用户名: 密码: 验证码:
道路几何设计对车辆行驶特性的影响机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然在过去几十年里手工计算、纸上画图的设计手段已经被CAD技术所取代,但平、纵、横分开考虑的设计习惯依旧没有改变,融于自然环境带来的唯一性,又使设计者不能像对待工业产品那样,用“设计-样品-试验-修改设计”手段实物测试出公路路线的使用性能,而是全凭以往的先验经验来把握线形质量,因此很难有针对性的修改设计方案。大量的设计缺陷和疏漏被带到运营中后,导致公路几何特性与车辆行驶特性、驾驶人特性三者之间的不匹配,最终形成众多的事故多发路段(多发位置)。所以,时至今日,在很多情况下保证行驶安全和驾乘舒适这两个基本性质仍得不到满足。
     但如果能够进行类似于机械产品那样的虚拟行驶试验,让车辆动力学模型在建好的三维路面模型上行驶,记录车辆各种响应随行驶里程或者时间的变化,进而评估道路几何设计的质量,显然是一种比较理想的路线质量检验和测试手段,这也正是我们的目的。为此,本文建立了“公路-驾驶人-车辆-环境”仿真系统(RDVES),根据输入的线形要素RDVES能快速得到路面的3维模型,导入整车动力学模型,再设置驾驶行为参数和环境影响后,即可实现三维空间路面上的车辆自动行驶,并且行驶过程可见。通过虚拟行驶试验,设计者能够依据车辆在未来道路的运动状态和驾驶操纵输入直接得到行驶不稳定位置和操纵困难路段,能够有针对性的修改设计参数,并观察改进效果,直至得到让人满意的设计。还可以像对待机械产品那样来对公路路线进行变参数试验研究,找出公路几何特性、车辆特性、驾驶人行为特性三者之间相互作用规律,比如公路线形参数变化对车辆运动学行为和驾驶行为的影响规律,车辆性能和尺寸参数改变、驾驶行为改变时公路线形参数应该如何作出调整,等等,最终使公路设计能够适应不断发展变化的现代车辆设计和驾驶人行为。
     论文首先研究了“公路-驾驶人-车辆-环境”仿真系统(RDVES)的子系统建模、耦合技术,然后以验证后的RDVES为虚拟试验手段结合道路实测,进行了线形的设计质量分析和设计控制、不利环境行车模拟、单车事故的力学机理分析、平曲线上的车辆运动规律和驾驶行为分析等研究工作,主要的创新性成果如下:
     1.空间3维路面的快速建模算法
     论文第二章设计了型元解析算法和型值点插值重构算法,分别用于生成设计阶段和老旧道路的3维路面模型。在型元法中,路线被看作是逐个型元的首尾顺次衔接,由“直线+回旋线1+圆曲线+回旋线2”4个线元构成平面型元,由“直坡+竖曲线”构成纵面型元。通过线元的缺省和型元间的组合,可以构造出任意复杂的线形组合。在设计重构算法时,本文用Multi-Quadric径向基函数作为基本计算单元,提出了“局部、交叠”、“对调值域与自变量域”的插值重构算法,避免了大规模、带状分布、非单射的道路型值点数据引起的系数矩阵病态,试验结果表明该算法能够得到平滑柔顺的空间路面形状。
     2.整车动力学建模、轮胎-路面作用模型、以及环境影响设置
     论文第3章给出了作为多体动力学建模基础的悬架、转向、横向稳定杆、制动、驱动、车架等子系统多种结构形式的拓扑构型,结合基于MF公式的Pacejke'89和Pacejke'94轮胎模型,完成了ADAMS环境下的小客车、面包车和卡车的整车动力学模型创建。本文设计了左、右半幅路面和不同区段路面分别设定附着系数的算法,以此来模拟积水、湿滑、结冰的作用(比如将位于试验区段的路面附着系数调低)。在车身上侧向施力,能得到侧风作用下的行驶过程,比如模拟车辆行驶在桥面上。
     3.车辆行驶方向和速度控制模型
     我们在此方面的工作(论文第3章)是建立了能够反映公路线形变化、车辆动力性能、和驾驶人特性三者影响的期望速度计算模型。其计算策略是,由容许侧向加速度ay,tol确定曲线范围内的速度幅值,由减速度ab和加速度ax控制曲线间的速度变化,由环境速度Vx,max控制路段的最大速度。根据公路实测数据,获得了以道路参数为自变量的Vx,max、ay,tol、ax、ab函数模型,使得线形变化能够反映在驾驶人的期望速度选择上。同时,提出了针对不同设计速度分别标定模型参量的方法,解决了现有模型不管如何修改参数,都无法适应不同设计车速的公路的问题。
     4.基于速度特性的路线质量分析
     论文第5章分析了行驶速度波动特性与道路几何设计之间关系,我们发现:车辆以指定速度行驶时,驾驶人的车速调整频度与小半径曲线的使用次数正相关,所以可通过设计手段来控制路线的驾驶负荷;车辆即将失控时,侧向速度曲线会发生突变,并导致纵向速度不连续,因此可用速度连续性来辨识出对行车构成威胁的位置,进而修改设计
     自由可变速行驶(运行车速)时,车辆的进弯减速度要明显大于出弯加速度,减速起点和加速终点通常在回旋线之外,所以先前在缓和段上调整速度的假设是不符合实际的,对于高速公路,目前假定的0.5m/s2的加速度也明显过大;有效控制速度波动的最好办法是使相邻的曲线半径和直线长度相互接近、并且直线不宜过长;除线形因素之外,汽车自身旋转动能和平动动能之间的转化也是导致速度在琐碎山区路线上频繁波动的重要原因,在一致性评价时应加以考虑;四级公路绝大部分路段的行驶速度远高于设计速度,因此目前的速差标准可能需要重新考虑。
     5.基于行驶稳定性和操纵负荷特性的路线质量分析
     在第6章中,以轮胎垂向力为介质分析了路线的侧翻可能性,以轮胎侧偏角、操舵力、方向盘转角为指标分析了超高/反超高对车辆方向控制的影响,以方向盘转角、转速为参量分析了路线的操纵负荷特性,我们发现:同样是在设计速度附近行驶,道路等级越低,曲线上行驶车辆的侧翻可能性越大;坡向改变了载质量在各轴间的分配,增加了下坡的侧翻可能性。超高会显著减小曲线行驶时的轮胎侧偏角,从而改善行驶稳定性(高速时尤为明显),超高还会减小方向盘角输入和操舵力,让驾驶变得容易,反超高的作用则正好相反;设置超高的不利影响是增加曲线行驶时的车身侧倾摆动,特别是低速车辆。
     符合规范要求的山岭区各等级公路的ay能够满足可耐受的要求,但还达不到舒适性要求;操纵负荷与路线的设计速度负相关,即高速公路负荷最小而四级路最大,并且,四级公路如省略回旋线,还会使车辆在进弯和出弯时的day/dt会超过1.0m/s3,导致行车不舒适;当半径增大到一定程度时,曲线行驶和直线行驶已经不存在差别,但都需要一定的方向干预;卵形线是比较有利于车辆操纵的,方向盘转角可以在中插回旋线上平滑过渡,而凸型线则要求一直调整方向盘角输入,平曲线的YZ和ZH共点时,YZ/ZH点处的曲率跳跃会导致操纵困难,建议处理成卵形线形式。
     6.不利条件下的行驶稳定性分析
     论文第7章分析了侧风、直道积水、和隧道洞口等3种典型环境力对行驶稳定性的力学影响,结果表明:侧风行驶时,驾驶者最好把乘客和货物安排在车辆后端,使车辆重心位于风压中心之后,以增强车辆的路线保持能力;车辆重心升高会降低侧风条件下的抗干扰能力,所以应控制装载后的重心高度;降低车速能够减少侧风作用下的车辆侧向位移和偏转。
     直道积水事故的发生机理为:装载、路拱、左右弹簧刚度不一致→重心偏离纵轴线→偏载→轮载较大的一侧轮胎摩擦力大→轮周接地线速度大→轮心位移大→偏驶或者侧滑;两侧轮胎都和积水接触时,车辆会向轮载较轻的一侧滑转;如仅有一侧轮胎驶过积水,汽车将向积水一侧偏转,驾驶者应朝着无水侧转动方向盘。
     速度越高,车辆在路面过渡位置的横向摆动越大,因此可以把进洞端的过渡布置在大多数车辆制动结束之后,出洞端把过渡安排在加速起点之前;曲线隧道过渡位置的附着系数突变会引起进洞车辆的额外偏转,附着系数差异越大偏转越明显,随后的低附着路面还会造成制动不稳定;为了减小附着系数波动,洞内路面的附着系数应维持在0.35之上。
     7.平曲线事故的力学机理分析
     论文第8章分析S型曲线缓和段事故和弯道避让事故的力学机理,主要的结论有:车辆以某个速度行驶在S型曲线时,迟滞效应将导致轮胎侧弯变形在回旋线上无法充分释放,残余变形将被带到拐点后的另一反向回旋线上,在反向侧向力作用下残余变形的突然释放会导致胎面与路面之间的相对滑动,从而使车辆失去侧向稳定性,所以S型曲线缓和段上的车辆事故并不一定是侧向力超过路面附着极限所致;由于小圆上的侧弯变形较大并且不易释放,事故更容易发生在S型曲线的小圆→大圆行驶方向上;降低缓和段事故的办法是使轮胎侧弯变形得到释放,拉长小圆回旋线、在拐点处插入短直线都可以起到这个作用。
     弯道避让过程中轨迹曲率的额外增加改变了对向行驶车辆安全性,为了减小驶回阶段的附加曲率,曲线外侧车辆在交会之后应尽量延长驶回轨迹;曲线内侧车辆避让轨迹的附加曲率主要出现在开始阶段和驶回阶段,提早避让、平缓驶回是增加车辆稳定性的有效措施。
     8.弯道几何特性对车辆运动学行为和驾驶行为的影响规律。
     论文第9章分析弯道几何特性与切弯效用——弯道速度增量△VC和轨迹半径增量△R之间的关系,从而解释了什么样的弯道容易发生切弯(切内线)行驶这一问题。现行的公路设计方法假定车辆轨迹与道路中线一致,但实际上切弯时的车辆轨迹半径远大于弯道设计半径,这时,该如何实现我们的设计控制理念?在本章的研究结论能够帮助设计者知道在什么样的参数组合情况下,弯道才会对轨迹起控制作用,又是在什么样的参数组合下,驾驶入会选择切弯行驶,切弯后的轨迹半径是多大,过弯速度又是多少等一系列关键问题。
     同时,分析了车辆在单曲线上的转向行为,得到了切弯和跟随两种行使方式下车辆驶进/驶离曲线时的转向长度、转向时间、和转向特征点,从而实现了对驾驶人转向行为的清晰刻画。转向长度.半径关系曲线可以为回旋线长度设计提供依据,因为目前国际上认为理想的回旋线长度应该等于车辆的转向长度。转向时间.半径关系曲线还可以提供另外一种回旋线控制,因为一些国家的设计政策中规定回旋线长度应等于转向时间乘以设计车速。转向提前距离.半径关系曲线可以提高弯道诱导标设置合理性,因为我们能够知道驾驶人是在什么位置开始转向的。
Despite traditional alignment design method such as determination of horizontal or vertical location and drawing on papers using a pen manually has been replaced by CAD technique, dimensions of horizontal, vertical and cross section are still determined separately. Due to the unique of each alignment fitting the topography, the procedure of "design-prototype-test-redesign" commonly used to manufacturing is not suitable for highways designers. Therefore, highway designers are hard to make target modification, and quality of alignment is determined by the early experience of designer's. Numbers of design drawbacks preserved into operation phase always result in the mismatch of highway alignment, modern vehicle and driver behavior, and accident clusters everywhere. So, to this day, driving safety and riding comfort can not be reached for highway design.
     If virtual roadway test like used to machinery production can be apllied in alignment design, let vehicle dynamics model run on 3D road models and log the dynamics/kinematics response, can also a good testing instrument, and it is the main objective of this paper. In this context, the virtual driving system of "roadway-driver-vehicle-enviroment" is develpoed in the paper. According to input date of alignment parameters,3D roadway models can be obtained rapidly, if a full vehicle model inducted, parameters of driving behavior and enviroment impact defined togeter, vehicle model driving on 3 D roadway model can be relized and the driving process is visible. Through conducting virtual driving test, designers can identify the location of driving instability or difficulty in vehicle control and modify its design value based on vehicle response and steering input, can see the effects of improment. By means of virtual roadway test, we can parameterize the design value of hignway alignment and obtain the relationship among highway geometry features, vehicle kinematics and driver behavior, such as the effect of change in alignment parameter on vehicle kinematics and driver behavior, the effect of change in vehicle parameter and driver behavior on highway alignment values, etc. which all can result in highway design compatible with modern vehicle design and driver behavior.
     In the paper, creation and coupling of subsystems of "roadway-driver-vehicle-enviroment" are firstly completed, then the simulation system is applied in evaluation of alignment design, driving simulation under under adverse conditions, mechanism analysis of single vehicle run-off-road, and vehicle motion performance and driving behavior on curved segment, which can be described as follows:
     1. Creation of 3D roadway models.
     The roadway module in the second section of the paper can generate 3D road-surface used to contact with tires, and can deal with arbitrary complex alignment in current design. For different conditions of use, we design two formats of input date and their corresponding algorithm. One input is the design values of horizontal/vertical alignment and cross-section, conception of "typology element" is put forward in the paper, which takes a highway alignment as the sequence of "typology element". A horizontal "typology element" is composed of four elements of "tangent+spiral 1+ circular+spiral 2". A vertical "typology element" is composed of a straight grade and its adjacent vertical curve. The other input is spatial coordinate of sampling point in analyzed roadway, which suitable for alignment date absent. We select multi-quadric radial basis function as the interpolation function, and put forward reconstruction algorithm of "local, overlapping" and "exchange of range and independent variable". These algorithm can prevent ill-conditioning of coefficient matrix caused by huge scale, belt distribution, and non-injection of date, and can obtain smooth and continued 3D road-surface.
     2. Creation of full vehicle dynamics models, tire-road contact models, and environment impact.
     In the third section of the paper, the topology of suspension, steering gear, anti-roll bar, brake, drive axle, driving-line and frame with different configuration are analyzed, and a database of vehicle models is developed. Which include a microbus, two passenger cars, and a truck built in ADAMS. Tire models come from an edition of magic formula Pacejke’94 or Pacejke’89. To let tire contact with road-surface, we design an algorithm of defining friction coefficient that can define a half roadway or several segments a different coefficient with others. Environment impact IS simulated through tire-road contact model and vehicle models, such as define a small friction coefficient for a given segment to simulate the effect of ice or water gathered, and act a lateral force on vehicle body to simulate the process of driving in lateral wind.
     3. Steering and speed models.
     Our innovative work in this aspect is developing a prediction model of desired speed on a given highway, which can take in account highway geometry features, vehicle dynamics, and driving behavior. Principle of determination of desired speed is that, the desired speed on curve areas should meet the condition:the lateral acceleration of vehicle bodies no more than the tolerated value aytoal; speed change between two adjacent curves is subject to the acceleration rate ax and deceleration rate ab, and the desired speed is always no more than the environment speed Vxmax. According to speed measurement date on real road, we developed the models of aytoal, ab, ax, and Vxmax·Vxmax is a function of average change rate of curvature and total roadway width, aytoal, ab and axare all functions of curve radii and lane width, so they change along roadway. Currently, models developed by foreign researchers are often aiming at several rural roads in level or level-hilly areas, despite how modify model parameters, the model can not suitable for highways of different design speed in China. Therefore, we put forward a method of calibrate model parameters for design speed separately, by this way, we can use a unitive model to deal with highways of different design speed.
     4. Evaluation of highway alignment based on speed.
     In the fifth section of the paper, we analysis the speed along given roads. Our conclusions are as follows:When driving at a constant speed, the frequency of driver change pedals is equal to the use of sharp curves, therefore, we can control highway's driving workload by alignment design. When driving vehicle reaches such a situation of lose control, the profile of lateral speed will has a catastrophe in magnitude and cause discontinuity in longitudinal speed, so we can use the continuity of speed to evaluate the vehicle stability when driving at a constant speed, and further do a judgement whether exists threaten to driving vehicle in difficult segment and whether to refine design.
     For free driving, our observation indicates that, deceleration rate while entering curve is always more than acceleration rate while exiting curve; beginning point of slow down and ending point of speed up are always beside the spirals, so the suppose of speed change in spirals is wrong. In addition, for freeway, acceleration rate of 0.5m/s2 is too high. The best method to control speed fluctuation is let the curve radii and tangent length of adjacent element similar, and tangent should be short. Besides alignment, the reason cause speed fluctuant frequently on complex and trivial roads in mountainous area is the exchange between kinetic energy of rotation and translational energy, so, we should take in account the factor. Criteria of deference between operation speed and design speed less than 20km/h may not suitable for lower standard rural roads, while for freeway design in high standard, operation speed method also not suitable.
     5. Evaluation of highway alignment based on vehicle driving stability and steering workload.
     In the sixth section of the paper, rollover probability of alignment is evaluated by indicator of vertical force of tires; effect of superelevation/reverse superelevation on steering control is analyzed by measurement of tire slip angle, steering force and steering input; and steering workload of alignment is measured by medium of steering input and its angular speed. Our main conclusions are as follows:within curve areas, rollover probability increases as design speed of the road decreases when driving speed around design speed. Exposure can change load sharing effect among front/middle/rear axle, and further change the rollover probability of upgrade and downgrade, the results indicate downgrade is favorable to rollover. Superelevation can reduce tire slip angle when driving on curve, therefore, stability of driving vehicle is improved. In addition, superelevation also can reduce steering input and the force acting steering wheel and make handing easy. But its disadvantage is increasing vehicle's lateral inclination when traveling on curves. Reverse superelevation make against stability of running vehicle on curves, it can increase tire slip angle, steering force, and steering input.
     Lateral acceleration of running vehicle will no more than tolerated limit, but it exceeds the comfort limit, if the highway alignment meet the design standard recommended in Chinese policy. If spiral no exists in the fourth-class roads, change rate of lateral acceleration when entering/exiting curve will larger than 1.0 m/s3. There does not exist difference between steering on curve and steering on tangent if curve radii exceeds a certain value, but they all need steering corrections. Even in mountain terrain, steering workload of freeway alignment is very small; although riding comfort of secondary roads is not as good as freeways, alignment of secondary roads can not lead to drivers stress; third-class roads may cause drivers who like high speed stress. Egg-shape curves are in favor of steering control, because steering wheel angle can change in the middle spirals, whereas, convex curves call for continuous steering input. When point of circular to tangent overlap point of tangent to spiral, the skip of horizontal curvature will result in difficulty in steering, so, this overlapping should be eliminated and change this alignment combination to an egg-shape curve.
     6. Vehicle driving stability under adverse conditions.
     In the seventh section of the paper, the effect of crosswind, water gathered on tangent, and tunnel entrance/exit on driving vehicle are analyzed, our main findings as follows:To assure the straight line performance of driving vehicle, drivers should let passengers and goods close to rear end of their vehicles, by this mean, vehicle'cg can locate behind wind pressure center. Vehicle's straight line performance increases as its cg reduces, vice versa, so drivers should control the height of center of gravity of laden vehicle. Drivers decrease their speed before entering crosswind areas can reduce the lateral displacement and deflection angle.
     Mechanism of crash on tangent segment gathered water is that, unbalanced loading, road crown, difference in spring stiffness of both side→cg of vehicle departures its longitudinal axis→unbalanced wheel load between right to left→the tire with larger load has larger friction forcee→it has larger linear rolling speed→it has larger displacement in wheel center→side skidding occurs. If tires of two sides simultaneously contact with water, vehicle will deflect toward the side of lighter tire load. If one side tires contact with water, vehicle will deflect toward the water areas.
     The abrupt change in adherence at location of pavement transition of curved tunnel entrance can cause additional deflection of driving car, and cement pavement lower adherence in sequence can lead to instability of braking vehicle. Yaw motion of driving vehicle at location of pavement transition increases as speed increases, so we can layout the transition location of entrance behind the end of brake and the transition location of exit before the beginning of acceleration. The abrupt change in adherence at location of pavement transition is the factors that mostly contribute to the occurrence of accidents near tunnel opening, to reduce the yaw motion caused by adherence change, and assure adherence of inside tunnel more than 0.35.
     7. Mechanism of several typical run-off-road crashes on horizontal curves.
     In the eighth section of the paper, we simulate the process of avoiding on curved segment and recur the process of vehicle running off roadway on spiral of S-shape curve, our findings are as follows:When vehicle travels at a special speed, lateral deformation of tire generated on circular will not release adequately on the adjacent spiral, residual deformation of tire will be maintained to the spiral jointed another circular and will release suddenly under increasing lateral force cause by spiral, which will result in lateral slip between tire and pavement and cause vehicle instability. The crashes caused by hysteresis effect of tire more often occur on the detection of sharp curve to flatter curve, because sharp circular curves often joint to shorter spirals, which results in residual deformation. The best method to reduce these crashes is releasing tire's lateral deformation adequately, so, increase the spiral length or insert a tangent at point of reversing curvature can reach this effect.
     When Avoiding on curved segment, increase/decrease in curvature of track results in change in driving safety of two running vehicle in opposite. To reduce the additional increment in track curvature while recovering, the driver in outside curve should prolong the recover track of vehicle. The driver inside curve should begin his lane change earlier and recover smoothly, because the additional curvature always occurs on the phase of avoiding beginning and recovering.
     8. Effect of change in bend geometry on vehicle kinematics and driving behavior.
     In the ninth section of the paper, we analyzed the effect of change in bend features on two benefits resulting from corner cutting driving pattern, speed increment and radii flatting on curves, consequently, answer the question of where drivers cut the curve. Current alignment design assume track the same as road centerline, but when driver choose corner cutting pattern, radii of track will exceeds design value of curve radii a lot, at this time, how can we achieve our design control? According to our findings, designers can know in which kind of parameters combination the curve can really influence driver's speed choice and track radii equal to curve design radii; and in which kind of parameters combination drivers will cut the curve, how much the track radii and traveling speed when corner is cut.
     In this section, we also analyzed the steering behavior while vehicle driving on simple curves. Steering time, steering distance and steering characteristic point are obtained, therefore, steering behavior on simple curves can be depicted clearly. Profile of steering length versus curve radii in this section can provide design control for spiral length, because a typical viewpoint currently believes desired spiral length equal to the distance traveled during the steering time. Profile of steering time depending curve radii in this section can provide another control for spiral design, because spiral length recommended in design policies of several countries no less than steering time multiply design speed. In addition, profile of advanced steering length versus curve radii can help designers install curve alignment markers rightly, because we can know where drivers begin their steering.
引文
[1]Torbic D J, Harwood D W, Gilmore D K, et al. A Guide for Reducing Collisions on Horizontal Curves[R]. Transportation Research Board, Washington D C,2004.
    [2]Neuman T R, Pfefer R, Slack K L, et al. A Guide for Addressing Run-Off-Road Collisions[R]. Transportation Research Board, Washington D C,2003
    [3]Neuman T R, Pfefer R, Slack K L, et al. Guide for Addressing Head-On Collisions[R]. Transportation Research Board, Washington D C,2003.
    [4]Turner-Fairbank Highway Research Center. Evaluation of Design Consistency Methods for Two-Lane Rural Highways[R]. FHWA-RD-99-174. Federal Highway Administration, Washington DC,1999.
    [5]Zegeer C V, Stewart J R, Council F M, et al. Safety Effects of Geometric Improvements on Horizontal Curves[R]. Transportation Research Board, Washington D C,1991
    [6]Cinneide D O. The relationship between geometric design standards and safety[C]//AASHTO, International Symposium on Highway Geometric Design Practices, Washington D C, Transportation Research Board,1998.
    [7]Zegeer C, Stewart R, Reinfurt D, et al. Cost effective geometric improvements for safety upgrading of horizontal curves[R]. FHWA-RD-90-021. FWHA, Washington D C,1990.
    [8]Turner-Fairbank Highway Research Center. Interactive Highway Safety Design Model:Getting Started Guide[R]. Federal Highway Administration, Washington D C,2003
    [9]Hassan Y, Gibreel G, Easa S. M. Evaluation of highway consistency and safety:practical application[J]. Journal of Transportation Engineering,2000,126(3):193-201.
    [10]Harwood D W, Council F M, Hauer E, et al. Prediction of the expected safety performance of rural two-lane highways[R]. FHWA-RD-99-207. Office of Safety Research and Development, FHWA, Virginia,2000.
    [11]Cafiso S, Cava G L, Montella A. Safety index for evaluation of two-lane rural highways[J]. Journal of the Transportation Research Board,2007:136-145.
    [112]Hassan Y, Sayed T, Tabernero V. Establishing practical approach for design consistency evaluation[J]. Journal of Transportation Engineering,2001,127(4):295-302.
    [13]杨少伟.道路勘测设计[M].北京:人民交通出版社,2004.
    [14]张磊,罗庆.津蓟高速公路延长线运行速度安全性检验[J].公路交通科技应用技术版,2007,(7):179-182.
    [15]田兆丰,陈飞.基于运行车速的公路线形安全性检验[J].交通标准化,2006,(11):160-163.
    [16]巩妮娜.公路项目设计阶段运行速度协调性评价[J].交通标准化,2007,(11):70-71.
    [17]冯桂炎.公路设计交通安全审查手册[M].北京:人民交通出版社,2000.
    [18]许润龙,吴克海,雷茂锦,等.道路安全审计理论及应用[M].北京:人民交通出版社,
    [19]Tang Luliang, LI Qingquan. The research of transect-based three-dimensional road model [J/OL]. http://www.isprs.org/congresses/istanbul2004/comm5/papers/544.pdf
    [20]Osama M, Ahmed H. Data acquisition and analysis for highway construction using geographic information systems[J]. Canadian Journal of Civil Engineering,2003,30(3):533-542.
    [21]Fitzpatrick K, Elefteriadou L, Harwood D W, et al. Speed prediction for two-lane rural highways[R]. FHWA-RD-99-171. Office of Safety Research and Development, FWHA, Virginia,1999.
    [22]Piras C, Pinna F. Local tests of the operating speed models for curves[C]// Attidel 4th International SIIV Congress, SIIV, Palermo (ITA),2007.
    [23]Gibreel G M, Easa S M, Hassan Y, et al. State of the art of highway geometric design consistency[J]. Journal of Transportation Engineering,1999,125(4):305-313.
    [24]Bonneson J, Zimmerman K. Procedure for Using Accident modification factors in the highway design process[R]. FHWA/TX-07/0-4703-P5. Texas Department of Transportation Research and Technology Implementation Office, Texas,2007.
    [25]Fitzpatrick K, Lord D, Park B J. Horizontal curve accident modification factor with consideration of driveway density on rural, four-lane highways in texas[C]//TRB, Transportation Research Board 88th Annual Meeting. Washington D C, TRB,2009.
    [26]Cinneide O’D, Judith M, Terence R. The effect of geometric elements on interurban accident rates[C]//TRB,3rd International Symposium on Highway Geometric Design, TRB, Chicago, 2005.
    [27]Caliendo C, Guida M, Parisi A. A crash-prediction model for multilane roads[J]. Accident Analysis and Prevention,2007,39(4):657-70.
    [28]Othman S. Influence of Road Feature Variables on Accident Rate[R]. Chalmers University of Technology, Goteborg,2008.
    [29]Iyinam A F, lyinam S, Ergun M. Analysis of Relationship Between Highway Safety and Road Geometric Design Elements:Turkish Case[J/OL]. http://www.trafficforum. ethz.ch/vwt_2003 /beitraege/V WT19proceedings_contributi on_91.1-91.8.pdf
    [30]Pratico F.G., Leonardi G., Scopelliti F, et al. Assessing road safety levels in a road network on the basis of unlocalised accident data[C]//Attidel 4th International SIIV Congress, SIIV, Palermo (ITA),2007.
    [31]David J. Forkenbrock, Norman S. J. Foster. Accident cost saving and highway attributes [J]. Transportation,1997,24(1):79-100.
    [32]John Milton, Fred Mannering. The relationship among highway geometrics, traffic-related elements and motor-vehicle accident frequencies[J]. Transportation,1998,25(4):395-413.
    [33]裴玉龙,马骥.道路交通事故道路条件成因分析及预防对策研究[J].中国公路学报,2003,16(4):77-82.
    [34]Fitzpatrick K, Wooldridge M D, Tsimhoni Omer, et al. Alternative design consistency rating methods for two-lane rural highways[R]. FHWA-RD-99-172. Office of Safety and Traffic
    Operations R&D, FHWA, Georgetown,2000.
    [35]王广山.高速公路设计一致性评价模型研究[D].北京:北京工业大学,2000.
    [36]Watters P, Mahony M O. The relationship between geometric design consistency and safety on rural single carriageways in Ireland[C]//Leeuwenhorst Conference Centre, European Transport Conference 2007, The Netherlands.2007.
    [37]Habib C M, Polus A, Farah H. Further evaluation of the relationship between enhanced consistency model and safety of two-lane rural roads in israel and germany[J]. EJTIR,2008, 8(4):320-332
    [38]Crisman B, Marchionna A, Perco P. Operating speed prediction model for two-lane rural roads[C]//TRB.3rd International Symposium on Highway Geometric Design. Chicago: Transportation Research Board,2005.
    [39]Park Y, Saccomanno F F. Evaluating speed consistency between successive elements of a two-lane rural highway[J]. Transportation Research Part A,2006,40(5):375-385.
    [40]Dell A G, Esposito T, Lamberti R, et al. Operating speed model on tangents of two-lane rural highways[C].4th International Siiv Congress-Palermo (Italy),2007
    [41]Christopher M, John M. M. Geometric design guidelines to achieve desired operating speed on urban streets[C]//ITE Annual Meeting Compendium, Washington DC, Institute of Transportation Engineers,1995:70-74.
    [42]Gibreel G M, Easa S M, EL-Dimeery I A. prediction of operating speed on three-dimensional highway alignments[J]. Journal of Transportation Engineering,2001,127(1):21-30.
    [43]杨少伟.可能速度与公路线形设计方法研究[D].西安:长安大学,2004
    [44]杨少伟,石飞荣,潘兵宏,等.可能速度及其在公路线形设计中的应用方法[J].长安大学学报(自然科学版),2004,24(3):1-4.
    [46]杨志清,高旺生,郭忠印,等.基于运行车速的高速公路线形安全性评价[J].重庆交通学院学报,2006,25(5):132-135.
    [47]李晓华.基于可能速度的交通安全评价研究[D].哈尔滨:哈尔滨工业大学,2006.
    [48]JTG/T B05-2004,公路项目安全性评价指南[S].
    [49]高建平,郭忠印.基于运行车速的公路线形设计质量评价[J].同济大学学报(自然科学版),2004,32(7):906
    [50]吴德华,方守恩.高速公路线形设计的质量量化评价模型[J].同济大学学报(自然科学版),2005,33(11):1469
    [51]Michele Adolini, L Elefteriadou. Development of operating speed models for trucks on two lane rural highways[J/OL]. http://www.pti.psu.edu/pdfs/PTICONF01/michelle.PDF
    [52]Bucchi A, Biasuzzi K A new operating speed model for rural roads on grades[C]//International SIIV Congress on “New Technologies and Modeling Tools for Roads-Applications to Design and Management". Firenze,2004.
    [53]Jun Wang. Operating speed models for low speed urban environments based on in-vehicle GPS data[D]. Georgia Institute of Technology, Georgia,2006.
    [54]Thurber j moffett. Building Highway Systems with Computer Graphic Simulations[J]. Proceedings of the IEEE,1974,62(4):429-442
    [55]王文锐.基于三角数模的公路全景动态透视图的制作及演示[D].西安:西安公路交通大学,1998.
    [56]郑艳.道路三维可视化研究[D].阜新:辽宁工程技术大学,2006.
    [57]Janikula Thomas, Garrick N W. Three-dimensional visualization approach to illustrating esthetic concepts for highway design[J]. Transportation research record,2002, (1796):35-40.
    [58]Hassan Y, Easa S M. Effect of vertical alignment on driver perception of horizontal curves[J]. Journal of Transportation Engineering,2003,129(4):399-407.
    [59]Taiganidis 1, Kanellaidis G. Approximate Perspective Design of Roads[J]. Journal of Transportation Engineering,1999,125(4):314-323.
    [60]Li Qingquan, Tang Luliang, Zuo Xiaoqing, et al. Transect-based three-dimensional road modeling and visualization[J]. Geo-Spatial Information Science,2004,7(1):14-17.
    [61]Han Kai. Middleton Dan, Clayton. Development of interactive virtual reality visualization system with open-source technologies[J]. Accession Number:01041092. Journal of the Transportation Research Board,2006, pp 134-142.
    [62]Robert E, Skinner Jr. Highway design and construction:the innovation challenge[J]. The Bridge, 2008,38(2):1-8.
    [63]Fu Xinsha, Li Haifeng, Zhu Juan, et al. Architecture analysis of three dimensional highway real-time system[C]//University of Pretoria:25th Annual Southern African Transport Conference, SATC,2006.
    [64]Choi Hyun, Kang In Joon, Nam Kwang Woo. Utilizing 3d web-based gis for highway simulation[J/OL]. www.aars-acrs.org/acrs/proceeding/ACRS2005/Papers/D2-P8.pdf
    [65]Khattak A J, Shamayleh H. Highway safety assessment through geographic information system-based data visualization [J]. J. Comp. in Civ. Engrg,2005,19(4):407-411.
    [66]Danijel Rebolj. Integrated information system supporting road design, evaluation, and construction[J]. Computer-Aided Civil and Infrastructure Engineering,2002,13(3):179-187.
    [67]Haworth N L, Triggs T J, Grey E M. Driver fatigue:concepts, Measurement and crash countermeasures[R]. Report No. CR72. Human factors group(monash university),1988.
    [68]Jahn G, Oehme A, Krems J F, et al. Peripheral detection as a workload measure in driving: Effects of traffic complexity and route guidance system use in a driving study[J]. Transportation Research Part F,2005,8(3):255-275.
    [69]Alexei R Tsyganov, Randy B Machemehl, Nicholas M Warrenchuk, et al. Before-after comparison of edgeline effects on rural two lane highways[R]. FHWA/TX-07/0-5090-2. Center for Transportation Research (University of Texas),2006
    [70]A Hamish Jamson, Natasha Merat. Surrogate in-vehicle information systems and driver behaviour:Effects of visual and cognitive load in simulated rural driving[J]. Transportation Research Part F,2005,8(1):79-96.
    [71]Jennifer A Healey, Rosalind W Picard. Detecting stress during real-world driving tasks using physiological sensors[J]. IEEE Transactions on Intelligent Transportation Systems,2005,6(2): 156-166.
    [72]Miguel A Recarte, Luis M Nunes. Effects of verbal and spatial-imagery tasks on eye fixations while driving[J]. Journal of Experimental Psychology:Applied,2000,6(1):31-43.
    [73]李德慧,陈永胜,荣建,等.换车道行为过程中的人眼注视特征[J].人类工效学,2007,13(2):32-35.
    [74]Niels Egelund. Spectral analysis of heart rate variability as an indicator of driver fatigue[J]. Ergonomics,1982,25(7):663-672.
    [75]Omer Tsimhoni, Paul A Green. Visual demand of driving and the execution of display intensive in vehicle tasks[C]. Roceedings of the human factors and ergonomics society 45th annual meeting,2001.
    [76]Backs Richard W, Lenneman John K, Wetzel Jacob M, et al. Cardiac measures of driver workload during simulated driving with and without visual occlusion[J]. The Journal of the Human Factors and Ergonomics Society,2003,45(4):525-538.
    [77]William J Horrey, Christopher D Wickens, Kyle P Consalus. Modeling drivers'visual attention allocation while interacting with in vehicle technologies[J]. Journal of Experimental Psychology: Applied,2006,12(2):67-78.
    [78]郑柯,江立生,荣建,等.高速公路平曲线半径对行车心生理反应影响研究[J].公路交通科技,2004,21(5):5-7.
    [79]王书灵,陈金川,刘小明,等.基于驾驶人心理反应的安全坡度研究[J].公路交通科技,2007,24(2):126-129.
    [80]潘晓东,杨珍,朱照宏.驾驶人心率和血压变动与山区公路曲线半径关系[J].同济大学学报(自然科学版),2005,33(7):900-903.
    [81]潘晓东,林涛,杨轸.驾驶人心率血压与山区公路横向力系数关系[J].同济大学学报(自然科学版),2006,34(6):748-751.
    [82]郑柯,荣建,任福田.驾驶人行车紧张度与平曲线半径和车速之间关系分析[J].土木工程学报,2003,36(7):57-60.
    [83]Ralf Heger. Driving behavior and driver mental workload as criteria of highway geometric design quality[C]//TRB. International Symposium on Highway Geometric Design Practices. Boston:TRB,1998.
    [84]Tim Horberry, Janet Anderson, Michael A Regan, et al. Driver distraction:the effects of concurrent in-vehicle tasks, road environment complexity and age on driving performance[J]. Accident Analysis and Prevention,2006,38(1)::85-191.
    [85]D B Pape, V K Narendran, M J Koenig, et al. Dynamic vehicle simulation to evaluate countermeasure systems for run-off-road crashes[J]. SAE 960517,1996.
    [86]Yuting Rui, F Saleem, Jianhua Zhou. Road load simulation using effective road profile[J]. SAE 971512,1997.
    [87]J A Hadden, J H Everson, D B Pape, et al. Modeling and analysis of drive/vehicle dynamics with "run-off-road" crash avoidance systems[C]. ISATA, Paper No 97SAF020. Florence, Italy, 1997, pp.343-350.
    [88]Glen Koorey. Assessment of rural road simulation modelling tools[C]//IPENZ Transportation Group Technical Conference 2002
    [89]Brian G Mchenry. Simulation models of vehicle dynamics[C]//Proceedings of the national conference on future improvements to and supplemental guidance for AASHTO policy geometric design of highways and streets. TRB, Texas,1987.
    [90]李伟,杨少伟.基于汽车动力响应模型的路线使用质量评价[J].同济大学学报(自然科学版),2006,,34(3):350-354.
    [91]杨轸,潘晓东.考虑汽车动态响应的人-车-路闭环仿真模型[J].同济大学学报(自然科学版),2006,34(11):1479-1483.
    [92]Xiong Jian, Wan Huasen, Guo Fengxiang. Freeway design consistency evaluation-a case study on driving simulator[C]. ICTCT Extra Workshop, Beijing,131-142.
    [93]R Wade Allen, Paul S Fancher, William H Levison, et al. Simulation and measurement of driver and vehicle performance[C]//Transportation in the New Millennium. Washington, DC, Transportation Research Board,2000.
    [94]Duoduo Liao. A High-fidelity immersive cluster-based driving simulator for transportation safety research[C]//Proceeding of 2006 ACM International Conference on Virtual Reality Continuum and Its Applications, Hong Kong,2006:361-364.
    [95]Reiner Suikat. The new dynamic driving simulator at DLR[C]//DSC 2005 North America, Orlando,2005.
    [96]Theodore J Rosenthal, Jeffrey P Chrstos, Bimal L Aponso, et al. A driving simulator for testing the visibility and conspicuity of highway designs and traffic control device placement[C]. the 2004 TRB Annual Meeting, Washington, DC, TRB,2004.
    [97]J Berssenbrugge, J Bauch, J Gausemeier. A Night Drive Simulator for the Evaluation of a Predictive Advanced Front Lighting System[C]//Information & Communications Technology. ICICT'06. ITI 4th International Conference.ITICT,2006:1-2.
    [98]陈涛.人-车-路(环境)联合运行虚拟仿真理论与实现技术研究[D].西安,长安大学,2005.
    [99]M F Trentacoste. Integrating actual road design into highway driving simulators for research, design, and consumer information applications[J]. Advances in Transportation Studies an international Journal Section A 14 (2008):7-17.
    [100]Tim Horberry, Janet Anderson, Michael A Regan. The possible safety benefits of enhanced road markings:A driving simulator evaluation[J]. Transportation Research Part F,2006,9(1): 77-87.
    [101]Bella Francesco. Verification of the coordination of horizontal alignment and profile at the driving simulator[C]. Accession Number:01004374.3rd International Symposium on Highway Geometric Design,2005, Chicago
    [102]Francesco Bella. Driving simulator for speed research on two-lane rural roads[J]. Accident Analysis and Prevention,2008,40(3):1078-1087.
    [103]Stuart T Godley, Thomas J Triggs, Brian N Fildes. Driving simulator validation for speed research[J]. Accident Analysis and Prevention,2002,34(5):589-600.
    [104]Xuedong Yan, Mohamed Abdel-Aty, Essam Radwan. Validating a driving simulator using surrogate safety measures[J]. Accident Analysis and Prevention,2008,40(1):274-288.
    [105]魏朗,袁望方,陈涛.驾驶人道路安全感评价虚拟现实技术研究[J].安全与环境学报,2007,7(5):108-112.
    [106]M Ambroz, S Krasna, I Prebil.3D road traffic situation simulation system[J]. Advances in Engineering Software,2005,36(2):77-86.
    [107]Joze Balazic, Ivan Prebil, Niko Certanc. Computer simulation of the accident with nine victims[J]. Forensic Science International,2006,156(2-3):161-165.
    [108]Miha Ambroz, Gasper Sustersc, Ivan Prebil. Creating models of road sections and their use in driving dynamics simulations[J]. Vehicle System Dynamics,2007,45(10):911-924.
    [109]W R Kruger, O Vaculin, W Kortum. Multi-Disciplinary simulation of vehicle system dynamics[C]. Paper presented at the RTO AVT Symposium, held in Paris,2002.
    [110]Francesca La Torre, Lorenzo Domenichini, Federico Mancosu. The use'of handling simulation tools for road design and management[J/OL]. www.jegel.com/Surf2004/Files/Francesca%20La %20Torre.pdf.
    [111]Ren Wei-qun, Zhang Yun-qing, Jin Guo-dong. A new application of multi-body system dynamics in vehicle-road interaction simulation[J]. Wuhan University Journal of Natural Sciences,2003,8(2):379-382.
    [112]许金良,石飞荣,杨宏志,等.基于计算机仿真的公路安全设计方法[J].中国公路学报,2004,17(2):1-5.
    [113]杨宏志.人车路与环境系统仿真架构及实施策略研究[D].西安:长安大学,2003.
    [114]杨宏志,许金良.基于Multi-Agent的公路仿真系统框架[J].长安大学学报(自然科学版),2005,25(1):25-28.
    [115]徐进,彭其渊,邵毅明.路线及路面条件设计阶段的安全性评价仿真系统[J].中国公路学报,2007,20(6):36-42.
    [116]徐进,彭其渊,邵毅明.直线路段积水路面车辆事故产生机理分析[J].中国公路学报,2009,22(1):97-113.
    [117]Mikael Nybacka. Validation of ADAMSCar simulations and dynamic performance in multi-link suspensions[M]. Sweden:Lulea University of Technology,2005.
    [118]Steve van Herk, Antonia Terzi, Wubbo Ockels. Analysis of lateral dynamics and ride performance of the Superbus[J].SAE International Journal of Passenger Cars-Mechanical Systems,2009, (1):1492-1497.
    [119]Piyabongkarn D, Grogg J, Yuan Q H, et al. Dynamic modeling of torque-biasing devices for vehicle yaw control[R]. SAE Technical Paper 2006-01-1963. Warrendale, SAE Automotive
    Dynamics, Stability & Controls Conference and Exhibition,2006.
    [120]Yong Yang, Weiqun Ren, Liping Chen, et al. Study on ride comfort of tractor with tandem suspension based on multi-body system dynamics[J]. Applied Mathematical Modelling,2009, 33(1):11-33.
    [121]P.E. Uys, P.S. Els, M. Thoresson. Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds[J]. Journal of Terramechanics, 2007,44(2):163-175.
    [122]Z.S. Liu, C. Lu, Y.Y. Wang, et al. Prediction of noise inside tracked vehicles[J]. Applied Acoustics,2006,67(1):74-91.
    [123]LEE Jongchool, SEO Junghoon, HEO Jongho. Estimation of the design elements of horizontal alignment by the method of least squares[C]//FIG, New Technology for a New Century International Conference. Korea, FIG Working Week,2001.
    [124]刘苏,王文强,查旭东,等.基于法线偏差的旧路平面线形拟合精度评估方法[J].中国公路学报,2007,20(5):36-40.
    [125]张煜,江贵平,李树祥,等.用Multiquadric方法实现医学图像的弹性配准[J].第一军医大学学报,2002,22(7):584-587.
    [126]王建,黄毓瑜,金勇,等.基于测井数据的三维地质模型构建与可视化[J].测井技术,2003,27(5):410-412.
    [127]David T Sandwell. Biharmonic spline interpolation of geos_3 and saesat altmeter date[J]. Geophysical Research Letters,1987,14(2):139-142.
    [128]Yong-Qi Chen, Zhicai Luo. A hybrid method to determine a local geoid model-Case study[J].Earth Planets Space,2004,56(4),419-427.
    [129]Hong Y C, Mao X Z. A multiquadric interpolation method for solving initial value problems[J]. Journal of Scientific Computing,1997,12(1):51-55.
    [130]Franke, Richard. Scattered data interpolation:tests of some methods[J]. Mathematics of Computation,1982,38(157):181-200.
    [131]S K Sinha, M Mahakur, P N Mahajan. Meterorogical objective analysis using multiquadric interpolation scheme over india and adjoining region[J].Atmosfera,2002,15(4):209-222.
    [132]H Ding1, C Shu, D B Tang. Error estimates of local multiquadric-based differential quadrature (LMQDQ) method through numerical experiments[J]. Int. J. Numer. Meth. Engng 2005,63(11): 1513-1529.
    [133]S. A. Sarra. Integrated Multiquadric Radial Basis Function Approximation Methods[J]. Computers and Mathematics with Applications,2006,51(8):1283-1296.
    [134]Lavallee S, Brunie L, Mazier B, et al. Matching of medical images for computed and robot assisted surgery[J]. Annual International Conference of the IEEE Engineering in Medicine and Biolog Society,1991,13(1):39-40.
    [135]Karakacan A., Goksel C, Ipbuker C, et al. Multiquadric overlay of maps and images[C]//ISPRS Commission Ⅶ Mid-term Symposium "Remote Sensing:From Pixels to Processes", Enschede, the Netherlands,2006.
    [136]吴宗敏.函数的径向基表示[J].数学进展,1998,27(3):202-208.
    [137]Maithili Sharan, E J Kansa, Suman Gupta. Application of the multi-quadric method for numerical solution of elliptic partial differential equations[J]. Applied mathematics and computation,1997,84(2-3):275-302.
    [138]裴玉龙.道路勘测设计[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [139]Massachusetts Highway Department. Highway Design Manual[M]. Massachusetts:press of Mass Highway,1997.
    [140]Transit New Zealand. State Highway geometric design manual[M/OL]. http://www. transit.govt.nz/technical/view_manualljsp?content_type=manual&=edit&primary_key=19&acti on=edit.
    [141]张坤宜.缓和复曲线定位研究综述[J].中外公路,2005,25(4):4-7.
    [142 宣道光.缓和复曲线(卵型曲线)中插缓和曲线特性的研究[J].2005,(6):64-69.
    [143]宣道光.双卵形曲线的设计与应用[J].华东公路,1994,(1):46-51.
    [144]陈立平,李明兵,王书亭,等.双轴转向8×4货车多体动力学仿真分析及系统开发[J].汽车工程,2006,28(8):755-760.
    [145]常放,吕振华,郭孔辉.轿车多体系统动力学的CAE分析模型构建技术及应用[J].汽车技术,2009(3):6-10.
    [146]张立军,张宇,赵亮.基于悬架刚柔耦合模型的汽车平顺性[J].农业机械学报,2008,39(8):29-33.
    [147]陈立平,张云清,任为群,覃刚.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [148]李军,邢俊文,覃文洁.ADAMS实例教程[M].北京:北京理工大学出版社,2002.
    [149]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,2002.
    [150]MSC.Software著,邢俊文译.MSC.ADAMS\View高级培训教程[M].北京:清华大学出版社,2004.
    [151]陈军.MSC.ADAMS技术与工程分析实例[M].北京:水利水电出版社,2008.
    [152]陈家瑞.汽车构造(下册)第五版[M].北京:人民交通出版社,2006.
    [153]周林福.汽车底盘构造与维修[M].北京:人民交通出版社,2005.
    [154]Edwin Stone, David Cebon. A preliminary investigation of semi-active roll control[C]//In:6th International Symposium on Advanced Vehicle Control, AVEC2002, Hiroshima, Japan,2002.
    [155]Bayrakceken H, Tasgetiren S, Aslantas K. Fracture of an automobile anti-roll bar[J]. Engineering Failure Analysis,2006,13(5):732-738.
    [156]Per-Anders Hansson. Rear axle suspensions with controlled damping on agricultural tractors[J]. Computers and Electronics in Agriculture,1996,15(2):123-147.
    [157]Duquesne F, Kermis L, Verschoore R.Influence of differential locking on tractor work rate:part 2, Simulation of a two-wheel-drive tractor when turning[J]. Journal of Agricultural Engineering Research,1996,64(1):79-92.
    [158]王其东,乔明侠,梅奋永.汽车随机路面输入平顺性的仿真分析[J].合肥工业大学学报,2005,28(4):346-350.
    [159]刘婷,朱中华,姜武华.基于adams的商务车平顺性仿真[J].客车技术,2005,(3):32-35.
    [160]冉振亚,庞迪,赵树恩,等.PRO/E、 ADAMS软件在汽车操纵稳定性中的应用[J].重庆大学学报(自然科学版),2005,28(11):20-23.
    [161]褚志刚,邓兆祥,王攀,等.基于虚拟样机的汽车稳态转向特性改进研究[J].系统仿真学报,2006,18(1):106-109.
    [162]周学建,周志立,张文春.车辆动力学仿真中的轮胎数学模型研究现状[J].拖拉机与农用运输车,2002,(1):8-11.
    [163]Klecka Radim. Vehicle model for dynamics analysis and hil simulation[J/OL]. www.fs.vsb. cz/transactions/2007-2/1552_KLECKA_Radim.pdf
    [164]Xavier Claeys, Jingang Yi, Luis Alvarez, Roberto Horowitz, et al. A dynamics tire/road friction model for 3D vehicle control and simulation[C]//2001 IEEE Intelligent Transportation Systems Conference Proceeding, Oakland,2001,483-488.
    [165]E Velenis, P Tsiotras, C. Canudas-de-Wit, et al.Dynamic tire friction models for combined longitudinal and lateral vehicle motion[J]]. Vehicle System Dynamics,2005,43(1):3-29.
    [166]Pacejka H B. Tyre models for vehicle dynamics analysis[J]. Vehicle System Dynamics,1993, 21(SUPPL),1-185.
    [167]Pacejka H B, Bakker Egbert. Magic Formula tyre model[J]. Vehicle System Dynamics,1993, 21(SUPPL),1-18.
    [168]Zegelaar P W A, Gong S, Pacejka H B. Tyre models for the study of in-plane dynamics[J]. Vehicle System Dynamics,1994,23(SUPPL):578-590.
    [169]Pacejka H B, Besselink I J M. Proceedings of the 19972nd international colloquium on tyre models for vehicle dynamic analysis[J], Vehicle System Dynamics,1997,27(SUPPL),1-345.
    [170]Besselink I J M, Pacejka H B, Schmeitz A J C, et al. The MF-Swift tyre model:extending the magic formula with rigid ring dynamics and an enveloping model[J]. Review of Automotive Engineering,2005,26(2):245-252.
    [17]]张云清,陈伟,陈立平,等.Magic Formula轮胎模型参数辨识的一种混合优化方法[J].汽车工程,2007,29(3):250-254.
    [172]MDI. Using ADAMS/Tire[M]. Los Angeles:MSC.MDI,2002.
    [173]郭孔辉.驾驶人-汽车闭环系统操纵运动的预瞄最优曲率模型[J].汽车工程,19846(3):1-16.
    [174]Huei Peng, Masayoshi Tomizuka. Optimal preview control for vehicle lateral guidance[R]. UCB-ITS-PRR-91-16. Partners for Advanced Transit and Highways (PATH), California,1991.
    [175]高振海,管欣,郭孔辉.预瞄跟随理论和驾驶人模型在汽车智能驾驶研究中的应用[J].交通运输工程学报,2002,2(2):63-66.
    [176]高振海,管欣,李谦,等.驾驶人最优预瞄纵向加速度模型[J].汽车工程,2002,24(5): 434-437.
    [177]MD1. Using ADAMS/Driver[M]. Los Angeles:MSC.MDI,2002.
    [178]MDI. Using ADAMS/Driveline [M]. Los Angeles:MSC.MDI,2002.
    [179]Stamatiadis N, Gong H. Analysis of inconsistencies related to design speed, operating speed and design speed[R]. KTC-06-12/SPR286-05-1F. Kentucky Transportation Cabinet, Frankfort, 2004.
    [180]Hugemann W, Nicke M. Longitudinal and lateral accelerations in normal day driving[J/OL]. www. Unfall rekon struktion. de/pdf/itai_2003_english.pdf
    [181]Tokunaga R A, Asano M, Munehiro K, et al. Effects of curve designs and road conditions on driver's curve sharpness judgment and driving behavior[J]. Journal of the Eastern Asia Society for Transportation Studies,2005, (6):3536-3550.
    [182]Andrew M C, Odhams, David J C. Models of driver speed choice in curves[C]//7th International Symposium on Advanced Vehicle Control (AVEC 04). Delft:Royal Dutch Association of Engineers,2004:1-6.
    [183]Perco P, Robba A. Evaluation of the deceleration rate for the operating speed-profile model[C]//3rd International SIIV Congress:People, Land,; Environment and Transport Infrastructures. Bari, Politecnico di Bari,2005.
    [184]Moshe Hirsh. Probabilistic Approach to Consistency in Geometric Design[J]. Journal of Transportation Engineering,1987,113(3):268-276.
    [185]周波.山岭重丘连续长大下坡路段减速下坡车道研究与实验[D].兰州:兰州交通大学,2007
    [186]郭新涛.复合材料摩擦片热衰退机理初步研究[J].玻璃钢复合材料,2002;(6):15-17.
    [187]陈汉汛,朱攀.摩擦材料引起制动器热衰退的机理的研究与探讨[J].材料导报,2006,20(5):275-277.
    [188]王志刚.制动器摩擦热效应分析[J].润滑与密封,2005,30(6):164-167.
    [189]GB 5763-1998.汽车用制动器衬片[S].
    []90]余志生.汽车理论[M].北京:机械工业出版社,2008.
    [191]Xu Jin, Peng QiYuan, Shao YiMing. Effect of changing cross-section dimension of speed bumps on impact applied to pavement and vehicles[C]//International Conference on Transportation Engineering 2007, ChengDu,2007.
    [192]郭孔辉.驾驶人-汽车闭环系统操纵运动的预瞄最优曲率模型[J].汽车工程,1984,6(3):1-16.
    [193]Kazi Iftekhar Ahmed. Modeling drivers’acceleration and lane changing behavior[D]. Massachusetts Institute of Technology, Cambridge,1999.
    [194]于增亮.基于仿真环境驾驶人临界反应能力的研究[D].长春:吉林大学,2005.
    [195]Salvucci D D. Modeling driver distraction from cognitive tasks[C]//Proceedings of the 24th Annual Conference of the Cognitive Science Society. Mahwah" NJ:Lawrence Erlbaum Associates,2002.
    [196]Triggs T J, Harris W G. Reaction time of drivers to road stimuli[R]. HFR-12, Australia: Monash University,1982.
    [197]彭其渊,徐进,陈泳汐.径向基函数用于复杂路形3维重构时的算法改进[J].中国科技论文在线:2008,3(10):756-760.
    [198]徐进.生成三维连续路表曲面的算法及其关键技术[J].计算机工程与应用,2007,43(17):209-212.
    [199]徐进,宋大成,邵毅明,等.用速度的连续与均衡性来评价道路安全以及判定危险位置[J].中国安全科学学报,2007,17(2):155-161.
    [200]Krammes R A, Garnham M A. Worldwide review of alignment design policies[C]// International symposium on highway geometric design practices, Texas, Transportation Research Board,1998.
    [201]徐进,彭其渊,邵毅明,等.运行车速预测新方法及其应用[J].西南交通大学学报,(in Press).
    [202]吴国雄.公路平面线形曲线型设计方法[M].北京:人民交通出版社,2000.
    [203]Ronald W Eck, L James French. Effective superelevation for large trucks on sharp curves and steep grades[R]. West Virginia Department of Transportation, Charleston,2002.
    [204]Alan Nicholson. Superelevation, side friction, and roadway consistency[J]. Journal of Transportation Engineering,1998,124(5):411-418.
    [205]Tang-Hsien Chang. Effect of vehicles'suspension on highway horizontal curve design[J] Journal of Transportation Engineering,2001,127(1):89-91.
    [206]Hans B. Pacejka. Tyre characteristics and vehicle handling and stability[J]. Tyre and Vehicle Dynamics (Second Edition),2006, Pages 1-60.
    [207]Gee-Cl'ough D, Sommer M S. Steering forces on undriven, angled wheels[J]. Journal of Terramechanics,1981,18(1):25-49.
    [208]孙玉廷,纪为祥.公路平曲线超高运用研究[J].贵州工业大学学报(自然科学版),2007,36(4):97-100.
    [209]Peng Qi-yuan, Xu Jin, Kelvin C.P Wang, et al. Analysis on usage comfort of highway alignment quality based on ay and ay's change rate[C]//International Conference on Transportation Engineering 2007, ChengDu,2007.
    [210]汉斯·洛伦茨著(尹家驻,赵恩棠,等.译).公路线形与环境设计.北京:人民交通出版社,1985.
    [211]Paolo Perco. Desirable length of spiral curves for two-lane rural roads[C]//Proceedings 85th Transportation Research Board Annual Meeting, Washington D C,2006.
    [212]Department of Transport, United Kingdom. Road Geometry:Highway Link Design[S]. Departmental Standard TD 9/93,1993.
    [213]徐进,邵毅明,彭其渊,等.山岭区低等级低指标公路路线的使用质量分析[J].同济大学学报(自然科学版),in press.
    [214]宗长富,郭孔辉.汽车操纵稳定性的客观定量评价指标[J].吉林工业大学自然科学学报,2000,30(1):1-6.
    [215]宗长富,郭孔辉.汽车操纵稳定性的主观评价[J].汽车工程,2000,22(5):289-293.
    [216]徐进.用于道路几何线形质量评价的仿真模型和动力学指标[J].公路交通科技,2007,24(11):114-119.
    [217]颜强,吴国雄,孙家驷,等.平面线形组合与衔接的定量分析[J].中国公路学报,2001,14(3):30-33.
    [218]Howell J P. The side load distribution on a Rover 800 saloon car under crosswind conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,60(4):139-153.
    [219]Y. L. Xu, W. H. Guo. Effects of bridge motion and crosswind on ride comfort of road vehicles[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992, (7-8):641-662.
    [220]Noger C, Regardin C, Szechenyi E. Investigation of the transient aerodynamic phenomena associated with passing manoeuvres[J]. Journal of Fluids and Structures,2005,21(3):231-241.
    [221]徐进,邵毅明.风压中心位置对汽车侧风稳定性影响的虚拟试验分析[J].中国机械工程,2007,18(15):1877-1881.
    [222]王和毅,谷正气,周宇奎.高速汽车侧风稳定性的虚拟试验研究[J].机械与电子,2004(12):60-63.
    [223]傅立敏.汽车空气动力学.北京:机械工业出版社,2006.
    [224]文斌,曹东伟.高速公路路面抗滑力与交通事故的统计分析[J].公路交通科技,2006,23(8):72-75.
    [225]Edwards Julia B.. The Relationship Between Road Accident Severity and Recorded Weather[J]. Journal of Safety Research,1998,29(4):249-262.
    [226]Josef Mikulik, Peter Hollo, Sabine Degener, et al. Piarc road accident investigation guidelines for road engineers[R]. CDV-Transport Research Centre, Czech,2007.
    [227]Julia B Edwards. Weather-related road accidents in england and wales:a spatial analysis[J]. Journal of Transport Geography,1996,4(3):201-212.
    [228]Rune Elvika, Poul Greibeb. Road safety effects of porous asphalt:a systematic review of evaluation studies[J]. Accident Analysis & Prevention,2005,37(3):515-522.
    [229]Yamada Muneo, Ueda Koji, Horiba Isao, et al. Discrimination of the Road Condition toward Understanding of Vehicle Driving Environments[J]. IEEE Transactions on intelligent transportation systems,2001,2(1):26-31.
    [230]Paul A Pisano, Lynette C Goodwin, Michael A Rossetti. U.S. highway crashes in adverse road weather conditions[C]//24th Conference on IIPS, AMS Annual Meeting, Louisiana,2008.
    [231]季天剑,黄晓明,刘清泉.部分滑水对路面附着系数的影响[J].交通运输工程学报,2003,3(4):10-12.
    [232]刘长生.汽车轮胎与公路路面附着系数的研究[J].公路,2006(5):159-163.
    [233]MUNDL R, MESCHKELAND G, L EDERER W. Friction mechanism of tread blocks on snow surfaces[J]. Tire Science and Technology,1997,25 (4):245-264.
    [234]Onaygil S, Onder Guler, Emre Erkin. Determination of the effects of structural properties on tunnel lighting with examples from Turkey[J]. Tunnelling and Underground Space Technology, 2003,18(1):85-91.
    [235]Glass C W, Wardle C S. Studies on the use of visual stimuli to control fish escape from codends. Ⅱ. The effect of a black tunnel on the reaction behaviour of fish in otter trawl codends[J]. Fisheries Research,1995,23(1-2):165-174.
    [236]Commolli R, Cuaz F, Ferro V, Pigorini B. The channel expressway:twin-bored road tunnels under the english channel[J]. Tunnelling and Underground Space Technology,1986,1(3-4): 261-269.
    [237]杨良,郭忠印,杨学良,等.公路隧道路面工作环境调研与分析[J].公路,2004,(3):148-152.
    [238]杨学良,杨良,杨群,等.隧道路面表面抗滑性的调查与分析[J].公路,2003(12):136-140.
    [239]Guo Zhongyin, Yang Qun, Liu Benmin.Mixture design of pavement surface course considering the performance of skid resistance and disaster proof in road tunnels[J]. Journal of Materials in Civil Engineering,2009,21(4):186-190.
    [240]Ford I L, Suggate G C. Christchurch-lyttelton tunnel road pavement performance study’the experimental road and its instrumentation-part ii. design and concruction[R]. National Roads Board, New Zealand,1965.
    [241]何家祥,马璐,邓卫东.高速公路隧道交通安全问题及对策分析[J].公路交通技术,2006(3):130-132.
    [242]王超,刘成.公路隧道交通事故发生机理及预防对策[J].山东交通科技,2006,(3):6-9.
    [243]Amundsen F H, Ranes G. Studies on traffic accidents in Norwegian road tunnels[J]. Tunnelling and Underground Space Technology,2000,15(1):3-11.
    [244]Zhuang-lin Ma, Chun-fu Shao, Sheng-rui Zhang. Characteristics of traffic accidents in Chinese freeway tunnels[J]. Tunnelling and Underground Space Technology,2009,24(3):350-355.
    [245]杨轸,郭忠印.隧道路面抗滑性能测定及其对行车安全影响分析[J].重庆交通学院学报,2006,25(6):38-42.
    [246]彭其渊,徐进,郑升宝,等.隧道洞口路面材料变化对行车的影响及过渡位置优化[J].吉林大学学报(工学版),in press,2009.
    [247]张敏,徐进,邵毅明.载荷因素对汽车制动安全性的虚拟试验分析[J].机械工程与自动化,2007,35(2):62-64.
    [249]徐进,邵毅明.驾驶人驾驶行为对制动安全性影响的定量分析[J].人类功效学,2006,13(4):29-32.
    [250]McGee, Hugh W, Hanscom, et al. Low-Cost treatments for horizontal curve safety[J]. FHWA-SA-07-002. FWHA, Washington, DC,2006.
    [251]JTGD20-2006.公路路线设计规范[S].
    [252]陈永胜.高速公路安全设计基础理论及关键技术研究[D].北京,北京工业大学,2001.
    [253]Tom, Gregory K. J. Accidents on spiral transition curves[J]. ITE Journal,1995.65(9):49-53.
    [254]Margaret Parkhill, Geni Bahar. Managing run-off-road collisions:engineering treatments with AMFs[C]//The 2006 Annual Conference of the Transportation Association of Canada, Charlottetown, Prince Edward Island,2006.
    [255]Stewart D., Chudworth C. J. A remedy for accidents at bends[J]. Traffic engineering & control, 1990,31(2):88-93.
    [256]Stewart D. The case of the left-hand bend[J]. The Highway Engineer,1977,24(6):12-14,17,24
    [257]Moudud Hasan, Tarek Sayed, Yasser Hassan. Influence of vertical alignment on horizontal curve perception:effect of spirals and position of vertical curve[J]. Canadian Journal of Civil Engineering,2005,32(1):204-212.
    [258]Council f. M. Safety benefits of spiral transitions on horizontal curves on two-lane rural roads[J]. The 77th Annual Meeting of the Transportation Research Board, National Research Council, Washington, DC,1998.
    [259]Perco Paolo. Comparison between vehicle paths alongtransition sectionswith and without spiral curves[C]//3rd International Symposium on Highway Geometric Design, Transportation Research Board Business Office, Chicago,2005.
    [260]方守恩.高速公路[M].北京:人民交通出版社,2002.
    [261]徐进,邵毅明,彭其渊,等.考虑轮胎侧弯变形迟滞特性的S形平曲线设计控制[J].武汉大学学报(工学版),2007,40(4):89-93.
    [262]Robert F Smiley. Some considerations of hysteresis effects on tire motion and wheel shimmy[R]. Technical Note 4001. NACA, Washington DC,1957.
    [263]Pillai Padmanabha S. Inflation pressure effect on whole tyre hysteresis ratio and radial spring constant[J]. Indian journal of engineering & materials sciences,2006,13(2):110-116.
    [264]Kim J. Identification of lateral tyre force dynamics using an extended Kalman filter from experimental road test data[J]. Control Engineering Practice,2009,17(3):357-367.
    [265]Matteo Rizzi. Steering behaviour of 44 drivers in lane change manoeuvres on a slippery surface[R]. Sweden, Linkopings University,2005.
    [266]Raymond J Kiefer, Jonathan M Hankey. Lane change behavior with a side blind zone alert system[J]. Accident Analysis & Prevention,2008,40(2):683-690.
    [267]徐进,邵毅明,彭其渊,等.避让行为导致车辆在平曲线驶出路面的机理[J].西南交通大学学报,2008,43(02):177-181.
    [268]SPACEK Peter. Track behavior in curve areas:attempt at typology[J]. Journal of Transportation Engineering,2005,131(9):669-676.
    [269]郭应时,付锐,袁伟,等.通道宽度对驾驶人动态视觉和操作行为的影响[J].中国公路学报,2006,19(5):83-87.
    [270]魏朗,周维新,李春明,等.驾驶人道路认知特性模型[J].交通运输工程学报,2005,5(4):116-120.
    [271]Szabo S., and Wilson B. Application of a Crash Prevention Boundary Metric to a Road Departure Warning System[C]. Proceedings of the Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg.2004:1-5
    [272]Tate F, Shane T. Road Geometry and Drivers'Speed Choice[J]. Road & Transport Research:[A Journal of Australian and New Zealand Research and Practice],2007,16(4):53-64.
    [273]Shinar D, Compton R. Aggressive driving:an observational study of driver, vehicle, and situational variables[J]. Accident Analysis & Prevention,2004,36(3),429-437.
    [274]Kontogiannis T. Kossiavelou Z, Marmaras N. Self-reports of aberrant behavior on the roads: errors and violations in a sample of Greek drivers[J]. Accident Analysis and Prevention,2002, 34(3),381-399.
    [275]Spacek P. Track behavior in curve areas:attempt at typology[J]. Journal of Transportation Engineering,2005,131(9):669-676.
    [276]Said D, Hassan Y, Halim A O. Methodology for Analysing Vehicle Trajectory and Relation to Geometric Design of Highways[J]. Advances in Transportation Studies International Journal, 2006(1),55-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700