用户名: 密码: 验证码:
浅层岩土体热物理性质原位测试仪的研制及传热数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球变暖、温室效应和能源紧缺等问题的日益严重,发展清洁的可再生能源和提高能量利用率越来越受到各国政府的重视。利用地源热泵这一高效节能新技术进行供暖、制冷和地下储能的研究开始盛行。但是,在对地源热泵系统进行设计时,了解岩土体的热物理参数是十分重要的。如果该参数不准确,则设计的系统可能不满足空调负荷的需要,也可能造成初投资增加,影响地源热泵技术的推广。针对这一问题,本论文研发了一种岩土体热物理性质原位测试设备,可以为设计地源热泵系统提供地层热传导系数和钻孔热阻,确保系统设计的准确性和经济性。
     研制的岩土热物性原位测试仪包括液路循环系统、数据采集和控制系统以及数据处理系统。采用热泵作为冷、热源,可进行储热和取热工况的测试,利用电动三通分流调节阀和冷凝器辅助热泵工作,来保证输入或提取的热量恒定,以方便利用线源模型和柱源模型进行数据处理。利用测试仪还可在现场实时监控实验过程,随时调取各种实验数据和曲线以及进行数据的处理和计算。
     论文在介绍现有计算地埋管换热器的模型的基础上,着重说明在土壤热物性测试中的数据处理方法,并利用线源模型、柱源模型、数值模型和变热流模型对实验数据进行计算和比较,结果表明,在测试孔深和测试时间足够的条件下,线源模型即可满足要求。利用热物性测试仪进行了多次储热和取热的实验,通过对现场测试过程和测试结果的分析,得出影响热物性参数计算和钻孔深度确定的主要因素。论文还利用ANSYS有限元分析软件对测试过程中的土壤温度场进行了模拟,找出换热器的传热规律,确定了热作用半径。
     利用现场热物性测试设备,不仅可以为地源热泵系统提供准确的设计依据,还可以进行浅层地热资源调查,建立地热利用的数据库,对合理利用我国地热资源,减少其它能源消耗,保护环境等具有重要的现实意义。
Ground-source heat pump technology is an effective way to develop and use low-temperature geothermal resources, in Europe, the United States, Japan and other developed countries. It has long been widely promoted, and has been more and more widely used in domestic fields in recent years. When we design the heat exchange of ground-source heat pump systems or underground power storage, the accuracy of thermal properties parameters of sock and soil is very important. At present, the majority of ground-source heat pump system projects mainly depend on estimating the capacity of heat exchanger pipe and testing the thermal properties parameters of the actual stratum is very rare. This has probably not only led to a smaller scale of system designed, which can not meet the requirement of air-conditioning load, but are also likely to result in a larger scale of system designed, which causes the original investment increased. Therefore, it loses the comparative advantages in use with other energies.
     To solve this problem, firstly, this thesis introduces the testing method of thermal physical properties of sock and soil and their respective characteristics, and focuses on advantages and working principles of thermal response testing. Subsequently, the thesis describes the production, development and application situation of field testing equipment at home and abroad in detail, as well as the differences between these devices. In addition, the thesis also makes a detailed account of the existing analytic method heat transfer model and numerical method heat transfer model.
     This thesis develops a field testing equipment of thermal physical properties of sock and soil, using heat pump as cold and heat source to test the thermal properties under different conditions without additional heaters, in which structure is simple and reasonable. We use electric three shunt valve to assist heat pump, ensuring a constant heat imputing and extracting from the ground in order to facilitate use of existing heat transfer model. Devices in the equipment include the circulatory system of fluid path, data acquisition and controlling systems, as well as data processing system. Data acquisition system employs high-precision Pt1000 platinum resistance, electromagnetic flow meters and power sensors to measure temperature, flow of fluid and power of equipment; controlling system can achieve a variety of manual, automatic controls, as well as alarm at abnormal state of function flow, pressure and temperature etc.; In human-computer interaction system, a variety of experimental procedures and conditions can be set, data and associated curve can be fully observed in intuitive interface, in order to adjust timely to experiments and make corresponding decisions. Data-processing system of testing equipment uses the international popular on-line source model and column source model to calculate thermal properties parameters, in which Matlab is used to write procedure for calculation, combined with parameter estimation to solve stratum average thermal conductivity and borehole thermal resistance.
     By using the testing equipment, a number of heat exchange wells testing laboratories under storing and extracting energy condition have been carried out in Changchun, Beijing and Tianjin and other places. Much of the testing data is acquired. This thesis makes use of line source model, column model and numerical model for calculating the data in energy storage condition, and a conclusion is drawn that the line source model can meet the requirements of calculation accuracy in condition of enough testing time and sufficient borehole depth. The thesis uses variable heat flux model to calculate the data of extracting energy condition, viewing that, to some test of large heat flux, the accuracy of the calculation is higher when we use variable heat flux model. However, due to its large workload of calculation, the conditions of constant heat flow calculation should be met in the experiment. The thesis also verifies the regulating ability of the electrical shunt valve can completely meet accuracy of temperature difference control (±0.1℃) requirements.
     In addition, the thesis also analyzes the effects of the specific heat of rock and soil, heat flux density, the fitting time on thermal conductivity. Analysis results show that the heat flux density, the initial ground temperature and the radius of borehole are the main factors to impact its calculation. The impact of rock and soil specific heat is very small, which almost can be ignored. This thesis takes calculation results of line source model as an example, revealing that the heat flux increased by 10% in the case of thermal conductivity can increase by 10%, 16% reduction in thermal resistance, borehole depth can be reduced by 4.9% at most; the initial ground temperature is increased by 10%, the borehole thermal resistance lowers up to 15.7%, reducing the borehole depth up to 2.8%; borehole radius increased by 10%, the resistance increased by 9.2% at most, with incensement in borehole depth up to 4.1%. Thus, in the design of ground source heat pump system, it is necessary to choose a backfill materials of good thermal conductivity properties, in order to enhance heat transfer with surrounding soil; During construction, size of drilling hole must be controlled as smaller as possible to reduce the borehole thermal resistance; At the transitional season or in summer in the cold regions of the north, solar energy and other means can be applied to make up for the ground temperature to increase the initial ground temperature. Thereby depth of borehole can be reduced to save the project investment.
     Study of fitting time has shown that the stabilization time of heat transfer between pipes and soil around is different, therefore, when we process data, it is necessary to pay attention to such changes, and choose the start time and time length in fitting according to the actual test data. According to the testing results, this thesis suggests that about 15 to 20 hours of data be discarded, the fitting time should not be less than 60 hours, and the testing time should be no less than three days.
     According to the heat load condition of a ground-source heat pump systems engineering, the thesis uses test results of the field testing equipment of thermal physical properties to re-design the system, the original 500 m deep borehole increased by 200 m, which shows the drawbacks of the design estimating value for the heat of per extend meter. As a result, the importance of testing equipment turns out.
     The thesis also applies ANSYS to model soil temperature field simulation in the process of testing, and makes some comparison and contrast of heat exchange condition of pipe and sounding soil between different types, different working conditions and different heat flux, the radius of thermal effect is determined. This analysis method is also applicable to simulate temperature changes in long-term operating mode of heat pump system. Finally, aiming at experimental problems arising in the course, the thesis puts forward suggestions for the improvement of the equipment and ensures the development direction of the testing equipment.
     The use of estimate value of heat for per extend meter to design the geothermal system is not very scientific, it tends to leave potential problems to the system, and even causes project failure. Therefore, it is necessary to strengthen the specification management of ground-source heat pump system design and reinforce the popularization and application of the filed testing equipment. The field testing equipment of thermal physical properties of sock and soil can easily determine the average thermal conductivity of rock and soil and borehole thermal resistance, the parameters we got is more in line with engineering practice, which can provide the basis for accurate design of ground source heat pump system and have great economic benefits to promotion. In addition, we also use mobile testing equipment for nation-wide soil thermal physical properties parameters testing, and then, establish a database of geothermal utilization, which facilitates the rational use of geothermal resources in China to reduce energy consumption as well as CO2 emission. Consequently, it will bring about great social benefits, and thus has broad application prospects.
引文
[1] KAVANAUGH S P. Field tests for ground thermal properties- methods and impact on ground-source heat pump design[J]. ASHRAE Transactions, 1992, 98(9): 607-615.
    [2] HELLSTROM G. Ground heat storage - Thermal analyses of duct storage system I. Theory [D]. Sweden: University of Lund. 1991.
    [3]杨世铭.传热学[M].北京:高等教育出版社, 1965.
    [4] American Society for Testing and Materials. Thermal conductivity of materials by means of a guarded hot plate, ASTM Specifications, C177-63, 1963[C].
    [5] KERSTEN M S. Thermal properties of soils. University of Minnesota, Engineering Experiment Station. Bulletin No. 28, 1949[C].
    [6] MOCHLINSKI K. Some industrial measurements of thermal properties of soils. International Study Group on Soils[C], Cambridge, England, July 12-26, 1964:168-178.
    [7] SCOTT R F, Sanger F J. Heat exchange at the ground surface. Cold Regions Science and Engineering. Monograph II-A1, AD0449434, 1964[R]. Hanover, NH: Cold Regions Research and Engineering Lab.
    [8] HAMMERSCHMIDT U. A quasi-steady state technique to measure the thermal conductivity [J]. International Journal of Thermophysics, 2003, 24(5): 1291-1312.
    [9] HOOPER F C, LEPPER F R. Transient heat flow apparatus for the determonation of thermal conductivity[J]. Journal of American Society of Heating and Ventilating Engineers, 1950(56), 309-322.
    [10] DE VRIES D A, PECK A J. On the cylindrical probe method of measuring ther- mal conductivity with special reference to soils[J]. Australian Journal of Physics, 1958, 11: 255-271.
    [11] SLEGEL D L, DAVIS L R. Transient heat and mass transfer in soils in the vicinity of heated porous pipes [J]. Journal of Heat Transfer, 1977, 79: 541-621.
    [12] RAO M V, SINGH D N. Soil thermal resistivity[J]. Geotechnical Engineering Bulletin, 1999, 7(3): 179-199.
    [13] MANTHENA K C, SINGH D N. Measuring soil thermal resistivity in ageotechnical centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2001, 1(4): 29-34.
    [14] American Society for Testing and Materials. Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure . 1992[C], ASTM D5334: 346-348.
    [15]庄迎春.直埋式地源热泵地下换热器研究及应用[D].长春:吉林大学, 2002.
    [16] PRIBNOW D, SASS J H. Determination of thermal conductivity from deep boreholes [J]. Journal of Geophysical Research, 1995, (100): 9981-9994.
    [17] HUENGES E, BURKHARDT H, ERBAS K. Thermal conductivity profile of the KTB pilot borehole[J ]. Scientific Drilling, 1990, (1): 224-230.
    [18] RAO, M.V.B.B.G, SINGH D.N. Generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal. 1999, 36(4):767-773.
    [19] ABU-HAMDEH N H. Measurement of the thermal conductivity of sandy loam and clay loam soils using single and dual probes[J]. Journal of Agricultural Engineering Research. 2001, 80(2): 209-216.
    [20] ABU-HAMDEH. Thermal properties of soils as affected by density and water content[J]. Biosystems Engineering. 2003, 86(1): 97-102.
    [21] SINGH D N, DEVID K. Generalized relationships for estimating soil thermal resistivity[J]. Exp. Thermal Fluid Sci. 2000, 22: 133-143.
    [22] NAIDU A D, SINGH D N. A Generalized procedure for determining thermal resistivity of soils[J]. International Journal of Thermal Sciences, 2004, 43(1): 43-51.
    [23] Johansen O. Thermal conductivity of soils[D]. Trondheim, Norway: Norwegian University of Science and Technology, 1975.
    [24] VANPELT D J. Thermal conductivity measurements of crushed stone and gravel aggregate[J]. CRREL Technical Note, 1976, 6: 25-28.
    [25]庄迎春,孙友宏等.直埋闭式地源热泵回填土性能研究[J].太阳能学报. 2004, 25(2): 216-220.
    [26]彭担任,赵全富等.煤与岩石的导热系数研究[J].矿业安全与环保. 2000, 27(6): 16-18.
    [27]侯方卓.用探针法测定材料的导热系数[J].石油大学学报. 1994, 18(5): 94-98.
    [28]孟凡凤,李香龙等.利用探针法测定土壤的导热系数[J].绝缘材料. 2006, 39(6): 65-70.
    [29]冯健美,高晓兵等,土壤热源热泵地下换热性能分析[J].太阳能学报. 2002, 6 (3): 349-353.
    [30]张旭,高晓兵.华东地区土壤及土沙混合物导热系数的实验研究[J].暖通空调. 2004, 34(5): 83-89.
    [31]张旭,高晓兵等.土壤及其与黄沙混合物导热系数的实验研究.全国暖通空调制冷2000年学术年会论文集. 2000[C], 478-481.
    [32]余乐渊.地源热泵U型埋管换热器传热性能与实验研究[D].天津:天津大学, 2003.
    [33]苏天明,刘彤等.南京地区土体热物理性质测试与分析[J].岩石力学与工程学报. 2006, 25(6): 1278-1283.
    [34] SIGNORELLI S, BASSETTI S. Numerical evaluation of thermal response tests [J]. Geothermics, 2007, 36(2): 141-166.
    [35] MOGESEN P. Fluid to duct wall heat transfer in duct system heat storages[C]. Proc. Inc. Conf. On Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, June 6-8, 1983: 652-657.
    [36] EKLOF C, GEHLIN S. A mobile equipment for thermal response test-testing and evaluation [D]. Lule?: Lule? University of Technology, 1996.
    [37] AUSTIN W A. Development of an in situ system for measuring ground thermal properties[D]. Stillwater, Oklahoma: Oklahoma State University, 1998.
    [38] Sanner B, Hellstr?m G, Spitler J. Thermal response test-current status and world-wide application[C]. Proceedings World Geothermal Congress, Antalya, Turkey, April 2005: 24-29.
    [39] SANNER B, REUSS M, Thermal response test-experiences in Germany. Proceedings of Terrastock 2000[C], Stuttgart, Germany, August 28-Sepertemper 1, 2000: 177-182.
    [40] GEHLIN S. Thermal response test-method development and evaluation[D]. Lule? University of Technology, 2002.
    [41] SANNER B, MANDS E. Thermal response test, a routine method to determine thermal ground properties for GSHP design. 9th International IEA Heat PumpConference, 20 - 22 May, 2008[C], Zürich, Switzerland.
    [42] GUSTAFSSON A-M, GEHLIN S. Thermal response test-power injection dependence[C]// Preoceedings to Ecostock 2006, 10th int. conf. on thermal energy storage. Session 7A. The Richard Stockton college of New Jersey, USA.
    [43] MATTSSON N, STEINMANN G, LALOUI L. In-situ thermal response testing -new developments[C]//Proceedings European Geothermal Congress 2007, Unterhaching, Germany, May 30-June 1, 2007, 1-5.
    [44]李晓东,于明志等.基于地源热泵的便携式岩土热物性测试仪的研制与应用[J].电子技术应用, 2004(5): 28-29.
    [45]于明志,方肇洪.现场测试地下岩土平均热物性参数方法[J].热能动力工程, 2002, 17(101): 489-492.
    [46]于明志,方肇洪.现场测量深层岩土热物性方法[J].工程热物理学, 2002, 23(3): 354-356.
    [47]于明志,彭晓峰等.基于线热源模型的地下岩土热物性测试方法[J].太阳能学报, 2006, 27(3): 279-283.
    [48]李鑫,李玉杰,于明志.深层岩土热物性的现场测定[J].工程热物理学报, 2002, 23(3): 6-9.
    [49]毕文明,楼洪波.地埋管地源热泵系统地下换热器热(冷)响应测试车研制[C]//地温资源与地源热泵技术应用论文集(第一集).中国资源综合利用协会地温资源综合利用专业委员会.北京:中国地质大学出版社, 2007: 102-108.
    [50]楼洪波,尹恒等.浅层地热能冷、热响应测试仪测试及实验数据分析[C]//地温资源与地源热泵技术应用论文集(第一集).中国资源综合利用协会地温资源综合利用专业委员会.北京:地质出版社, 2008: 126-130.
    [51]胡平放,孙启明等.地源热泵用岩土热物性测试方法的研究(会议资料).土壤热物性测试及土壤换热器系统研讨会.《地源热泵导刊》主办,北京,2009.1.9.
    [52]马志同.浅层岩土热物性参数测量仪的研制[D].北京:中国地质大学, 2006.
    [53]郑秀华,夏柏如等.土壤源热泵地埋管平均传热系数的测试与计算(会议资料),地温资源开发与地源热泵技术推广应用论坛.中国资源综合利用协会地温资源综合利用专业委员会与长安大学主办.西安, 2008. 10.18-19.
    [54]刘立芳.热反应实验及其应用的研究[D].北京:北京工业大学. 2007.
    [55]齐承英.恒温法岩土体热物性测试仪简介.地埋管换热器热响应试验测试仪应用研讨会(发言资料).中国地质环境监测院和中国资源综合利用协会地温资源综合利用专业委员会主办,北京: 2009.3.7.
    [56]彭孝芳,朱汉宝,周亚素. U管埋地换热器周围土壤传热性能测试方法[J].制冷与空调, 2007, 21(3): 53-58.
    [57] INGERSOLL L R, PLASS H J. Theory of the ground pipe heat source for the heat pump [J ] . Heating, Piping and Air Conditioning, 1948 , 20 (7): 119-122.
    [58] INGERSOLL L R. Heat conduction with engineering and geological and other applications[M]. New York: McGraw-Hill, 1954.
    [59] National Water Well Association. HART D P, COLLION, R. Earth coupled heat transfer, 1986.
    [60] International Ground Source Heat Pump Association. Design and installations standards [ S ] . Stilwater ,Oklahoma ,1991.
    [61] BOSE J E. Closed-loop ground-coupled heat pump design manual[C]. Engineering Technology Extension, Oklahoma: Oklahoma State University, 1984.
    [62] CANE R L D, FORGAS D A. Modeling of ground source heat pump performance[J]. ASHRAE Transactions, 1991, 97(1): 909 - 925.
    [63]刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社, 2006.
    [64] KAVANAUGH S P. Simulation and experimental verification of vertical groundcoupled heat pump systems[D]. Oklahoma: Oklahoma State University, 1985.
    [65] CARSLAW H S, Jaeger J C. Conduction of heat in solids[M]. 2nd ed. Oxford, U.K.: Claremore Press, 1959.
    [66] ESKILSON P T. Thermal analysis of heat extraction boreholes[D]. Lund: University of Lund, 1987.
    [67] HELLSTROM G. Duct ground heat storage model. Manual for Computer Code. Lund: University of Lund, 1989.
    [68] YAVUZTURK C. Modeling of vertical ground loop heat exchange for ground source heat pump sysyems[D]. Oklahoma: Oklahoma State University, 1999.
    [69] MEI V C, EMERSON C J. New pproach for analysis of ground-coil design forapplied heat pump systems[J]. ASHRAE Transactions, 1985, 91(2): 1216-1224.
    [70] MURAYA N K. Numerical modeling of the transient thermal interference of vertical U-tube heat exchangers[D]. Texas: Texas A&M University, 1994.
    [71] MURAYA N K, O’NEAL D L, HEFFINGTON W M. Thermal interference of adjacent legs in a vertical U-tube heat exchanger for a ground-coupled heat pump[J]. ASHRAE Transactions, 1996, 102(2): 12-21.
    [72] ROTTMAYER S P, BECKMAN W A, MITCHELL J W. Simulation of a single vertical U-tube ground heat exchanger in an infinite medium[J]. ASHRAE Transactions, 1997, 103(2): 651-659.
    [73] SHONDER J A, BECK J V. Determining effective soil formation thermal properties from field data using parameter estimation technique[J]. ASHRAE Transactions, 1999, 105 (1): 458-466.
    [74]刘宪英,胡鸣明,魏唐棣.地热源热泵地下埋管换热器传热模型的综述[J].重庆建筑大学学报, 1999, 21 (4) : 106-111.
    [75]魏紫娟,秦萍.土壤源热泵地下垂直埋管换热器常用传热模型的研究[J].制冷与空调, 2004(3): 17-21.
    [76]苏晓,龚东巧.地热换热器孔外传热模型研究进展[J].应用能源技术, 2006(1):29-33.
    [77]何雪冰,丁勇,刘宪英.地源热泵埋管换热器传热模型及其应用[J].重庆建筑大学学报, 2004, 26(2): 76-80.
    [78]杨卫波,施明恒.基于垂直U型埋管换热器的圆柱源理论及其应用研究[J].制冷学报, 2006, 27(5): 51-57.
    [79]杨卫波,施明恒.地源热泵中U型埋管传热过程的数值模拟[J].东南大学学报(自然科学版), 2007, 37(1): 78-83.
    [80]曾和义,刁乃仁,方肇洪.地源热泵竖直埋管的有限长线热源模型[J].热能动力工程, 2003, 18(2): 166-169.
    [81]曾和义,方肇洪.双U型埋管地热换热器的传热模型[J].山东建筑工程学院学报, 2003, 18(1): 11-17.
    [82]崔萍,刁乃仁,方肇洪.地热换热器U型埋管的传热模型及热阻计算[J].暖通空调, 2003, 33(6): 108-110.
    [83]柳晓雷,王德林,方肇洪.垂直埋管地热换热器的传热模型与计算[J].建筑热能通风空调, 2001(2): 1-3.
    [84]柳晓雷,王德林,方肇洪.垂直埋管地源热泵的圆柱面传热模型及简化计算[J].山东建筑工程学院学报, 2001, 16(1): 47-51.
    [85]任晓红,孙纯武,胡彦辉. U型埋管换热器三维数值模拟和供热实验研究[J].重庆建筑大学学报, 2004, 26(5): 90-95.
    [86]黄俊惠,时晓燕,唐志伟.地源热泵U型管地下换热器的准三维模型[J].中国农业大学学报, 2004, 9 (5): 51-54.
    [87]赵军,张春雷,李新国等. U型管埋地换热器三维传热模型及实验对比分析[J].太阳能学报, 2006, 27(1): 63-66.
    [88]包强.土壤耦合热泵U型埋管换热器数值模拟[D].长沙:中南大学, 2007.
    [89]李芃,仇中柱,于立强.垂直埋管式土壤源热泵埋管周围土壤温度场的数值模拟[J].建筑热能通风空调, 2000(4): 1-4.
    [90]张玲,陈光明,黄奕.垂直埋管热湿传递线源模型的建立及其计算条件[J].太阳能学报, 2007, 28(2): 141-145.
    [91]李斌.热渗共同作用下的地下埋管换热器实验研究[D].哈尔滨:哈尔滨工业大学, 2006.
    [92]范蕊,马最良.地埋管换热器传热模型的回顾与改进[J].暖通空调, 2006, 36(4): 25-29.
    [93]王庆鹏.地下水渗流对地源热影响的研究[D].北京:北京工业大学, 2007.
    [94]王秉忱,田廷山,赵继昌.我国地温资源开发与地源热泵技术应用及存在问题[C]//地温资源与地源热泵技术应用论文集(第一集).中国资源综合利用协会地温资源综合利用专业委员会.北京:中国地质大学出版社, 2007,1-9.
    [95]侯立泉. U型垂直埋管式土壤源热泵运行特性的实验研究[D].太原:太原理工大学, 2003.
    [96]郭威.天然气水合物孔底冷冻取样方法的室内试验及传热数值模拟研究[D].长春:吉林大学, 2007.
    [97]于明志,彭晓峰等.基于线热源模型的地下岩土热物性测试方法[J].太阳能学报, 2006, 27(3): 279-283.
    [98]赵军,段征强,宋著坤等.基于圆柱热源模型的现场测量地下岩土热物性方法[J].太阳能学报, 2006, 27(9): 934-936.
    [99] DEERMAN J D, KAVANAUGH S P. Simulation of vertical U-tube ground-coupled heat pump systems using the cylindrical heat source solution[J]. ASHRAE Transactions, 1991, 97(1): 287 -294.
    [100]王景刚,马一太等.地源热泵的运行特性模拟研究[J ].工程热物理学报, 2003, 24(3): 361-366.
    [101] YAVUZTURK C, SPITLER J D. A short time step response factor model for vertical ground loop heat exchangers[J]. ASHRAE Transactions, 1999, 105(2): 475-485.
    [102] BERNIER M. Ground-coupled heat pmp sytem simulation[J]. ASHRAE Transactions, 2001, 107(1): 605-616.
    [103] REMUND C P. Borehole thermal resistance-laboratory and field studies[J]. ASHRAE Transactions, 1999, 105(1): 439-445.
    [104] XU X W, SPITLER J D. Modeling of vertical ground loop heat exchangers with variable convective resistance and thermal mass of the fluid. http://www.hvac.okstate.edu/research/Documents/Xu_Spitler_06.pdf.
    [105] WANGER R, CLAUSER C. Evaluating thermal response tests using parameter estimation for thermal conductivity and thermal capacity[J]. Journal of Geophysics and Engineering, 2005, 2(4): 349–356.
    [106] Nelder J A, Mead R. A simplex method for function minimization[J]. Computer Journal, 1965, 7(1): 308-313.
    [107] SHONDER J A, BECK J V. Determining effective soil formation thermal properties from field data using a parameter estimation technique. ASHRAE Transactions. 1999, 105(1): 458-466.
    [108] YAVUZTURK C, SPITLER J D, REES S J. A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Transactions, 1999, 05(2): 465-474.
    [109] SPITLER J D, YAVUZTURK C, REES S J. In situ measurement of ground thermal properties[C]//Proceedings of Terrastock 2000, 1:165-170. Stuttgart,August 28-September 1, 2000.
    [110] SKOUBY A. Thermal conductivity testing- proper engineering + thermally enhanced grouts = geoexchange savings[J]. The Source, 1998, 11(6): 4-5, Stillwater, Oklahoma.
    [111] SMITH M. Comments on in-situ borehole thermal conductivity testing[J]. The Source, 1999, 12(1): 3-5.
    [112] SPITLER J D, REES S J, YAVUZTURK C. More comments on in-situ borehole thermal conductivity testing[J]. The Source, 1999, 12(2): 4-6.
    [113] CARSLAW H S, JAEGER J C. Conduction of heat in solids[M]. 2nd Ed. Oxford: Oxford University Press, 1959.
    [114] CHIASSON A D, REES S J , SPITLER J D. Apreliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems[J]. ASHRAE Transactions, 2000, 106(1): 380-393.
    [115] GUSTAFSSON A-M. Thermal response test numerical simulations and analyses[D]. Lule?: Lule? University of Technology, 2006.
    [116] TUOMAS G, GUSTAFSSON A-M, NORDELL B. Thermal response test integrated to drilling[C]// Futurestock, 9th Int. Conf. on Thermal Energy System 2003. Warsaw, Poland, Part I:411-15.
    [117] TUOMAS G. Water powered percussive rock drilling-process analysis, modelling and numerical simulation[D]. Lule?: Lule? University of Technology, 2004.
    [118] GUSTAFSSON A-M, CLAESSON J, NORDELL B. Technical report: Thermal Response Test While Drilling - Description of numerical model. Lule? University of Technology. 2005.
    [119]孔祥谦.有限单元法在传热学中的应用(第三版)[M].北京:科学出版社, 1998.
    [120] [美]SAEED MOAVENI.有限元分析—ANSYS理论与应用(第三版)[M].北京:电子工业出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700