用户名: 密码: 验证码:
内燃机燃烧室多体耦合系统三维瞬态传热模拟及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文发展了一种内燃机燃烧室多个零部件间耦合传热的三维数值分析模型,该模型考虑了活塞组-气缸套耦合系统的周期性瞬态传热过程,以及活塞组-气缸套/气缸体-气缸垫-气缸盖-进排气门耦合系统的周期性瞬态传热过程。并开发了内燃机燃烧室多体耦合系统瞬态传热数值模拟软件,为内燃机的整机系统传热,热平衡及热负荷研究提供了一个重要的分析工具。
     在燃烧室多体耦合系统三维瞬态传热模型的建立过程中,完成了数学公式的推导、物理模型的分析、有限元模型的建立、计算程序的开发、模拟结果的研究和模型的验证六个方面的内容。
     1)建立了活塞组-气缸套三维耦合系统瞬态传热模型。通过将润滑油膜假设成一维热阻,使用完全耦合的分析方法,建立了该运动零部件间相互传热的有限元模型。在该模型中,考虑了活塞环组摩擦热的影响。采用三维流体动压润滑分析程序计算了沿活塞环周向瞬时变化的油膜厚度和摩擦热,实现了对该耦合传热过程更加精确的模拟。通过对活塞环组、活塞、气缸套、气缸体分别进行有限元网格离散,来反映不同材料属性对温度分布的影响。计算的结果还获得了活塞环、活塞的瞬时温度波。
     2)在活塞组-气缸套三维耦合系统瞬态传热模型的基础上,建立了燃烧室多体耦合系统的瞬态传热模型。该模型包含了活塞组、气缸套/气缸体、气缸垫、气缸盖、进排气门等燃烧室主要零部件,通过使用两种不同的耦合传热模型:运动零部件间的油膜导热模型和静止零部件间的固体接触导热模型,以及完全耦合的有限元分析方法,建立了这些零部件间的相互传热关系。计算获得了传统研究方法无法获得的进排气门的瞬时温度分布,揭示了气门与气门座接触传热的过程,同时也对传统研究中研究较少的气缸垫的传热作用进行了分析。
     3)开发了内燃机燃烧室多体耦合系统瞬态传热数值分析软件。通过建立一套规范的数据标准格式,实现了前后处理程序的无缝连接,使得该数值分析程序成为一个完整的软件系统。并采用单链表和双链表相结合的稀疏矩阵数据结构完成了该耦合系统总体刚度矩阵的存储,采用一定的选主元策略完成了对该稀疏矩阵的高斯求解。在保证计算精度的情况下,上述方法极大地减少了程序的运算时间和内存占用量。
     4)应用所开发的软件,完成了对设计中的LJ377MV发动机活塞组-气缸套耦合系统,以及燃烧室多体耦合系统,即活塞组-气缸套/气缸体-气缸垫-气缸盖-进排气门耦合系统瞬态传热的研究,为LJ377MV发动机的改进和优化设计提供了依据。
     5)采用两种方法来验证多体耦合系统传热模型及所开发程序。一是通过使用商业有限元软件对简单耦合传热模型的对照比较来验证,二是通过CUB100汽油机的温度测试试验,使用模拟结果和测试结果相比较的方法验证了本文所建立的三维耦合传热模型及所开发程序的正确性。
     内燃机燃烧室是复杂的耦合体,其传热过程与多个物理场相互作用,如与缸内燃气的流动与燃烧过程,循环冷却水的流动过程等。采用完全耦合方法对内燃机整个燃烧室、多个物理场进行耦合模拟将是内燃机传热研究发展的必然趋势。本文所发展的内燃机燃烧室多体耦合系统三维瞬态传热的数值分析模型,是内燃机传热全仿真模拟研究中的重要组成部分。
A 3-D numerical analysis model of transient heat transfer among the multi-components coupling system in combustion chamber of internal combustion engine has been developed successfully in the paper. The model includes cyclic transient heat transfer of the 3-D moving piston assembly-liner coupling system and the piston-liner-gasket-head-valves coupling system. And the simulation software of transient heat transfer model of the multi-components coupling system has been also developed successfully. The model and the software will be important analysis tools to study the whole engine heat transfer, heat balance and heat loads in internal combustion engine.
     During the development of the multi-components coupling system transient heat transfer model ,some work has been finished as follows : the deduction of the mathematical formula; the analysis of the physics model; the establishment of the FEA model; the development of the computational program; the evaluation of the result; the verification and application of the model, etc.
     1) Developed the transient heat transfer model of the coupling 3-D moving piston assembly-liner system. With hypothesizing the lubricant film as 1-D thermal resistances and applying the direct coupled-field analysis method, the heat transfer relation among the moving components is established. In the model, the effect of friction heat generated on the piston ring/liner interfaces is also taken into account. A 3-D hydrodynamic mixed lubrication model has been employed to calculate the lubricant film thickness and the friction heat which varies with crank angle and circumferential direction. To reflect the influence of the different material property on the temperature distributions, the piston ring assembly, the piston, the liner and the cylinder body are meshed respectively in the model. The transient temperature waves on the surface of the piston rings are also obtained.
     2) Based on the model of 3-D moving piston assembly-liner coupling system, the transient heat transfer model of multi-components coupling system of the internal combustion chamber is also developed. The model includes almost all components in combustion chamber, such as piston assembly, cylinder liners, cylinder head gaskets, cylinder heads, intake valves and exhaust valves, etc. With two different coupling heat transfer modes-----one is the lubricant film conduction between two moving components, another is the contact conduction between two immovable solid components------and the direct coupled-field analysis method, the heat transfer relation among the components is established. The result dedicates the transient heat transfer process between the valve head and valve seat. The effect of cylinder head gaskets on heat transfer among the components is also studied.
     3) Developed the numerical simulation computational software of the multi- components coupling system transient heat transfer model. By establishing the standard data format, the preprocessor and the post-processor of the main computational program have been connected smoothly. The data structure of spare matrix is applied to save the whole temperature stiffness matrix of the coupling system model to reduce the time of calculation and the quantity of used memory.
     4) Applied the developed software to study the transient heat transfer process of the 3-D moving piston assembly-liner coupling system and the piston-liner/cylinder- gasket-head-valves coupling system for LJ377MV gasoline engine. The results provide a basis of the improvement and optimum design for the engine.
     5) Adopted two kinds of methods to verify the heat transfer model and the software of the multi-components coupling system. one is comparison between the developed software and the commercial FEA software on a simple coupling heat transfer example. Another is comparison and contrast between the simulation result and the experimental result on the CUB100 gasoline engine.
     The heat transfer of internal combustion engine is very complex, whose heat transfer process couples with many physics fields. So, the discrete theories, the developed software and the model in the paper are the most important parts in the heat transfer of the complete model simulation research and the bases of the virtual design for the internal combustion engine.
引文
[1]杨万里.活塞组-润滑油膜-气缸套耦合系统三维瞬态传热模拟. [博士学位论文],武汉:华中科技大学, 2003.
    [2]全玉梅.内燃机燃烧室部件整体耦合系统传热仿真模拟. [硕士学位论文],大连:大连理工大学, 2000.
    [3]丁铁新.内燃机燃烧室动接触部件耦合传热仿真. [硕士学位论文],大连:大连理工大学, 2004.
    [4]王虎.内燃机零部件热负荷研究的现状讨论与展望.内燃机, 2005, 6: 4-5
    [5]陆瑞松,林发森.内燃机的传热与热负荷.北京:国防工业出版社, 1985.
    [6]肖永宁,潘克煜.内燃机热负荷和热强度.北京:机械工业出版社, 1988.
    [7] Borman.G, Nishiwaki, Internal Combustion Engine Heat Transfer, Prog.Energy Combust, Sci.1987, (13): 1-46
    [8] S.J. Pachernegg. Heat Flow In Engine Piston. SAE Technical Paper, 670928
    [9]白敏丽,沈胜强,陈家骅,等.内燃机传热全仿真模拟研究进展综述.内燃机学报, 2000, 18(1): 96-99
    [10]钱作勤.内燃机动态热负荷及其虚拟故障的仿真. [博士学位论文],武汉:武汉理工大学, 2001.
    [11] M.P.Menguc Et Al. Multidimensional Modeling Of Radiative Heat Transfer In Diesel Engines. SAE Technical Paper, 850503
    [12] T. Morel And R. Keribar. Heat Radiation In DI Diesel Engine. SAE Technical Paper, 860445
    [13]王瑁成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社, 1996.
    [14]孔祥谦.有限单元法在传热学中的应用(第三版).北京:科学出版社, 1998.
    [15]孔祥谦.热应力有限单元法分析.上海:上海交通大学出版社, 1999.
    [16]内燃机杂志编辑部编.内燃机结构强度研究.北京:机械工业出版社, 1977.
    [17]姚寿广,朱德书,等.内燃机活塞温度场二次等参轴对称边界元分析.内燃机学报, 1991, 9(1): 77-82
    [18]董健,高孝洪.陶瓷活塞轴对称非稳定传热子结构有限元分析方法.内燃机学报, 1992, 10(3): 193-198
    [19]何秉初,毛明智. 1/2活塞模型三维有限元数值分析.内燃机学报, 1990, 8(2):157-162
    [20]张卫正,薛剑青,吴思进,等.高升功率柴油机铸铁活塞的设计与计算分析.内燃机学报, 1999, 17(3): 228-232
    [21]冯耀潮,陈鹏,朱宏顺,等.薄壁油冷活塞三维有限元计算及强度分析.内燃机工程, 1997, 18(3): 6-11
    [22]俞小莉,沈瑜铭,沈晓雯.三维有限元法预算活塞工作温度和应力.内燃机工程, 1999, 20(3): 70-73
    [23]廖日东,左正兴,樊利霞,等.发动机零部件有限元技术应用的新进展.内燃机学报, 1999, 17(2): 190-197
    [24] N.S. Jackson, A.D. Pilley And N.J. Owen. Instantaneous Heat Transfer In A Highly Rated DI Truck Engine. SAE Technical Paper, 900692
    [25] F.G. Wirbeleit, K. Binder And D. Gwinner. Development Of Pistons With Variable Compression Height For Increasing Efficiency And Specific Power Output Of Combustion Engines. SAE Technical Paper, 900229
    [26]姚寿广,朱德书.采用二维时间相关边界元分析柴油机气缸盖鼻梁区非稳态温度场.内燃机学报, 1994, 12(4): 350-356
    [27]顾泽同,金元,潘政.非稳态温度场有限元分析及其在船用柴油机上的应用.中国造船, 1985, (3): 65-74
    [28]顾泽同,胡刚,等.柴油机受热零件的低周热疲劳寿命预测.内燃机学报, 1993, 11(4): 298-305
    [29]姚寿广,朱德书.柴油机气缸盖启动工况非稳定温度场边界元分析.内燃机学报, 1994, 12(3): 258-263
    [30]李人宪.过渡工况下柴油机活塞三维温度场求解.内燃机学报, 1991, 9(2): 184-190
    [31]蔡军,陆瑞松.柴油机汽气缸盖非稳定热负荷的有限元分析.内燃机学报, 1987, 5(3): 263-273
    [32]姜任秋,杨光升,刘顺隆.活塞热冲击问题理论分析.内燃机学报, 1993, 11(1): 83-87
    [33]姜任秋,沈孟良,杨光升,等.柴油机活塞热冲击有限元分析.内燃机学报, 1996, 14(2): 127-133
    [34] Chin-Hsiu Li. Thermal And Mechanical Behavior Of An L-4 Engine. SAE Technical Paper, 881149
    [35] Kyo Seung Lee And Dennis N. Assanis, Et Al. Measurements And Predictions Of Steady-State And Transient Stress Distributions In A Diesel Engine Cylinder Head. SAE Technical Paper, 1999-01-0973
    [36]杨万里,陈国华,王春发,等.内燃机燃烧室零件动态热应力研究.内燃机工程, 2002, 23(3): 46-49
    [37] More T, Edward F. Effect Of Insulation Strategy And Design Parameters On Diesel Engine Heat Rejection And Performance. SAE Technical Paper, 850506
    [38] Morel, T., And Keribar, R. A Model For Predicting Spatially And Time-Resolved Convection Heat Transfer In Bowl-In-Piston Combustion Chambers. SAE Technical Paper, 850204
    [39] Keribar, R. And Morle, T. Thermal Shock Calculations In I.C. Engines. SAE Technical Paper, 870162
    [40] S.H.Lowe.Antony, T.Morel, A New Generation Of Tools For Accurate Thermo–Mechanical Finite Element Analyses Of Engine Components, SAE Technical Paper, 920681
    [41] Doglas M. Bakerm, Dennis N.Assanis, A Methodology For Coupled Thermodynamic And Heat Transfer Analysis Of A Diesel Engine, Appl. Math. Modelling, 1994, 18.
    [42] Shayler, P J., Christian, S.J., Ma, T. A Model For The Investigation Of Temperature, Heat Flow And Friction Characteristics During Engine Warm-Up. SAE 931153, 1993.
    [43] Stanislav V Bohac, Douglas M Baker, Dennis N Assanis. A Global Model For Steady State And Transient S.I. Engine Heat Transfer Studies. SAE Technical Paper, 960073
    [44] Yong Liu, Reitz R.D. Modeling Of Heat Conduction Within Chamber Walls For Multidimensional Internal Combustion Engine Simulations. International Journal Of Heat Mass Transfer. 1998, 41(7): 859-869
    [45] Yong Liu. Modeling Of Combustion Chamber Surface Temperatures With Application To Multidimensional Diesel Engine Simulation. M.S. Thesis, University Of Wisconsin-Madison, 1996
    [46]白敏丽.发动机活塞组-气缸套整体耦合系统瞬态温度场数值模拟.小型内燃机. 1994, 23(4): 12-16
    [47]白敏丽,沈胜强,陈家骅.燃烧室部件耦合系统循环瞬态模型的研究.内燃机学报, 2000, 18(1): 100-103
    [48]白敏丽,沈胜强,陈家骅.燃烧室部件耦合系统过渡工况传热全仿真模拟研究.内燃机学报, 2001, 19(3): 229-234
    [49]白敏丽,丁铁新,吕续组.活塞组-气缸套耦合传热模拟.内燃机学报, 2005, 23(2): 168-175
    [50]张卫正,魏春源,陈光辉.内燃机整机散热量的多模型耦合计算.内燃机学报, 2000, 18(4): 435-438
    [51]赵以贤,毕小平,刘西侠,等.基于集总参数法的车用内燃机传热计算机仿真研究.内燃机学报, 2003, 21(4): 239 -243
    [52]蒋炎坤著. CFD辅助发动机工程的理论与应用.北京:科学出版社, 2004.9
    [53]罗马吉.汽油机进气道-气门-缸内系统进气过程的三维瞬态流动模拟研究. [博士学位论文],武汉:华中科技大学, 2002.
    [54]叶晓明.活塞环组三维润滑数值模拟及其应用研究. [博士学位论文],武汉:华中科技大学, 2004.
    [55]王晓瑜.进气道喷油式汽油机油气混合过程三维瞬态数值模拟. [博士学位论文],武汉:华中科技大学, 2006.
    [56] Assanis, D.N. And Badillo, E. Transient Analysis Of Piston-Liner Heat Transfer In Low-Heat-Rejection Diesel Engines. SAE Technical Paper, 880189
    [57] Kouremenos, D.A., Rakopoulus, C.D. Modeling The Transient Temperature Field In The Combustion Chamber Surfaces Of Internal Combustion Engines Using Finite Element Analysis. 10th IASTED MIC Intern. Conf., 1991, Innsbruck, Austria
    [58] C.D. Rakopoulos, D.T. Hountalas. An Integrated Transient Analysis Simulation Model Applied In Thermal Loading Calculation Of An Air-Cooled Diesel Engine Under Variable Speed And Load Conditions. SAE Technical Paper, 970634
    [59]陈国华,海伍德J.B..燃烧室偶合系统不稳定传热的数值分析.华中工学院学报, 1987, 15(4): 25-32
    [60]范立云,冯立岩,隆武强等.接触热阻的方法在活塞组耦合模型有限元分析中的应用.内燃机工程, 2005,26(4) : 39-42
    [61]姜明,封汉颍.内燃机活塞-气缸套耦合系统的传热模型.科学技术与工程, 2006, 6(17): 2746-2748
    [62]李迎,俞小莉,陆国栋,等.活塞-气缸套周期性瞬态传热仿真.农业机械学报, 2007, 38(1): 60-64
    [63] Torgensens, S.W. Compression Temperatures In A Cold Cranking Engine. SAETechnical Paper, 880045
    [64] Manuel A. Gonzalez. A Study Of Diesel Cold Starting Using Both Cycle Analysis And Multidimensional Calculations. SAE Technical Paper, 910180
    [65] Kerith D. Kertin, Rifat Keribar, And Vemkatesh Ganapathy. Acceleration Of Piston Druability Testing In Natural Gas. SAE Technical Paper, 930275
    [66] Castleman, R.A. A Hydrodynamic Theory Of Piston Ring Lubrication. Physics, 1936, 7: 364-367
    [67] Patir, N. And Cheng, H.S. An Average Flow Model For Determining The Effects Of Three-Dimensional Roughness On Partial Hydrodynamic Lubrication. ASME Journal Of Lubrication Technology, 1978, 101(2): 220-230
    [68] Yeau-Ren Jeng. Theoretical Analysis Of Piston-Ring Lubrication Part I-Fully Flooded Lubrication. Tribology Transactions, 1992, L35: 696-706
    [69] Yeau-Ren Jeng. Theoretical Analysis Of Piston-Ring Lubrication Part II-Starved Lubrication And Its Application To A Complete Ring Pack. Tribology Transactions, 1992, L35: 707-714
    [70] Qingmin Yang And Theo G. Keith, JR. Two-Dimensional Piston Ring Lubrication Part I: Rigid Ring And Liner Solution. Tribology Transactions, 1996, 39: 757-769
    [71] Qingmin Yang And Theo G. Keith, JR. Two-Dimensional Piston Ring Lubrication Part II: Elastic Ring Consideration. Tribology Transactions, 1996, 39: 870-886
    [72] S.K. Michall And G.C. Barber. The Effects Of Roughness On Piston Ring Lubrication Part I: Model Development. Tribology Transactions, 1995, 38: 19-26
    [73] S.K. Michall And G.C. Barber. The Effects Of Roughness On Piston Ring Lubrication Part II: The Relationship Between Cylinder Wall Surface Topography And Oil Film Thickness. Tribology Transactions, 1995, 38: 173-177
    [74] Ozgen Akalin And Golam M. Newaz. Piston Ring-Cylinder Bore Friction Modeling In Mixed Lubrication Regime: Part I-Analytical Results. Journal Of Tribology, 2001, 123: 211-123
    [75] Ozgen Akalin And Golam M. Newaz. Piston Ring-Cylinder Bore Friction Modeling In Mixed Lubrication Regime: Part II-Correlation With Bench Test Data. Journal Of Tribology, 2001, 123: 219-223
    [76] Ting, L.L., And Mayer, J.E. Piston Ring Lubrication And Cylinder Bore Wear Analysis: Part I-Theory. ASME J. Lubr. Technology, 1974, 96: 305-314
    [77] Dowson, D., And Economou, P.N. Piston Ring Lubrication: Part II-Theoretical Analysis Of A Single Ring And A Complete Ring Pack. Energy Conservation Through Fluid Film Lubrication Technology: Frontiers In Research And Design, ASME Winter Annual Meeting, 1979
    [78] Jeng, Y. Theoretical Analysis Of Piston-Ring Lubrication Part I-Fully Flooded Lubrication. STLE Tribol. Trans., 1992, 35: 696-706
    [79] Jeng, Y. Theoretical Analysis Of Piston-Ring Lubrication Part 2-Starved Lubrication And Its Applications To A Complete Ring Pack. STLE Tribol. Trans., 1992, 35: 707-714
    [80]桂长林,焦明华.内燃机汽缸-活塞环组润滑状态的分析方法.内燃机学报, 1993, 11(1): 33-37
    [81]刘琨,谢友柏,内燃机气缸套-活塞环混合润滑特性及摩擦力分析.内燃机学报, 1995, 13(3): 299-305
    [82]刘琨,桂长林,谢友柏.活塞环-气缸套润滑状态周向不均匀性的研究.内燃机学报, 1997, 15(3): 281-289
    [83]白敏丽,沈胜强,陈家骅,等.活塞环摩擦热对燃烧室部件耦合系统的传热影响模拟研究.内燃机学报, 2001, 19(2): 182-186
    [84]肖翀,左正兴,覃文洁,等.柴油机气缸盖的耦合场分析及应用.车用发动机, 2006, (4): 26-29
    [85]郭立新,杨海涛,夏兴兰.某汽油机气缸盖热负荷分析.现代车用动力, 2006, (4): 16-20
    [86]陈红岩,李迎,李孝禄.柴油机流固耦合传热仿真研究.中国计量学院学报, 2006.12, 17(4): 284-288
    [87]陈红岩,李,迎,俞小莉.柴油机流固耦合系统稳态传热数值仿真.农业机械学报, 2007.2,38(2): 56-60
    [88]陈红岩,李婷.柴油机活塞气缸套冷却水系统固流耦合传热研究.农业机械学报. 2006.5, 37(5): 37-40
    [89]李婷,俞小莉,李迎,等.基于有限元法的活塞-气缸套-冷却水系统固流耦合传热研究.内燃机工程, 2006.10, 27(5): 41-45
    [90]李迎.内燃机流固耦合传热问题数值仿真与应用研究. [博士学位论文],杭州:浙江大学博士论文, 2006.
    [91]刘永长.内燃机工作过程模拟.武汉:华中理工大学出版社, 1996.
    [92]魏道远.内燃机燃烧与排放控制.北京:中国铁道出版社, 1992.
    [93] Morel, T., And Keribar, R. Heat Radiation In DI Diesel Engines. SAE 860445, 1986.
    [94] Jennings, M., And Morel, T. Modeling Of Turbulent Heat Transfer With Application To I.C. Engines. SAE Technical Paper, 872104
    [95] Kouremenos, D.A., Raleopoulos, C.D. Thermodynamics Analysis Of Indirect Injection Diesel Engines By Two-Zone Modeling Of Combustions. Trans. ASME, J. Engng For Gas Turbines And Power, 1990, 12: 138-149
    [96] Krieger, R.B. And Borman, G.L. The Computation Of Apparent Heat Release For Internal Combustion Engines. ASME Paper, No 66 WA\DGP-4,1966
    [97] Shi-Wen Li, Takeyuki Kamimoto. Heat Transfer From Impinging Diesel Flames To The Combustion Chamber Wall. SAE Technical Paper, 970896
    [98]罗森诺等.传热学基础手册(上册).北京:科学出版社, 1992.
    [99]王平,韩振兴,朱墨娴,等译.流体力学大全.北京:航空航天大学出版社, 1991.
    [100]曾攀编著.有限元分析及应用.北京:清华大学出版社, 2004.
    [101] Yang Wanli, Chen Guohua, Wang Chunfa Etc. Simulation Of Non-Steady Heat Transfer For Coupling 3-D Moving Component System Within Internal Combustion Chamber, SAE Technical Paper, 2003-01-0617
    [102] Wanli Yang, Guohua Chen And Yan Chen. Study Of Transient Heat Transfer Of Components In Internal Combustion Chamber. Preceedings Of Internal Combustion Engine Division Of The ASME 2002 Fall Technical Conference, ICE-Vol.39, Pp.317-322
    [103]杨万里,陈国华,陈燕,等.内燃机燃烧室耦合三维零件系统过渡工况传热模拟.内燃机学报, 2003, 21(2): 161-166
    [104] Furuhama S. Effect Of Piston And Piston Ring Designs On The Piston Friction Forces In Diesel Engines. SAE Technical Paper, 810977
    [105] Cho S W, Choi S M And Bae C S. Frictional Modes Of Barrel Shaped Piston Rings Under Flooded Lubrication. Tribology International, 2000, 33(8): 300-305
    [106]温诗铸.摩擦学原理.北京:清华大学出版社, 1990.
    [107] Houper L. New Results Of Traction Force Calculations In Elastohydrodynamic Contacts. Transaction Of ASME, Journal Of Tribology, 1985, 107(2): 241-248
    [108] Wang S, Cusano C And Conry T F. Thermal Analysis Of Elastohydrodynamic Lubrication Of Line Contacts Using The Ree---Eyring Fluid Model. Transaction OfASME, Journal Of Tribology, 1991, 113(2): 232-244
    [109]温诗铸,杨沛然.弹性流体动力润滑.北京:清华大学出版社, 1992.
    [110] L.S.Fletch. Recent Development In Contact Conductance Heat Transfer.Journal Of Heat Transfer. 1988, 110: 1059-1070
    [111]张建涛.固体接触热阻的数值模拟. [硕士学位论文],哈尔滨:哈尔滨工业大学, 2004.
    [112] E.E. Marotta, L.S. Fletcher. Thermal Contact Conductance For Aluminum Andstainless Steel Contacts. Journal Of Thermophysics And Heat Transfer. 1998, 12(3): 374-376
    [113]顾慰兰,杨燕生.温度对接触热阻的影响.南京航空航天大学学报, 1994, 26(3): 342-350
    [114] C.V Madhusudana. Thermal Contact Conductance And Rectification At Low Joint Pressures. Int.Comm. Heat Mass Transfer. 1993, 20: 123-132
    [115]张九如,金燕.固体界面热整流现象的解析.材料科学与工程, 2002, 20(3): 432-434
    [116] T. Mcwaid, E. Marschall. Thermalc Ontact Resistance Across Pressed Metal In Vacuum Environment. International Journal Of Heat And Mass Transfer.1992,35(11): 2911-2920
    [117]赵兰萍,徐烈.低温固体界面间接触导热“Hysteresis”现象的研究.低温与超导, 2002, 30(3): 46-49
    [118]赵兰萍,徐烈,李兆慈,孙恒.固体界面间接触导热的机理和应用研究.低温工程, 2000, 116(4): 29-34
    [119]陆耀祖编.内燃机构造与原理.北京:中国建材工业出版社, 2004.
    [120]杨绍祺,谈根林.稀疏矩阵-算法及其程序实现.北京:高等教育出版社, 1985.
    [121] BOOST Documentation / USERS GUIDE, Version 4.4, 2004.6, AVL, Inc.
    [122] FIRE Documentation / CFD SOLVER, Version 8.4 ,2005.5, AVL, Inc.
    [123]陈海娥,孟凡臣,宋建龙,等.发动机冷却水套CFD分析.汽车技术, 2003 (8): 16-20.
    [124]屈盛官.发动机气缸盖冷却水流动试验及CFD分析.华南理工大学学报(自然科学版), 2004, 32(8): 42-46.
    [125]孙秀峰. 8E160型柴油机活塞组耦合模型有限元分析. [硕士学位论文],大连:大连理工大学, 2003.
    [126]姬芬竹,聂建军,高峰.对置发动机活塞温度场三维有限元分析.能源技术, 2005, 26(5): 192-195
    [127]刘圣华,周龙保,赵慧,等.活塞环组润滑油膜厚度的试验研究.内燃机学报, 1997, 15(3): 341-346
    [128] Akiko Shimada,Yasuo Harigaya, Michiyoshi Suzuki. An Analysis Of Oil Film Temperature, Oil Film Thickness And Heat Transfer On A Piston Ring Of Internal Combustion Engine: The Effect Of Local Lubricant Viscosity. SAE Technical Paper, 2004-32-0024
    [129]杨俊伟,于旭东,王成焘,等.活塞裙部润滑油膜厚度的计算及试验研究.内燃机学报, 2001, 19(5): 485-488
    [130] Mathias Perchanok,. Modeling Of Piston-Cylinder Lubrication With A Flexible Skirt And Cylinder Wall. SAE Technical Paper, 2000-01-2804
    [131]雷基林.增压柴油机活塞三维有限元分析及温度场试验研究. [硕士学位论文],昆明:昆明理工大学, 2005.
    [132]施培文,杜爱民.发动机活塞热分析.内燃机, 2006, (3): 7-10
    [133] Stone, C.R.,Lim,E.P., Ewart, P.,etal. Temperature And Heat Flux Measurements In A Spark Ignition Engine. SAE Technical Paper, 2000-01-1214
    [134] V. Dunaevsky, B.Vick, Friction Temperature Of The Piston Rings With Consideration Of The Cylinder Wall Thickness, SAE Technical Paper, 2004-01-0612
    [135] Heinz Heislev. Advanced Engine Technology. Lodon: Edward Arnold a Division of Hodder Headline. PLC,1995.
    [136] Heinz Heislev. Vehicle and Engine Technology. Lodon: Edward Arnold a Division of Hodder Headline. PLC,1997.
    [137] Chen,T.Y.,Zwick Jim, Tripathy Bhawani, etal. 3D Engine Analysis And MLS Cylinder Head Gaskets Design. SAE Technical Paper, 2002-01-0663
    [138] Frank Popielas, Colin Chen , Stefan Obermaier. CAE Approach For Multi-Layer-Steel Cylinder Head Gaskets. SAE Technical Paper, 2000-01-1348
    [139]刘志恩,蒋炎坤,陈国华. CFD辅助发动机进气道设计方法研究.内燃机工程, 2006.12, 27(6): 6-10
    [140] Kuo,T-W, Multidimensional Port-And-Cylinder Gas Flow, Fuel Spray, And Combustion Calculations For A Port-Fuel-Injection Engine, SAE Technical Paper, 920515
    [141] Bauer Wolf, Heywood, John B.,etal. Flow Characteristics In Intake Port Of Spark Ignition Engine Investigated By CFD And Transient Gas Temperature Measurement. SAE Technical Paper, 961997
    [142] Keisuke Uchida, Takashi Suzuki,Yasufumi Oguri, etal. Precise Measurement And Analysis Of Heat Transfer To The Inlet Air Using Intake Port Model. ASME, IMECE2006-14139
    [143] Keisuke Uchida, Takashi Suzuki,Yasufumi Oguri. Precise Measurement And Analysis Of Heat Transfer To The Inlet Air Using Intake Port Model: Influence Of Intake Valve And Unsteady Effect . ASME, IMECE2006-14144
    [144] Christopher Depcik , Dennis Assanis.A Universal Heat Transfer Correlation For Intake And Exhaust Flows In An Spark-Ignition Internal Combustion Engine. SAE Technical Paper, 2002-01-0372
    [145] Andreas Wimmer,Robert Pivec,Theodor Sams. Heat Transfer to The Combustion Chamber And Port Walls of IC Engines– Measurement And Prediction. SAE Technical Paper, 2000-01-0568
    [146] Lars Eriksson.Mean Value Models For Exhaust System Temperatures.Sae Technical Paper, 2002-01-0374
    [147] H.N. Ko, T. Hasegawa, S.Kitaoka, etal. A Method of Measuring contact Pressure of Cylinder Head Gasket. SAE Technical Paper, 2004-32-0086
    [148] Thomas Schnitzler, Barna Hanula, Stefan Heubes, etal. Synergy Between Finite Element Analysis Temperature Engine Map Calculations And The Most Modern Pyrometric Measuring Technique Shown For Charge Change Valves. SAE Technical Paper, 2004-32-0028
    [149]王琳,刘佐民.发动机排气门失效机理研究的国内外概况.武汉工业大学学报, 2000.10, 22(5): 83-86
    [150]郭立新,杨海涛,夏兴兰.某汽油机气缸盖热负荷分析.现代车用动力, 2006.11, (4): 16-20
    [151]刘志恩.汽油机气缸盖不稳定传热三维有限元分析. [硕士学位论文],武汉:华中科技大学, 2003.
    [152]彭智峰.汽油机活塞不稳定传热三维有限元分析. [硕士学位论文],武汉:华中科技大学, 2003.
    [153] Liu Zhien,Jiang Yankun,Chen Guohua.Transient Heat Transfer Simulation Of TheCoupling 3-D Moving Piston Assembly-Lubricant Film-Liner System. ASME International Mechanical Engineering Congress and Exposition, IMECE2006-15481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700