatocellular carcinoma be ablated or resected[J]. Nature Clinical PracticeGastroenterology and Hepatology2007,4(11):586-587.
    [156] Garrean S., Hering J., Helton W.S. A primer on transarterial, chemical, and thermal ablative therapiesfor hepatic tumors[J]. American Journal of Surgery2007,194(1):79-88.
    [157] Gong, E.M., and Shalhav, A.L. Laparoscopic management of renal tumors[J]. Clinical GenitourinaryCancer2007,5(5):306-317.
    [158] Sherwood J.T., and Brock M.V. Lung cancer: New surgical approaches[J], Respirology2007,12(3):326-332.
    [159] Lewis A.M., and Martin R.C. The treatment of hepatic metastases in colorectal carcinoma[J].American Surgeon2006,72(6):466-473.
    [160] Rosenthal D.I. Radiofrequency Treatment[J]. Orthopedic Clinics of North America2006,37(3):475-484.
    [161]杨世铭编,传热学基础[M],高等教育出版社,第二版,2004年1月.
    [162] Whitaker S. Elementary heat transfer analysis[M]. Pergamon Press, Inc.1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700