用户名: 密码: 验证码:
风场等外部强迫对东中国海海洋物理环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从东中国海的实际海洋物理环境出发,通过数据分析和数值实验等方法对风场与其他外部强迫对东中国海的联合作用进行了机制探讨,并从能量级联的角度初步解释了风场如何通过能量传递的方式控制该海域的环流。
     首先对海温观测资料和风场、波浪场等卫星数据进行处理,并通过它们之间的对比研究了东中国海温度结构对风场和浪场结构的响应。冬季由于风速较大,东中国海的大多数海域混合充分,等温线几乎垂直于海底;温度的水平结构受水深影响显著,在弱平流及弱上升流的海区几乎都受到“一维热惯性机制”的控制。夏季东中国大多数海域出现温跃层,其上层的混合过程主要受风场控制,混合层深度与海面风场的强弱有很好的对应关系;但近岸及水深较浅的海域大都满足“一维热惯性机制”,甚至在某些有温跃层产生的深水,水深仍然对混合层深度有影响。无论冬季还是夏季,大风天气造成的冷却降温都是明显的。冬季大风在垂直方向使得整个水体继续冷却,水平方向由于混合增强,会使温度锋强度减弱;夏季大风在表面造成的冷却和强混合破坏了跃层结构,使混合层加深,同时减小了表层海水和底层海水之间的温度差。
     其次,通过数值实验研究了风场和外洋强迫—黑潮对东中国海环流结构尤其是黄海暖流及其季节变化的作用机制。黄东海的主要环流系统由海表面风场和外洋强迫共同控制。黑潮的对马分支驱动出向南的朝鲜沿岸流,由此产生的黄海海区南北压力差及质量守恒约束诱生出向北流动的黄海暖流来补偿,这部分流量约占黄海暖流年平均流量的2/3;同时受季风控制的苏北沿岸流也会驱动出向北的暖流,这部分流量约占黄海暖流年平均流量的1/3。黄海暖流的季节变化主要由季风控制。冬季,西北风造成苏北沿岸流向南的水体输运,同时也增加了朝鲜沿岸流的流量,二者共同造成大量向北的水体输运,补偿作用导致较强的黄海暖流出现;夏季,虽然朝鲜沿岸流仍然流向南,但东南风使苏北沿岸流流向北,二者有部分流量相抵消,使得南北压力差远小于冬季,因此黄海暖流很微弱甚至观察不到。
     最后从能量传递的角度探讨了风能量如何影响环流。在有限水深的情况下推导了浅海Ekman波的理论解,并在实测资料中进行了应用。风通过Ekman运动输送给东中国海的能量能够从表层向深层传递,向下传递的速度大约为0.0022m /s ;风应力相同的情况下,水越浅,表面向下传递的能通量越少;能量向下传递的过程中,振幅呈e指数衰减,其中近惯性频率能量的衰减程度最小,能够作用于深层混合的能量大部分都位于近惯性频率。风在不同季节向海洋输入能量的大小不仅与风速大小有关,还与风的旋转性有关,旋转性强的风场向海洋输送的能量更多;使用截断频率为0.5cpd的QSCAT资料,经过订正计算出冬季风场通过Ekman运动向东中国海平均输送约2.5GW(1GW=10~9W)的能量;夏季平均输送约4.3GW的能量;风通过表层Ekman运动向东中国海输入的能量中超过1/2都能到达混合层底,约为2.36GW,对温跃层结构的维系起重要的作用。
     风通过Ekman运动向浅海输送的能量通过湍动能的形式参与到混合当中,其中大约15%能够转化为重力位能;风场异常导致重力位能异常,进一步出现环流异常,由此建立了小尺度的湍动能向大尺度环流能量转化的途径.风场的能量输入对海洋内部运动的意义重大,在水深较深,其它作用机制可能达不到的地方,风场通过能量输入,尤其是近惯性频率的能量输入所造成的影响比较显著;无论重力位能正异常还是负异常,对应环流异常的形态基本上遵循重力位能高值区在右的原则。在北半球,海水由重力位能高值区流向低值区,在流动的过程中受到科氏力的作用,将会围绕高值区产生顺时针的环流;围绕低值区产生逆时针的环流。
Based on the physical characteristics of the East China Seas (ECS), various methods are applied to analyze the influence of wind, as well as other exterior forcing on shelf seas. Many phenomena are considered and from the point of energy transforming, the hypostasis of these phenomena are concluded by looking into the observations and numerical model results.
     During winter time, strong northerly wind controls the ECS. Water in most areas is well mixed and the isotherms are almost vertical to seabed. The horizontal structure of sea surface temperature (SST) is identical with the structure of isobaths, which can be explained by the one-dimensional bathymetric-control mechanism, with exception of some convection or upwelling area. During summer time, thermocline appears in the ECS, and the upper-layer mixing is mainly controlled by wind. Thus, the mixed-layer depth is mainly determined by the intensity of wind. The one-dimensional bathymetric-control mechanism still has some effects in some areas where thermocline exists. Sometimes, the intense wind distinctly induces stronger cooling and reinforces the vertical mixing. It can obviously make the mixed-layer thicker and reduce the temperature difference from bottom to surface.
     General circulation structures in both the Yellow Sea and the East Sea are mainly controlled by the Kuroshio (KC) and local wind. The KC gives birth to the southward Korean Coastal Current(KCC), indirectly via the Tsushima Warm Current(TSWC), and further induces the northward Yellow Sea Warm Current (YSWC) to compensate the mass loss in north Yellow Sea. This contributes about 2/3 of the YSWC. The effect of wind is also important, which induces about 1/3 of the YSWC by pushing the Chinese Coastal Current (CCC) southward. Besides, the monsoonal forcing dominants the seasonal variability of the YSWC mainly via the CCC.
     The speed of the energy from wind to the ECS can be calculated in the form of Ekman wave, which depends on the frequency of the wind stress. The Ekman wave travels in the z direction with amplitude decreasing exponentially with depth while energy in near-initial frequency decreases very little. The energy flux is dependent on the water depth when the wind stress is stable. The shallower the water is, the less energy wind transports. The energy flux also has relationships with the rotation of the wind. From calculating, the total energy from wind to the Ekman layer in the ECS is about 2.5GW in winter and 4.3GW in summer using the QSCAT wind vector data with a cutoff frequency of 0.5cpd. Based on the mixed-layer depth from observations, about 2.36GW can reach the bottom of the mixed-layer, more than 1/2 of the energy obtained from wind. Considering the net heat flux in different season, about 15% of the energy from wind can transform to the Gravitational potential energy(GPE). The anomaly of gravitational potential energy (GPE) would induce the anomaly of circulation. In the north hemisphere, the water moves from the region with the greater increase of GPE to that with smaller increase or decrease of GPE. So there appears a clockwise current anomaly around the region where the increase of GPE is larger and an anticlockwise current anomaly around that with smaller anomaly of GPE due to the Coriolis force. This is the channel of the energy transfer from small-scale turbulence to large-scale motions.
引文
[1] Yuan D., Zhu J., Li CH., Hu D. Cross-shelf circulation in the Yellow and East China seas indicated by MODIS satellite observations. Journal of Marine Systerms, 2007, doi:10.1016./j.jmarsys.2007.04.002.
    [2]孙湘平,姚静娴,黄易畅,等.中国沿岸海洋水文气象概述[M].北京:科学出版社, 1981: 112-145.
    [3]刘哲,魏皓,蒋松年.渤海多年月平均温盐场的季节变化特征及形成机制的初步分析.青岛海洋大学学报[J] , 2003, 22(1): 7-14.
    [4]贾瑞丽,孙璐.渤海、黄海冬夏季主要月份的海温分布特征.海洋通报[J], 2002, 21(4): 1-8.
    [5]鲍献文,万修全,高郭平,吴德星.渤海、黄海、东海AVHRR海表温度场的季节变化特征.海洋学报[J], 2002, 4(5): 125-133.
    [6]曾广恩,练树民,程旭华,华祖林,齐义泉.东、黄海海表面温度季节内变化特征的EOF分析.海洋科学进展[J], 2006, 24(2): 147-155.
    [7]于非,张志欣,兰健,刁新源,郭景松,葛人峰.南黄海春季水温分布特征的分析.海洋科学进展[J], 2005,23(3): 281-288.
    [8]郭炳火,徐伯昌,林葵,等.黄海温跃层概况.黄渤海海洋[J], 1979, 11(3): 63-89.
    [9]赵保仁.渤、黄海及东海北部强温跃层的基本特征及形成机制的研究.海洋学报[J], 1989, 11(4): 401-410.
    [10]苏育嵩,苏洁.渤、黄海夏季低温带及其形成机制初析.海洋学报[J], 1996, 18(1): 13-20.
    [11]邹娥梅,熊学军,郭炳火,等.黄、东海温盐跃层的分布特征及其季节变化.黄渤海海洋[J], 2001, 19(3): 8-18.
    [12] Tetsu Yanagi, Satoru Takahashi. Seasonal Variation of Circulations in the East China Sea and the Yellow Sea. Journal of Oceanography, 1993, 49(5): 503-520.
    [13]汤毓祥,邹娥梅,李兴宰,李载学.南黄海环流的若干特征.海洋学报[J], 2000, 22(2): 1-16.
    [14]李徽翡,赵保仁.渤、黄、东海夏季环流的数值模拟.海洋科学[J], 2001, 25(1): 28-32.
    [15]赵保仁, R.Limeberner,胡敦欣,崔茂常.黄海南部及东海北部夏季若干水文特征.海洋与湖沼[J], 1991,22(2): 133-139.
    [16]朱建荣,丁平兴,朱首贤.黄海、东海夏季环流的数值模拟.海洋学报[J], 2002, 24(Sup):123-133.
    [17]黄瑞新.论大洋环流的能量平衡[J].大气科学, 1998, 22(4): 562-574.
    [18]冯士筰,李凤歧,李少菁.海洋科学导论[M].北京:高等教育出版社, 1999.
    [19]毛园,沙文钰.海面风场对环台湾岛海域温跃层的影响.海洋预报[J], 2002, 19(3): 34-43
    [20]罗义勇,俞光耀.风和台湾暖流引起东海沿岸上升流数值计算.青岛海洋大学学报[J], 1998, 28(4): 536-542.
    [21]潘玉萍,沙文钰.冬季闽浙沿岸上升流的数值研究.海洋与湖沼, 2004, 35(3): 193-201.
    [22]经志友,齐义泉,华祖林.闽浙沿岸上升流及其季节变化的数值研究.河海大学学报, 2007, 35(4): 464-470.
    [23]孙孚,钱成春,王伟,高山.海浪波生切应力及其对流驱动作用的估计.中国科学[J], 2003, 33(8): 791-798.
    [24]胡好国,袁业立,万振文.海浪混合参数化的渤海、黄海、东海水动力环境数值模拟.海洋学报[J], 2004, 26(4): 19-32.
    [25]乔方利,马建,夏长水,杨永增,袁业立.波浪和潮流混合对黄海、东海夏季温度垂直结构的影响研究.自然科学进展[J], 2004, 14(12): 1434-1441.
    [26] Xiaopei Lin, Shang-Ping Xie, et al. A well-mixed warm water column in the central Bohai Sea in summer: Effects of tidal and surface wave mixing. Journal of Geophysical Research[J], 2006, 111(C11017).
    [27] Shang-Ping Xie, Jan Hafner, et al. Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Sea. Geophysical Research Letters[J], 2002, 29(24):81.
    [28] Walter Munk, Carl Wunsch. Abyssal recipesⅡ: energetics of tidal and wind mixing. Deep-Sea ResearchⅠ,1998,45:1977-2010.
    [29]李培良,李磊,左军成,陈美香,赵玮.渤黄东海潮能通量与潮能耗散.中国海洋大学学报[J], 2005, 35(5):713-718.
    [30]戴德君,乔方利,袁业立.弱地形上内潮生成问题Ⅱ粗糙地形情况下水深对内潮能通量的影响.海洋科学进展[J],2007,25(3): 247-256.
    [31]游性恬,朱禾.夏秋季长江、黄河流量长期变化的主要特征.气象学报[J], 2003, 61(4): 480-487.
    [32]张二凤,陈西庆.人类活动对河流入海流量下降的影响-以长江黄河为例.华东示范大学学报[J],2002,2: 81-86.
    [33]王保栋,孙霞.三峡大坝会减小东海的上升流和生产力吗?—与陈镇东先生商榷.海洋科学进展,2007,25(3): 362-365.
    [34]郭炳火,葛人峰.东海黑潮锋面涡旋在陆架水与黑潮水交换中的作用.海洋学报,1997,19(6):1-11.
    [35]张文静,沙文钰.黑潮对环台湾岛海域温跃层影响的数值研究.海洋预报,2001,18(3):17-24.
    [36]贾英来,刘秦玉,刘伟,林霄沛.台湾以东黑潮流量的年际变化特征.海洋与湖沼, 2004, 35(6): 507-512.
    [37]苏纪兰.中国近海的环流动力机制研究.海洋学报[J], 2001, 23(3): 1-16.
    [38] Ichikawa, H., R.C.Beardsley. Temporal and spatial variability of volume transport of the Kuroshio in the East China Seas. Deep-Sea Res., 40: 583-605.
    [39] Feng M., H. Mitsudera. Structure and Variability of the Kuroshio Current in Tokara Strait. Journal of Physical Oceanography, 2000,30(9):2257-2276.
    [40] HAN Dong, HOU Yijun, WEI Zexun, LIU Xingquan, ZHAOXixi. Study on numerical simulation and dynamic mechanism of winter-time circulation in the eastern China seas. Chinese Journal of Oceanology and Limnology, 2004,22(4): 327-334.
    [41] Yang, J. An oceanic current against the wind: How does Taiwan Island steer warm water into the East China Sea. J. Phys. Oceanogr, 37: 2563-2569.
    [42] Wunsch, C. The work done by the wind on the oceanic general circulation, J. Phys. Oceanogr., 1998, 28:2331-2339.
    [43] Wang, W. and R. X. Huang, 2004a. Wind energy input to the Ekman Layer. J. Phys. Oceanogr., 2004, 34:1267-1275.
    [44] Wang, W. and R. X. Huang, 2004b. Wind energy input to the surface waves. J. Phys. Oceanogr., 2004, 34:p1276-1280.
    [45] Sprintall J, Tomezak M. Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research [J]., 1992, 97(C5): 7305-7316.
    [46]张媛,吴德星,林霄沛.东海夏季跃层深度计算方法的比较.中国海洋大学学报, 2006,36(Sup.): 1-7.
    [47]李明悝,侯一筠,乔方利.潮致垂直涡动粘性系数的参数化.自然科学进展[J]. 2006, 16(1): 55-60.
    [48]巢纪平.厄尔尼诺和南方涛动动力学[M].气象出版社,1993.
    [49] Makin V K,Kudryavtesev V N. Coupled sea surface-atmosphere model. 1. Wind over waves coupling[J]. Geophys. Res, 1999, 104:7613~7623
    [50]方翔等. QuikSCAT洋面风资料及其在热带气旋分析中的.应用气象, 2007, 33(3): 33-39.
    [51] Dobson E, Monaldo F, Goldhirsh J et al. Validation of Geosat altimeter-derived wind speeds and significant wave heights using buoy data. JGR, 1987, 92:1079-10731
    [52]林珲,陈戈.利用TOPEX卫星高度计观测全球海面风速和有效波高的季节变化.科学通报[J], 2000, 45(4): 411-415.
    [53]王静,齐义泉.南海海面风、浪场的EOF分析.海洋学报2001,23(5):136-140.
    [54]齐义泉,施平,毛庆文,王静.基于T/P资料分析南海海面风、浪场特征及其关系.水动力学研究与进展(A辑),2003,18(5):619-624.
    [55]孙群,等.利用TOPEX卫星高度计资料分析东中国海的风、浪场特征.海洋科学[J], 2006, 30(4) : 10-15.
    [56]杨殿荣,等.浅海潮致贯跃层混合效应.海洋学报[J], 1991, 13(3):295-304.
    [57]乔方利.浪-潮-流耦合数值模式突破上层海洋数值模拟与实测不符难题.中国基础科学, 2004, 06.
    [58]邹娥梅,郭炳火,汤毓祥,李载学,李兴宰.南黄海及东海北部夏季若干水文特征和环流的分析.海洋与湖沼[J], 2001, 32(3): 340-348.
    [59]胡敦欣,吕良洪,熊庆成,等.关于浙江沿岸上升流的研究.科学通报[J],1980, 25(3): 131-133.
    [60]赵保仁.长江口外的上升流现象.海洋学报[J], 1993, 15(2): 108-114。
    [61]赵保仁,曹德明,潘海,涂登志.黄海的风、潮混合特征及其对冷水团边界的影响.海洋科学集刊[J], 1994, 35: 1-10。
    [62]宋德海,鲍献文,徐玲玲,吴德星.黄海暖流主轴年际变化及其影响因素探析.海洋学报, (投稿).
    [63]苏洁,李磊,鲍献文,高郭平.黄、渤海表层海温对台风过程响应数值试验.青岛海洋大学学报[J], 2001, 31(2):165-172.
    [64]王宗山,李繁华,等.黄海和渤海水温垂直结构数值预报方法的研究(Ⅱ二维数值预报模式).海洋学报[J],1991,(7): 458-474.
    [65] Uda, M., 1934. The results of simultaneous oceanographical investigations in the Japan Sea and its adjacent waters in May and June 1932[R]. Japan Imperial Fishery Experimental Station. 5, 57-190 (In Japanese).
    [66] Niino, H. and K. O. Emery, 1961. Geological Society of American Bulletin 72(1961):731-762.
    [67] Nitani H., 1972. Beginning of the Kuroshio[A]. Stommel and Yoshida K. Kuroshio, Its Physical Aspects[C]. Tokyo: Univ. of Press, 129-163.
    [68]汤毓祥, Lie, Heung_Jae.冬至初春黄海暖流的路径和起源. ACTA OCEANOLOGICA SINICA, 2001, 23(1):1-12.
    [69] Hsueh, Y., 1988. Recent current observations in the eastern Yellow Sea. J. Geophys. Res. 93, 6875-6884.
    [70] Hsueh, Y., Romea, R.D., deWitt, P.W., 1986. Windertime winds and sea-level fluctuations in the northeast China Sea. Part II: numerical model. J. Phys. Oceanogr. 16, 241-261.
    [71] Hsueh, Y., Pang, I.-C., 1989. Coastal trapped long waves in the Yellow Sea. J. Phys. Oceanogr. 13, 2091-2106.
    [72] Hsueh, Y., Yuan, D., 1997. A numerical study of the currents, heat advection and sea level fluctuations in the Yellow Sea in winter 1986. J. Phys. Oceanogr. 27, 2313.
    [73] Mask, A.C., O’Brien, J.J., Preller, R., 1998. Wind-driven effects on the Yellow Sea Warm Current. J. Geophys. Res. 103(C13), 30713-30730.
    [74] Teague, W. J., G. A. Jacobs, D. S. Ko, T. Y. Tang, K.-I. Chang, and M.-S. Suk, 2003: Connectivity of the Taiwan, Cheju, and Korea straits, Cont. Shelf. Res., 23, 63-77.
    [75] Lie H J, Cho C H, Lee J H, et al., 1998. Seperation of the Kuroshio and its penetration onto the continental shelf west of Kyushu[J]. J. Geophys. Res., 103:2963-2976
    [76] Lie, H.-J., 1986. Summertime hydrographic features in the southeastern Hwanghae, Prog. Oceanogr., 17, 229-242.
    [77] Park, Y.-H., 1986: Water characteristics and movements of the Yellow Sea Warm Current in summer, Prog. Oceanogr., 17, 243-254.
    [78] Liu, Z.L., 2006. Current observations in summers in the southern Yellow Sea, Postal-doctoral research report. Institute of Oceanology, Chinese Academy of Sciences, pp.40-43.
    [79] Naimie, C.E., Blain, C.A., Lynch, D.R., 2001. Seasonal mean circulation in the Yellow Sea: a model-generated climatology. Cont. Shelf Res. 21-667-695.
    [80] Xia, C., Qiao, F., Yang, Y., et al., 2006. Three dimensional structure of the summer time circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res. 111,C11S03.
    [81]汤毓祥,邹娥梅.南黄海环流的若干特征.海洋学报, 2000, 22(1): 1-16.
    [82] Ichikawa, H. and R. C. Beardsley, 2002. The current system in the Yellow and East China Seas, J. Oceanogr., 38, 77-92.
    [83]方国洪,魏泽勋,崔秉昊,王凯,方越,李薇.中国近海域际水、热、盐输运:全球变网格模式结果.中国科学(D)[J], 2002, 32(12): 969-977.
    [84] Gilson J., Roemmich D., 2002. Mean and Temporal Variability in Kuroshio Geostrophic Transport South of Taiwan (1993-2001). J. Oceanogr., Vol. 58, 183-195(13).
    [85] Isobe, A, 2000. Two-layer model on the branching of the Kuroshio southwest of Kyushu, J. Phys.Oceanogr., 30:2461-2476.
    [86] Bao Xian-wen, Gao Guo-ping, Wu De-xing, 2002. Study of water-transport through some main straits in the east China Sea and South China Sea. Chinese journal of Oceanology and Limnology, Vol.20,4:293-302.
    [87] Yang, J., 2007: An oceanic current against the wind: How does Taiwan Island steer warm water into the East China Sea, J. Phys. Oceanogr., 37, 2563-2569.
    [88] Yang, J., D. Wu, and X. Lin, 2007: Kuroshio forcing of the East Asian Marginal Seas, J. Phys.Oceanogr., submitted.
    [89]许一,于非,张志欣,郭景松.冬季黄海暖流的诊断计算.海洋科学进展, 2005, 23(4): 398-407.
    [90] M. H. Alford. Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res.,2001, 106(C8): 16947-16968.
    [91] M. H. Alford. Internal Swell Generation: The Spatial Distribution of Energy Flux from the Wind to Mixed Layer Near-Inertial Motions. J. Phys. Oceanogr., 31:2359-2368.
    [92] Michio Watanabe, Toshiyuki Hibiya. Global estimates of the wind-induced energy flux toinertial motions in the surface mixed layer. Geophys. Res. Lett., 2002, 29(8):80.
    [93] Jing Jiang, Youyu Lu, Will Perrie. Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 2005, 32, L15610.
    [94] D’Asaro E A., C. C. Eriksen, M. D. Levin, et al. Upper-ocean inertial, currents forced by a strong storm Part 1: Data and comparisons with linear theory. J. Phys. Oceanogr., 1995, 25:2909-2936.
    [95] Zervakis V. and M. D. Levine. Near-Inertial Energy Propagation from the Mixed Layer: Theoretical Considerations, J. Phys. Oceanogr., 1995, 25:2872-2889.
    [96] Price, J.F., R.A. Weller and R.R.Schudlich, 1987. Wind-Driven Ocean Currents and Ekman Transport. Science, 238(4833), 1534-1534.
    [97] Chereskin, T.K. Direct evidence for an Ekman balance in the California Current. J.Geophys. Res., 1995, 100(C9), 18261-18269.
    [98]周磊.风对海洋低频运动的能量输运与能量的垂向传播. 2005,硕士论文.
    [99] Pollard, R. T., and R. C. Millard Jr., Comparison between observed and simulated wind-generated inertial oscillations, Deep Sea Res., 1970, 17:813-821.
    [100] Craig, P. D., and M. L. Banner. Modeling wave-enhanced turbulence in the ocean surface layer, J. Phys. Oceanogr., 1994, 24, 2546-2559.
    [101] T. R. Osborn. Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. J. Phys. Oceanogr., 10:83-89.
    [102] Yu L,Weller R A, Sun B. Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988-99) by a synthesis aprroach [J]. J Climate, 2004, 17(2): 373-393.
    [103] Egbert G D. Tidal data inversion: interpolation and inference. Progress in Oceanography, 1997, (40): 53-80.
    [104] Taylor G I. Tidal friction in the Irish Sea[J]. Philosophical Transactions of the Royal Society of London, 1919, A230: 1-93.
    [105] Jefferys H. Tidal friction in shallow seas[J]. Philosophical Transactions of the Royal Society of London, 1920, A221: 239.
    [106]方国洪.黄海超能的耗散[J].海洋与湖沼, 1979, 10(3): 200-213.
    [107]张继才,吕咸青.渤、黄、东海二维潮汐模式底摩擦系数的反演研究,计算力学学报,2007, 24(4): 430-435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700