用户名: 密码: 验证码:
水—岩作用的岩体剪切特性试验与M-H-C耦合数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是影响岩体工程安全性的重要因素之一,水与岩体之间不仅存在力学作用,还存在复杂的水-岩物理化学作用,许多岩体工程的破坏和失稳均与水-岩作用密切相关。随着我国大规模的岩体工程建设,岩体工程在荷载和水-岩作用下的应力-渗流-化学(M-H-C)耦合问题日趋重要。因此,开展岩体剪切特性的水-岩作用效应、岩石M-H-C耦合本构模型以及M-H-C耦合数值模拟的研究,对于受水-岩作用影响的岩体工程如边坡、坝基、地下洞室及核废料地下储存、溶浸采矿、油气田开采等问题,均具有重要的理论意义与应用价值。
     本文围绕存在水-岩作用的岩体工程稳定性问题,采用试验研究、理论分析与数值模拟相结合的方法,就水-岩作用对岩体剪切特性的影响效应开展了系统的试验研究,分析了水-岩作用对岩体剪切特性的影响规律,探讨了其作用机理;建立了岩石水化学损伤动态演化数学模型,开展了岩石水化学损伤动态演化的数值模拟研究;探讨了岩石M-H-C耦合的基本理论与相关问题;提出了岩石M-H-C耦合弹性本构模型和M-H-C耦合弹塑性本构模型,分别编制了其数值模拟程序,建立了相应的数值模拟方法,同时进行了工程算例分析。
     论文的主要研究内容如下:
     1.开展了不同水化学溶液侵蚀条件下砂岩的抗剪强度试验,分析了水化学作用对砂岩微细观结构的影响效应,探讨了砂岩的水化学损伤机理。在此基础上,分析了水化学作用对砂岩抗剪强度的影响规律,同时通过引入岩石水化学损伤度,定量表达了砂岩抗剪强度参数随水化学损伤的变化过程。
     2.开展了具不同含水率的砂岩软弱结构面剪切蠕变试验,分析并探讨了含水率对砂岩软弱结构面剪切蠕变特性及长期抗剪强度的影响规律与机理。研究表明,在相同应力水平下,随着含水率增大,其蠕变变形和蠕变速率显著增大,达到稳态阶段所需时间明显延长,初始蠕变强度和长期抗剪强度逐渐降低,且长期抗剪强度随含水率变化符合指数函数关系。
     3.根据试验结果,对黏弹塑性元件组合蠕变模型进行了改进,建立了能考虑含水率影响效应的砂岩软弱结构面剪切蠕变模型,同时采用进化优化算法对该蠕变模型中的多参数进行了反演。
     4.采用化学动力学方法建立了岩石水化学损伤动态演化数学模型。在此基础上,对工程时间尺度内重庆砂岩在水化学环境下的损伤演化过程进行了数值模拟,分析了水溶液酸碱度、离子种类与离子浓度对重庆砂岩损伤演化的影响效应与规律。
     5.提出了由水化学损伤动态演化模型、岩石固相基质本构方程、渗流方程、孔隙压力变化方程等构成的岩石M-H-C耦合弹性本构模型。
     6.基于所提出的M-H-C耦合弹性本构模型和模块化思想,利用多物理场耦合分析软件COMSOL的流-固耦合模块和水文地球化学分析软件Phreeqc,分别对其进行二次开发,编制相关的接口程序,并通过岩石水化学损伤度将Phreeqc的水化学损伤计算过程与COMSOL的应力-水力耦合计算过程有机融合,构建起岩石M-H-C耦合的弹性数值模拟程序与方法。
     7.通过引入化学软化概念,在D-P屈服准则中加入化学软化力,提出了考虑水化学作用效应的岩石屈服准则及加卸载准则,采用关联流动法则,建立了相应的弹塑性本构模型,进而构建起包括水化学损伤动态演化模型、渗流方程、弹性常数和渗透系数的水化学损伤演化方程等的岩石M-H-C耦合弹塑性本构模型。
     8.基于所提出的岩石M-H-C耦合弹性数值模拟方法,通过嵌入上述M-H-C耦合弹塑性本构模型,构建了岩石M-H-C耦合弹塑性数值模拟程序与方法。
     9.采用所提出的M-H-C耦合弹性和弹塑性数值模拟方法,对某一存在水-岩化学作用的隧道稳定性分别开展了弹性和弹塑性计算分析,模拟了隧道在不同酸碱度、不同离子种类与离子浓度水环境下的损伤演化过程,分析了水环境酸碱度、离子种类与离子浓度对其稳定性的影响效应,并就弹性和弹塑性结果进行了比较分析。
Water is one of the most active components in geological environment. Its interactions with geo-materials are not only the hydraulic effect which is correlated with the concept of effective stress, but also the effect of complicated water-rock effects. Previous studies have shown that the water-rock interactions play an important role in the geotechnical instability or failure. Moreover, with the advance of engineering technology and the scope of the deepening development of rock engineering, the coupled mechanical-hydraulic-chemical problem becomes more and more prominent. Therefore, the studies on mechanical characters of rock mass under water-rock interactions and the coupled problem of M-H-C have important theoretical significance and practical value to evaluate the long-term stability of rock engineering, such as slope, dam foundation, tunnel, underground cavern and waste disposal in environment engineering, etc.
     To study the stability problem in geotechnical engineerning, shear strength tests of sandstone under different hydro-chemical environments were carried out. The mechanism of hydro-chemical corrosion of sandstone was discussed. The effect of hydro-chemical action on shear strength of sandstone was analyzed and a variable was introduced to quantitatively express the hydro-chemical damage evolution of shear strength parameters. Moreover, shear rheology tests on weak structural plane of sandstone with different water contents were conducted. The effects of water content on the shear rheology behavior and long-term shear strength of weak structural plane of sandstone were analyzed, and then a modified viscoelastoplastic model was identified to describe the effects of water content on the rheology behavior of weak structural plane. A numerical model was proposed to predict the hydro-chemical damage evolution of rock. Following that, the coupled mechanical-hydro-chemical elastic and elastoplastic model were proposed respectively and the corresponding numerical simulation programs were developed. Then the stability evolution processes of a tunnel under different hydro-chemical circumstances were analyzed by both the coupled M-H-C elastic and elastoplastic methods. The main contents of the thesis are represented as follows:
     (1) Shear strength tests of sandstone under different hydro-chemical environments were carried out. The effect of hydro-chemical action on sandstone structure was analyzed from the viewpoint of meso-mechanism, and the mechanism of hydro-chemical damage of sandstone was discussed. On this basis, the effect of hydro-chemical action on shear strength of sandstone was analyzed, and a variable was introduced to quantitatively express the hydro-chemical damage evolution of shear strength parameters.
     (2) Shear rheology tests on weak structural plane of sandstone with different water contents were conducted. The curves of the shear rheology deformation vs. time under different water contents of the fillings were derived. The effects of water content on shear rheology behavior and long-term shear strength of weak structural plane of sandstone were analyzed. Moreover, the influence mechanism of water content effects on the rheological characteristics and long-term shear strength were discussed.
     (3) A modified viscoelastoplastic model, which based on the test results and analysis, was identified to describe the effects of water content on the rheology behavior of weak structural plane. Meanwhile, the parameters of the model were identified through back analysis by genetic algorithm.
     (4) A hydro-chemical damage evolution model was proposed by chemical kinetics method. Based on the model, the hydro-chemical damage evolution processes of Chongqing sandstone under different circumstances, which considered the variations of pH values, ions species and ions concentrations, were simulated. Moreover, the sensitivity of the influencing environmental factors was discussed.
     (5) A coupled M-H-C elastic model was proposed, which was composed by hydro-chemical damage evolution model, rock matrix constitutive model, seepage equation and pore pressure equation.
     (6) With modular software development method, a new program was developed to simulate the coupled M-H-C elastic model based on COMSOL and Phreeqc.
     (7) By introducing the concept of chemical softening, a coupled M-H-C elastoplastic model was established.
     (8) Based on the numerical simulation program of the coupled M-H-C elastic model, by embedding the coupled M-H-C elastoplastic constitutive model, a new program was developed to simulate the coupled M-H-C elastoplastic model.
     (9) The stability evolution processes of a tunnel under different hydro-chemical circumstances were predicted by both the coupled M-H-C elastic and elastoplastic methods. Then the environmental impact factors to the stability of the tunnel were analyzed.
引文
[1]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [2]仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):303-310.
    [3]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性—第一部分:试验研究[J].岩石力学与工程学报,2000,19(4):403-407.
    [4]冯夏庭,丁梧秀.应力-水流-化学耦合下岩石破裂全过程的细观力学试验[J].岩石力学与工程学报,2005,24(9):1465-1473.
    [5]冯夏庭,潘鹏志,丁梧秀,等.结晶岩开挖损伤区的温度-水流-应力-化学耦合研究[J].岩石力学与工程学报,2008,27(4):656-663.
    [6]L. Ning, Z. Yunming, S. Bo, et al. A chemical damage model of sandstone in acid solution[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(2):243-249.
    [7]J. D. Dunning, M. E. Miller. Effects of pore fluid chemistry on stable sliding of Berea sandstone[J]. Pure and Applied Geophysics,1984,122(2):447-462.
    [8]L. J. Feucht, J. M. Logan. Effects of chemically active solutions on shearing behavior of a sandstone[J]. Tectonophysics,1990,175(1-3):159-176.
    [9]S. W. Freiman. Effects of chemical environments on slow crack growth in glasses and ceramics[J]. J. Geophys. Res,1984,89(B6):4072-4076.
    [10]M. Kaczmarek. Chemically induced deformation of a porous layer coupled with advective-dispersive transport. Analytical solutions[J]. Mechanics of Cohesive-frictional Materials,2001,25(8):757-770.
    [11]J. R. Lister, R. C. Kerr. Fluid-mechanical models of crack propagation and their application to magma transport in dykes[J]. Journal of Geophysical Research-Solid Earth,1991, 96(B6):10049-10077.
    [12]J. M. Logan, M. I. Blackwell. The influence of chemically active fluids on the frictional behavior of sandstone[J]. EOS, Transactions, American Geophysical Union,1983,64(2): 835-837.
    [13]B. Loret, T. Hueckel, A. Gajo. Chemo-mechanical coupling in saturated porous media: elastic-plastic behaviour of homoionic expansive clays[J]. International Journal of Solids and Structures,2002,39(10):2773-2806.
    [14]李炳乾.地下水对岩石的物理作用[J].地震地质译丛,1995,(5):32-37.
    [15]汤连生.水-岩土反应的力学与环境效应研究[J].岩石力学与工程学报,2000,19(5):681-682.
    [16]汤连生.水-岩土化学作用的环境效应[J].中山大学学报(自然科学版),2001,40(5):103-107.
    [17]汤连生,王思敬.水—岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展,1999,14(5):433-439.
    [18]汤连生,张鹏程.水化学损伤对岩石弹性模量的影响[J].中山大学学报(自然科学版),2000,39(5):126-128.
    [19]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4):526-531.
    [20]周翠英,彭泽英,尚伟,等.论岩土工程中水岩相互作用研究的焦点问题—特殊软岩的力学变异性[J].岩土力学,2002,23(1):124-128.
    [21]刘建,李鹏,乔丽苹,等.砂岩蠕变特性的水物理化学作用效应试验研究[J].岩石力学与工程学报,2008,27(12):2540-2550.
    [22]刘建,乔丽苹,李鹏.砂岩弹塑性力学特性的水物理化学作用效应—试验研究与本构模型[J].岩石力学与工程学报,2009,28(1):20-29.
    [23]崔强,冯夏庭,程昌炳,等.化学腐蚀下岩土体力学特性变化的定量描述[J].东北大学学报(自然科学版),2008,29(12):1778-1781.
    [24]崔强,冯夏庭,薛强,等.化学腐蚀下砂岩孔隙结构变化的机制研究[J].岩石力学与工程学报,2008,27(6):1209-1216.
    [25]丁梧秀,冯夏庭.化学腐蚀下灰岩力学效应的试验研究[J].岩石力学与工程学报,2004,23(21):3571-3576.
    [26]丁梧秀,冯夏庭.灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J].岩石力学与工程学报,2005,24(8):1283-1288.
    [27]丁梧秀,冯夏庭.化学腐蚀下裂隙岩石的损伤效应及断裂准则研究[J].岩土工程学报,2009,31(6):899-904.
    [28]杨天鸿,芮勇勤,唐春安,等.抚顺西露天矿蠕动边坡变形特征及稳定性动态分析[J].岩土力学,2004,25(1):153-156.
    [29]徐则民.路基边坡水岩相互作用机理及病害防治[M].成都:西南交通大学出版社,2000.
    [30]王铠.地下水对隧洞、竖井混凝土工程腐蚀的实例分析[J].勘察科学技术,2002,(6):3-7.
    [31]阿里木·吐尔逊.坝基老化岩—水—化学作用数值模拟研究[D].南京:河海大学博士学位论文,2005.
    [32]潘忠华.陈村大坝坝址区水—岩作用模拟[D].南京:河海大学硕士学位论文,2007.
    [33]宋汉周,施希京.大坝坝址析出物及其对岩体渗透稳定性的影响[J].岩土工程学报,1997,19(5):14-19.
    [34]王京印.泥页岩井壁稳定性力学化学耦合模型研究[D].东营:中国石油大学博士学位 论文,2007.
    [35]张乐文,邱道宏,程远方.井壁稳定的力化耦合模型研究[J].山东大学学报(工学版),2009,39(3):111-114.
    [36]韩德金,董平川,石娜.储层水敏实验及其形成机理研究[J].大庆石油地质与开发,2008,27(5):14-17.
    [37]和冰.泥页岩地层水化后井眼周围应力的计算模型[J].钻采工艺,2008,31(B08):11-13.
    [38]李甫,陈亮,陈冀嵋,等.酸化作业中储层的伤害与防范[J].重庆科技学院学报:自然科学版,2009,11(4):50-53.
    [39]刘向君,罗平亚.泥岩地层井壁稳定性研究[J].天然气工业,1997,17(1):45-48.
    [40]刘向君,罗平亚.水化对泥页岩地层“安全”钻井的影响[J].西南石油学院学报,1999,21(2):49-52.
    [41]汪伟英,唐周怀,等.储层岩石水敏性影响因素研究[J].江汉石油学院学报,2001,23(2):49-50.
    [42]黄荣樽,陈勉,邓金根,等.泥页岩井壁稳定力学与化学的耦合研究[J].钻井液与完井液,1995,12(3):15-21.
    [43]王尤富,徐弘,詹业裕,等.疏松砂岩油藏岩石水敏性试验研究[J].石油天然气学报,2005,27(2):219-221.
    [44]范玮佳,赵明阶.水岩作用对文笔沱滑坡群形成与演化的影响[J].重庆交通大学学报:自然科学版,2008,27(1):80-84,90.
    [45]廖秋林,李晓,李守定,等.水岩作用对川藏公路102滑坡形成与演化的影响[J].工程地质学报,2003,11(4):390-395.
    [46]廖秋林,李晓,尚彦军,等.水岩作用对雅鲁藏布大拐弯北段滑坡的影响[J].水文地质工程地质,2002,5:19-21.
    [47]马水山,雷俊荣,张保军,等.滑坡体水岩作用机制与变形机理研究[J].长江科学院院报,2005,22(5):37-39,48.
    [48]徐则民,黄润秋,范柱国.滑坡灾害孕育—激发过程中的水-岩相互作用[J].自然灾害学报,2005,14(1):l-9.
    [49]王士天,刘汉超,张倬元,等.大型水域水岩相互作用及其环境效应研究[J].地质灾害与环境保护,1997,8(1):69-88.
    [50]柴波,殷坤龙,简文星,等.红层水岩作用特征及库岸失稳过程分析[J].中南大学学报:自然科学版,2009,40(4):1092-1098.
    [51]王晓欣.四川红层地区水—岩作用时效性研究[D].成都:成都理工大学硕士学位论文,2009.
    [52]黄润秋,徐则民,许模.地下水的致灾效应及异常地下水流诱发地质灾害[J].地球与环境,2005,33(3):1-9.
    [53]王思敬,马凤山.水库地区的水岩作用及其地质环境影响[J].工程地质学报,1996,4(3):1-9.
    [54]廖秋林,李晓,董艳辉,等.川藏公路林芝—八宿段地质灾害特征及形成机制初探[J].地质力学学报,2004,10(1):33-39.
    [55]罗嗣海,钱七虎,李金轩,等.高放废物深地质处置中的多场耦合与核素迁移[J].岩土力学,2005,(S1):264-270
    [56]吉兆宁.溶浸采矿技术及其环境价值[J].有色冶炼,2002,31(6):119-121.
    [57]施勋偕,余斌.原地溶浸采矿技术国内外研究概况与发展趋势[J].有色矿冶,1999,15(5):1-5.
    [58]仵彦卿,张悼元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [59]L. S. Burshtein. Effect of moisture on the strength and deformability of sandstone[J]. Journal of Mining Science,1969,5(5):573-576.
    [60]B. Atkinson. Stress corrosion cracking of quartz:a note on the influence of chemical environment[J]. Tectonophysics,1981,77(1-2):T1-T11.
    [61]J. Lanru, F. Xiating. Numerical modeling for coupled thermo-hydro-mechanical and chemical processes (THMC) of geological media-international and chinese experiences[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(10):1704-1715.
    [62]王思敬.中国岩石力学与工程的世纪成就与历史使命[J].岩石力学与工程学报,2003,22(6):867-871.
    [63]T. Hueckel. Special Issue on Chemo-Mechanical Interaction in Geomaterials[J]. Computers and Geotechnics,2007,34(4):199.
    [64]沈照理,王焰新.水—岩相互作用研究的回顾与展望[J].地球科学:中国地质大学学报,2002,27(2):127-133.
    [65]沈照理.应该继续重视与开展水—岩相互作用的研究[J].水文地质工程地质,1997,24(4):16-20.
    [66]耿乃光,郝晋昇,李纪汉,等.断层泥力学性质与含水量关系初探[J].地震地质,1986,3:58-62.
    [67]许东俊,耿乃光.含水粘土断层泥的现场大尺度剪切实验[J].地震研究,1991,14(3):293-300.
    [68]C. G. Dyke, L. Dobereiner. Evaluating the strength and deformability of sandstones[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1991,24(1):123-134.
    [69]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335-342.
    [70]A. B. Hawkins, B. J. McConnell. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1992,25(2):115-130.
    [71]康红普.水对岩石的损伤[J].水文地质工程地质,1994,3:39-41.
    [72]朱珍德,邢福东,王思敬,等.地下水对泥板岩强度软化的损伤力学分析[J].岩石力学与工程学报,2004,23(S2):4739-4743.
    [73]周翠英,邓毅梅,谭祥韶,等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):394-400.
    [74]徐则民,扬立中,黄润秋.路基边坡水岩相互作用机理及病害防治[M].成都:西南交通大学出版社,2000.
    [75]W. R. Wawersik, W. S. Brown. Creep Fracture in Rock in Uniaxial Compression, Utch University, Salt Lake City,1971
    [76]李铀,朱维申,白世伟,等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10):1673-1677.
    [77]刘光廷,胡昱,陈凤歧,等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(7):1237-1241.
    [78]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [79]P. A. Rebinder, L. A. Shreiner, K. F. Zhigach. Hardness reducers in drilling:a physico-chemical method of facilitating the mechanical destruction of rocks during drilling[M]. Council for Scientific and Industrial Research,1948.
    [80]M. G. Karfakis, M. Akram. Effects of chemical solutions on rock fracturing[J]. International Journal of Rock Mechanics and Mining Sciences,1993,30(7):1253-1259.
    [81]A. J. Hutchinson, J. B. Johnson, G. E. Thompson, et al. Stone degradation due to wet deposition of pollutants[J]. Corrosion science,1993,34(11):1881-1898.
    [82]В.И.КУЗЪКИН.负载状态下溶解作用对不同成因岩石强度的影响[J].赵惠珍译,地质科技译丛,1997,14(2):61-64.
    [83]T. Heggheim, M. V. Madland, R. Risnes, et al. A chemical induced enhanced weakening of chalk by seawater[J]. Journal of Petroleum Science and Engineering,2005,46(3):171-184.
    [84]J. Sausse, E. Jacquot, B. Fritz, et al. Evolution of crack permeability during fluid-rock interaction. Example of the Brezouard granite (Vosges, France)[J]. Tectonophysics,2001, 336(1-4):199-214.
    [85]K. Su, N. Hoteit, O. Ozanam. Desiccation and rehumidification effects on the thermohydromechanical behaviour of the callovo-oxfordian argillaceous rock[C]. Elsevier Geo-Engineering Book Series,Elsevier, Stockholm,Sweden,419-424.2004.
    [86]汤连生,王思敬.工程地质地球化学的发展前景及研究内容和思维方法[J].大自然探 索,1999,18(2):35-40.
    [87]汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报,2002,21(3):314-319.
    [88]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报,2002,21(6):822-827.
    [89]丁梧秀.水化学作用下岩石变形破裂全过程实验与理论分析[D].武汉:中国科学院研究生院(武汉岩土力学研究所)博士学位论文,2005.
    [90]崔强.化学溶液流动-应力耦合作用下砂岩的孔隙结构演化与蠕变特征研究[D].沈阳:东北大学博士学位论文,2009.
    [91]X. T. Feng, S. L. Chen, S. J. Li. Effects of water chemistry on microcracking and compressive strength of granite[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(4):557-568.
    [92]X. T. Feng, W. X. Ding. Experimental study of limestone micro-fracturing under a coupled stress, fluid flow and changing chemical environment[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(3):437-448.
    [93]X. T. Feng, W. X. Ding, D. X. Zhang. Multi-crack interaction in limestone subject to stress and flow of chemical solutions[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(1):159-171.
    [94]X. T. Feng, S. Li, S. Chen. Effect of water chemical corrosion on strength and cracking characteristics of rocks-a review[J]. Key Engineering Materials,2004,1355-1360.
    [95]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力学,2002,23(3):284-287.
    [96]陈四利,冯夏庭,李邵军.化学腐蚀下三峡花岗岩的破裂特征[J].岩土力学, 2003,24(5):817-821.
    [97]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴压缩力学效应的试验[J].东北大学学报(自然科学版),2003,24(3):292-295.
    [98]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析[J].岩土力学,2004,25(9):1363-1367.
    [99]鲁祖德,丁梧秀,冯夏庭,等.裂隙岩石的应力—水流—化学耦合作用试验研究[J].岩石力学与工程学报,2008,27(4):796-804.
    [100]姚华彦,冯夏庭,崔强,等.化学溶液及其水压作用下单裂纹灰岩破裂的细观试验[J].岩土力学,2009,30(1):59-66.
    [101]姚华彦,冯夏庭,崔强,等.化学侵蚀下硬脆性灰岩变形和强度特性的试验研究[J].岩土力学,2009,30(2):338-344.
    [102]姚华彦.化学溶液及其水压作用下灰岩破裂过程宏细观力学试验与理论分析[D].中 国科学院研究生院(武汉岩土力学研究所)博士学位论文,2008.
    [103]霍润科,李宁,张浩博.酸性环境下类砂岩材料物理性质的试验研究[J].岩土力学,2006,27(9):1541-1544.
    [104]朱运明.酸性环境中砂岩强度、变形性质的实验研究[D].西安:西安理工大学硕士学位论文,2001.
    [105]霍润科.酸性环境下砂浆-砂岩材料的受酸腐蚀过程及其基本特性劣化规律的试验研究[D].西安:西安理工大学博士学位论文,2006.
    [106]乔丽苹.砂岩弹塑性及蠕变特性的水物理化学作用效应试验与本构研究[D].中国科学院研究生院(武汉岩土力学研究所)博士学位论文,2008.
    [107]乔丽苹,刘建,冯夏庭.砂岩水物理化学损伤机制研究[J].岩石力学与工程学报,2007,26(10):2117-2124.
    [108]谭卓英,柴红保,刘文静,等.岩石在酸化环境下的强度损伤及其静态加速模拟[J].岩石力学与工程学报,2005,24(14):2439-2448.
    [109]谭卓英,刘文静,闭历平,等.岩石强度损伤及其环境效应实验模拟研究[J].中国矿业,2001,10(4):50-53.
    [110]姜立春,陈嘉生.AMD蚀化砂岩的性征及其机理研究[J].矿业研究与开发,2006,26(6):27-31.
    [111]D. F. Malan, U. W. Vogler, K. Drescher. Time-dependent behaviour of hard rock in deep level gold mines[J]. The Journal of The South African Institute of Mining and Metallurgy, 1997,97:135-148.
    [112]K. Drescher, M. F. Handley. Aspects of time-dependent deformation in hard rock at great depth[J]. Journal of the South African Institute of Mining and Metallurgy,2003,103(5): 325-335.
    [113]W. Wawersik. Time-dependent behaviour of rock in compression[C] Proc. Third Congress, Int. Soc. Rock Mech. Denver 1974, V2, Part A,1974, P357-363.
    [114]T. J. Johnson. A Comparison of Frictional Sliding on Granite and Dunite Surface[J]. J. Geophys. Res.,1975,80(17):2600-2605.
    [115]C. H. Scholz, J. T. Engelder. The role of asperity indentation and ploughing in rock friction--Ⅰ:Asperity creep and stick-slip[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1976,13(5):149-154.
    [116]J. T. Engelder, C. H. Scholz. The role of asperity indentation and ploughing in rock friction--Ⅱ:Influence of relative hardness and normal load[J]. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts,1976,13(5):155-163.
    [117]P. H. Solberg. Experimental fault creep under constant differential stress and high confining pressure[C]:Lockner, D A; Summers, R S Proc 19th US Symposium on Rock Mechanics, Stateline, Nevada,1-3 May 1978, V1, P118-120. Publ Reno:University of Nevada,1978.
    [118]P. K. Kaiser. Time-dependent deformation of jointed rock near failure[C]. Proc 4th Congress International Society for Rock Mechanics, Montreux,Switzerland,195-202. 1979.
    [119]B. Amadei, J. H. Curran. Creep behaviour of rock joints:In:Underground Rock Engineering[C].13th Canadian Rock Mechanics Symposium,Publ Montreal, Toronto, 146-150.1980.
    [120]陈宗基,康文法,黄杰藩.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):299-312.
    [121]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2002,21(6):822-827.
    [122]孙钧,章旭昌.软弱断层流变对地下洞室围岩力学效应的粘弹塑性分析[J].岩土工程学报,1987,6
    [123]J. Sun, Y. Y. Hu. Time-dependent effects on the tensile strength of saturated granite at the Three Gorges Project in China[J]. Int. J. Rock Mech. Mine Sci,1997,34(2):323-337.
    [124]刘家应.黄崖不稳定边坡的蠕变特征[J].岩土力学,1982,8:1-8.
    [125]黎克日,康文法.岩体中泥化夹层的流变试验及其长期强度的确定[J].岩土力学,1983,14(1):39-46.
    [126]许东俊,罗鸿禧.葛洲坝工程基岩稳定性的试验研究[J].岩土力学,1983,4(1):7-9.
    [127]吴玉山,陈尤雯.不良岩体流变特性的现场试验及流变模拟分析[J].岩土力学,1986,2.
    [128]肖树芳.泥化夹层蠕变全过程的模拟及微结构的变化[J].岩石力学与工程学报,1987,6(2):113-124.
    [129]雷承弟.二滩水电站枢纽区岩体蠕变试验[J].水电工程研究,1989,1:1-11.
    [130]徐平,周火明.高边坡岩体开挖卸荷效应流变数值分析[J].岩石力学与工程学报,2000,19(4):481-485.
    [131]徐平,夏熙伦.三峡枢纽岩体结构面蠕变模型初步研究[J].长江科学院院报,1992,9(1):42-46.
    [132]郭志.右界等速流变剪应力的确定方法[J].勘察科学技术,1994,4:24-26.
    [133]D. J. Heath, C. A. Lewis, S. J. Rowland, et al. Time-dependent Effects on the Tensile Strength of Saturated Granite at Three Gorges Project in China [J]. Int. J. Rock Mech. Mine Sci,1997,34(3):323-337.
    [134]张奇华,彭光忠.链子崖危岩体软弱夹层的蠕变性质研究[J].岩土力学,1997,18(1):60-64.
    [135]周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学 与工程学报,2001,(S1):1882-1885.
    [136]周火明.三峡船闸边坡卸荷带岩体力学性质试验研究.武汉工业大学出版社,武汉,1998.
    [137]周瑞光,成彬芳,高玉生,等.断层泥蠕变特性与含水量的关系研究[J].工程地质学报,1998,6(3):217-222.
    [138]朱子龙,李建林,王康平.三峡工程岩石拉剪蠕变断裂试验研究[J].武汉水利电力大学(宜昌)学报,1998,20(3):16-19.
    [139]王在泉.复杂边坡工程系统稳定性研究[M].徐州:中国矿业大学出版社,1999.
    [140]丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].武汉:中国科学院研究生院(武汉岩土力学研究所)博士学位论文,2005.
    [141]丁秀丽,刘建,刘雄贞.三峡船闸区硬性结构面蠕变特性试验研究[J].长江科学院院报,2000,17(4):30-33.
    [142]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299-303.
    [143]邓广哲,朱维申.蠕变裂隙扩展与岩石长时强度效应实验研究[J].实验力学,2002,17(2):177-183.
    [144]R. H. C. Wong, P. Lin, C. A. Tang, et al. Creeping damage around an opening in rock-like material containing non-persistent joints[J]. Engineering Fracture Mechanics,2002, 69(17):2015-2027.
    [145]杨松林.不连续岩体弹粘性力学研究博士后研究报告[R].河海大学,南京,2003.
    [146]徐平,丁秀丽,全海,等.溪洛渡水电站坝址区岩体蠕变特性试验研究[J].岩土力学,2003,24(S1):220-223.
    [147]沈明荣,朱根桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报,2004,23(2):223-226.
    [148]徐卫亚,杨圣奇.节理岩石剪切流变特性试验与模型研究[J].岩石力学与工程学报,2005,24(S2):5536-5542.
    [149]杨圣奇,徐卫亚,杨松林.龙滩水电站泥板岩剪切流变力学特性研究[J].岩土力学,2007,28(5):895-902.
    [150]陈沅江,吴超,潘长良.一种软岩结构面流变的新力学模型[J].矿山压力与顶板管理,2005,3:43-48.
    [151]曹运江,黄润秋,唐辉明,等.某水电站高边坡煤系软弱结构面流变特性试验研究[J].岩石力学与工程学报,2008,27(S2):3732-3739.
    [152]程强,周德培,封志军.典型红层软岩软弱夹层剪切蠕变性质研究[J].岩石力学与工程学报,2009,28(S1):3176-3180.
    [153]朱珍德,李志敬,朱明礼,等.岩体结构面剪切流变试验及模型参数反演分析[J].岩 土力学,2009,30(1):99-104.
    [154]李志敬,朱珍德,朱明礼,等.大理岩硬性结构面剪切蠕变及粗糙度效应研究[J].岩石力学与工程学报,2009,28(S1):2605-2611.
    [155]赵法锁,张伯友,卢全中,等.某工程边坡软岩三轴试验研究[J].辽宁工程技术大学学报:自然科学版,2001,20(4):478-480.
    [156]赵法锁,张伯友,彭建兵,等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527-1532.
    [157]杨彩红,王永岩,李剑光,等.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报,2007,32(7):695-699.
    [158]E.Detoumay. Coupling analysis of mechanics, thermal, water and chemistry[C]. General Report of the 9th International Symposium on rock mechanics, Paris.1999.
    [159]R. Nova, R. Castellanza, C. Tamagnini. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(9):705-732.
    [160]J. A. Fernandez-Merodo, R. Castellanza, M. Mabssout, et al. Coupling transport of chemical species and damage of bonded geomaterials[J]. Computers and Geotechnics, 2007,34(4):200-215.
    [161]沈珠江.抗风化设计--未来岩土工程设计的一个重要内容[J].岩土工程学报,2004,26(6):866-869.
    [162]O. L. Anderson. Stress corrosion theory of crack propagation with applications to geophysics[J]. Reviews of Geophysics and Space Physics,1977,159(1):77-94.
    [163]S. M. Wiederhorn. A Chemical Interpretation of Static Fatigue[J]. Journal of the American Ceramic Society,1972,55(2):81-85.
    [164]V. Palchik. Application of Mohr-Coulomb failure theory to very porous sandy shales[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(7):1153-1162.
    [165]L. M. Kachanov. On the time to failure under creep conditions[J]. Izv, Akad, Nauk, SSSR, Otdel. Tekh Nauk,1958,8:26-31.
    [166]L. M. Kachanov. Introduction to continuum damage mechanics[M]. Dordrecht, The Netherlands:Martinus Nijhoff Publishers,1986.
    [167]Y. N. Rabotnov. On the Equation of State of Creep. In:Progress in Applied Mechanics, 1963,307-315.
    [168]Y. N. Rabotnov. Creep rupture[C]. Processing of the 12th International Congress of Applied Mechanics,Applied Mechanics, Berlin,342-349.1968.
    [169]J. Lemaitre. Local approach of fracture [J]. Engineering Fracture Mechanics,1986,25(5/6): 523-537.
    [170]J. Lemaitre, J. L. Chaboche. Mechanics of solid materials[M]. Cambridge University Press, 1994.
    [171]J. L. Chaboche. Continuum damage mechanics-A tool to describe phenomenon before crack initiation[J]. Nuclear Engineering and Design,1981,64:233-247.
    [172]J. W. Dougill, J. C. Lau, N. J. Burt. Mechanics in engineering. ASCE. EMD,1976, 333-355.
    [173]葛修润,任建喜,蒲毅彬,等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [174]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [175]钱会,马致远.水文地球化学[M].北京:地质出版社,2005.
    [176]张永旺,曾溅辉,张善文,等.长石溶解模拟实验研究综述[J].地质科技情报,2009,28(1):31-37.
    [177]罗孝俊,杨卫东,李荣西,等.pH值对长石溶解度及次生孔隙发育的影响[J].矿物岩石地球化学通报,2001,20(2):103-107.
    [178]肖奕,王汝成,陆现彩,等.低温碱性溶液中微纹长石溶解性质研究[J].矿物学报,2003,23(4):333-340.
    [179]A. C. Lasaga, R. J. Kirkpatrick.地球化学过程动力学[M].北京:科学出版社,1989.
    [180]沈照理.水文地球化学基础[M].北京:地质出版社,1993.
    [181]S. L. Brantley, J. D. Kubicki, A. F. White. Kinetics of Water-Rock Interaction[M]. New York:Springer,2008.
    [182]王泳嘉,王来贵.岩体浸水后的流变失稳理论及应用[J].中国矿业,1994,3(1):36-40.
    [183]J. Liu, X. Feng, X. Ding, et al. In Situ Tests on Creep Behavior of Rock Mass with Joint of shearing zone in Foundation of Large-scale Hydroelectric Projects[J]. Key Engineering Materials,2004,262:1097-1103.
    [184]X. Ping, Y. Tingqing, Z. Huoming. Study of the creep characteristics and long-term stability of rock masses in the high slopes of the Three Gorges Ship Lock, China[J]. International Journal of Rock Mechanics& Mining Sciences,2004,41(Supp.l):261-266.
    [185]丁秀丽,付敬,刘建,等.软硬互层边坡岩体的蠕变特性研究及稳定性分析[J].岩石力学与工程学报,2005,24(19):3410-3418.
    [186]徐平,杨挺青,徐春敏,周火明.三峡船闸高边坡岩体时效特性及长期稳定性分析[J].岩石力学与工程学报,2002,21(2):163-166.
    [187]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [188]许东俊.软弱岩体流变特性及长期强度测定法[J].岩土力学,1980,1:37-50.
    [189]长江水利委员会长江科学院.SL264-2001水利水电工程岩石试验规程[M].北京:中交水运规划设计院,2001.
    [190]李鹏,刘建,朱杰兵,等.软弱结构面剪切蠕变特性与含水率关系研究[J].岩土力学,2008,29(07):1865-1871.
    [191]李荣,孟英峰,罗勇,等.泥页岩三轴蠕变实验及结果应用[J].西南石油大学学报,2007,29(3):57-59.
    [192]J. H. Holland. Adaptation in Neural and Artificial Systems[M]. Ann Arbor:MI:Univ. of Michigan Press,1975.
    [193]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [194]K. A. DeJong. Analysis of the Behavior of a Class of Genetic Adaptive Systems[D]. Ph. D. Dissertation, University of Michigan.1975.
    [195]D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning[M]. MA, USA:Addison-Wesley Professional,1989.
    [196]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [197]傅家谟,张本仁.地球化学进展[M].北京:化学工业出版社,2005.
    [198]J. L. Drever. The Geochemistry of Natural Waters:Surface and Groundwater Environments[M]. Prentice Hall, Upper Saddle River, NJ,1997.
    [199]D. L. Parkhurst, C. A. J. Appelo. User's guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Denver, Colorado,1999
    [200]L. N. Plummer, T. M. L. Wigley, D. L. Parkhurst. The kinetics of calcite dissolution in CO2-water systems at 5 to 60 and 0.0 to 1.0 atm CO2[J]. American Journal of Science, 1978,278(2):179-216.
    [201]J. D. Rimstidt, H. L. Barnes. The kinetics of silica-water reactions[J]. Geochimica et Cosmochimica Acta,1980,44(11):1683-1699.
    [202]H. U. Sverdrup. The kinetics of base cation release due to chemical weathering[M]. Sweden:Lund Univ. Press,1990.
    [203]毛晓敏,刘翔,D. A. Barry. Phreeqc在地下水溶质反应运移模拟中的应用[J].水文地质工程地质,2004,2:20-24.
    [204]B. J. Merkel, B. Planer-Friedrich,朱义年译,et al.地下水地球化学模拟的原理及应用[M].武汉:中国地质大学出版社,2005.
    [205]N. Alsaaran, G. A. Olyphant. A model for simulating rock-water interactions in a weathering profile subjected to frequent alternations of wetting and drying[J]. Catena, 1998,32(3-4):225-243.
    [206]C. Zhao, B. E. Hobbs, H. B. Muhlhaus, et al. Computer simulations of coupled problems in geological and geochemical systems[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(29-30):3137-3152.
    [207]O. Coussy. Poromechanics[M]. John Wiley& Sons Inc,2004.
    [208]陈骏,王鹤年.地球化学[M].北京:科学出版社,2004.
    [209]姚志健.化学热力学[M].北京:地震出版社,1990.
    [210]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [211]F. A. L. Dullien. Porous media:fluid transport and pore structure[M]. New York: Academic Press,1979.
    [212]P. Xu, B. Yu. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in Water Resources,2008,31(1):74-81.
    [213]P. C. Carman. Fluid flow through granular beds[J]. Chemical Engineering Research and Design,1937,15(a):150-166.
    [214]J. Kozeny. Capillary Conduction of Water in Soil-Ascent, Seepage, and Application in Irrigation.1927,271-306.
    [215]J. Amaefule, M. Altunbay, D. Tiab, et al. Enhanced reservoir description:using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells[C], Presented at the Annu. Tech. Conf. Exhib, Houston, Tex.1993.
    [216]G. Han, M. B. Dusseault. Description of fluid flow around a wellbore with stress-dependent porosity and permeability[J]. Journal of Petroleum Science and Engineering,2003,40(1-2):1-16.
    [217]X.-S. Wang, X.-W. Jiang, L. Wan, et al. Evaluation of depth-dependent porosity and bulk modulus of a shear using permeability-depth trends[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(7):1175-1181.
    [218]L. C. Molina Felix, L. A. Belanche Mu oz. Representing a relation between porosity and permeability based on inductive rules[J]. Journal of Petroleum Science and Engineering, 2005,47(1-2):23-34.
    [219]Z. Hashin. The elastic moduli of heterogeneous materials[J]. Journal of Applied Mechanics,1960.
    [220]D. P. Hasselman. On the porosity dependence of mechanical strength of brittle polycrystalline refractory materials[J]. Journal of the American Ceramic Society,1982,45: 452-453.
    [221]D. P. H. Hasselman. On the porosity dependence of the elastic moduli of polycrystalline refractory materials[J]. Journal of the American Ceramic Society,1962,45(9):452-453.
    [222]F. S. Jeng. Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan[J]. Engineering Geology,2004,73(1/2):71-91.
    [223]J. W. Ju, T. M. Chen. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities[J]. Acta Mechanica,1994,103(1):123-144.
    [224]J. Kovacik. Correlation between Young's modulus and porosity in porous materials[J]. Journal of Materials Science Letters,1999,18(13):1007-1010.
    [225]J. Kovacik. Correlation between shear modulus and porosity in porous materials[J]. Journal of Materials Science Letters,2001,20(21):1953-1955.
    [226]J. Luo, R. Stevens. Micromechanics of randomly oriented ellipsoidal inclusion composites. Part Ⅱ:Elastic moduli[J]. Journal of Applied Physics,1996,79(2):9057-9063.
    [227]J. K. Mackenzie. The elastic constants of a solid containing spherical holes[J]. Proceedings of the Physical Society Section B,1950,63(1):2-11.
    [228]K. K. Phani, S. K. Niyogi. Young's modulus of porous brittle solids[J]. Journal of Materials Science,1987,22(1):257-263.
    [229]J. C. Wang. Young's modulus of porous materials[J]. Journal of Materials Science Letters, 1984,19(3):801-808.
    [230]G. J. Weng. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions[J]. International Journal of Engineering Science, 1984,22(7):845-856.
    [231]T. T. Wu. The effect of inclusion shape on the elastic moduli of a two-phase material[J]. International Journal of Solids and Structures,1966,2(1):1-8.
    [232]Y. H. Zhao, G. P. Tandon, G. J. Weng. Elastic moduli for a class of porous materials[J]. Acta Mechanica,1989,76(1):105-131.
    [233]S. Nemat-Nasser, M. Hori, W. Bielski. Micromechanics:overall properties of heterogeneous materials[M]. North-Holland Amsterdam,1993.
    [234]N. Ramakrishnan, V. S. Arunachalam. Effective elastic moduli of porous ceramic materials[J]. Journal of the American Ceramic Society,1993,76(11):2745-2752.
    [235]G. P. Tandon, G. J. Weng. Average stress in the matrix and effective moduli of randomly oriented composites[J]. Composites Science and Technology,1986,27(2):111-132.
    [236]Z. Hashin. On some variational principles in anisotropic and nonhomogeneous elasticity [J]. Journal of Mechanics Physics of Solids,1962,10(4):335-342.
    [237]李春光,王水林,郑宏,等.多孔介质孔隙率与体积模量的关系[J].岩土力学,2007,28(2):293-296.
    [238]J. Luo, R. Stevens. Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics[J]. Ceramics International,1999,25(3):281-286.
    [239]吕洪生,曾新吾.连续介质力学[M].长沙:国防科技大学出版社,1999.
    [240]张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700