用户名: 密码: 验证码:
耐甲氧西林葡萄球菌的耐药模式和SCCmec分型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     葡萄球菌是引起医院内感染的重要病原菌,近年来,因其临床分离率逐年增高,耐药性日益严重,已成为全球关注的热点和焦点问题。本文旨在研究医院内感染葡萄球菌儿童株的临床分离情况和抗生素耐药状况,检测并分析耐药谱,为临床合理使用抗生素提供依据,并通过mecA基因检测和SCCmec基因分型,对耐甲氧西林葡萄球菌的耐药机制进行深入探讨,了解临床葡萄球菌感染的流行病学特征,为临床预测耐药菌株的发展趋势、抗感染治疗以及预防耐甲氧西林葡萄球菌的爆发流行提供对策和依据。
     方法:
     (1)对138株分离自天津某儿童医院院内感染病人的葡萄球菌进行菌种鉴定和临床资料分析。
     (2)应用微量肉汤稀释法药敏板检测葡萄球菌对16种常用抗生素的耐药率,分析耐药谱;万古霉素平板筛选实验筛选出潜在的VISA,通过万古霉素E实验进行验证。
     (3)应用Nitrocefin平板检测β-内酰胺酶活性,并用同样的方法检测经0.05μg/ml苯唑西林诱导后的葡萄球菌的β-内酰胺酶活性。
     (4)采用PCR技术检测葡萄球菌的mecA基因携带状况,基因水平上验证MRS。
     (5)对mecA阳性的葡萄球菌菌株采用两种经典的多重PCR快速简便地进行SCCmec基因分型,阐述其多重耐药产生的分子生物学基础。
     结果:
     (1)138株葡萄球菌经鉴定,分出金黄色葡萄球菌(SA)65株和凝固酶阴性葡萄球菌(CNS)73株,SA的主要分离自呼吸道痰液标本,而CNS主要分离自血液标本,两者的甲氧西林耐药率分别为10.8%、80.8%。
     (2)CNS对苯唑西林、红霉素、庆大霉素、氨苄/舒巴坦、头孢拉定、环丙沙星、头孢吡肟、氨氯青霉素等抗生素的耐药率均高于SA(P<0.05),差异具有统计学意义。两者除对万古霉素敏感外,对其他常用抗生素都有不同程度的耐药性。MRCNS对头孢拉定、头孢三嗪、氨氯青霉素、氨苄/舒巴坦、红霉素等的耐药率均高于MSCNS(P<0.05),具有多重耐药的特点。万古霉素平板筛选试验和E试验证实目前尚未出现万古霉素耐药株。
     (3)经0.05μg/ml苯唑西林诱导后,SA的β-内酰胺酶检出率从50.8%提高到89.2%,CNS的β-内酰胺酶检出率从61.6%提高到90.4%,临床实验室在检测β-内酰胺酶时可应用苯唑西林诱导以减少假阴性的产生。
     (4)mecA基因的检出率为38%。在7株表型MRSA中,5株证实带有mecA;在59株表型MRCNS中,46株(78%)为mecA阳性,13株没有检测到mecA(22%的假阳性);在由表型分组的MSSA中,没有测到mecA阳性株;14株表型MSCNS中,仅1株mecA阳性(7%假阴性)。
     (5)5株mecA阳性的金黄色葡萄球菌中检测出SCCmecⅠ、Ⅲ、Ⅳa型各一株,两株未能分型;47株(64.4%)mecA阳性的凝固酶阴性葡萄球菌中,共分出SCCmecⅠ型和ⅠA型6株,Ⅲ型和ⅢB型10株,Ⅳ型9株,Ⅴ型3株和变异的新型SCCmec类Ⅰ型4株,类ⅠA型5株,仍有10株未能分型。
     结论:
     医院内感染凝固酶阴性葡萄球菌的多重耐药率和mecA携带率高于金黄色葡萄球菌,需引起临床足够的重视,本医院尚未发现万古霉素耐药株或中介耐药株;进行β-内酰胺酶检测时可应用苯唑西林诱导以减少假阴性的产生;通过表型判断MRSA或MRCNS出现假阳性的可能大于出现假阴性的可能,需根据mecA基因检测来判断MRS;半数以上凝固酶阴性葡萄球菌的SCCmec可用现有多重PCR方法分型,但有两种新型SCCmec出现,疑为Ⅰ型变异株,暂定为类Ⅰ型和类ⅠA型,可作为进一步研究MRS耐药基因起源与变异的切入点。
Objectives:
     Staphylococci played an important role in nosocomial infections.Recently,the infections of staphylococci isolates have become the focus of clinician around the world,for their increasing isolating rates and antibiotic resistance rates.In this study, the isolate rates and resistant rates of staphylococci isolated from children were investigated,and the spectrum of resistance was made to provide basic rule for proper drug administration in clinical practice.Moreover,the mechanism of methicillin resistance in staphylococci was studied through the detection of mecA gene and genotyping of SCCmec.To predict and prevent the development of MRS and provide information for anti-infective therapy,molecular epidemiology of MRS recovered from patients with nosocomial infection was also studied.
     Methods:
     (1)138 staphylococcal strains isolated from patients with nosocomial infection in Tianjin Children's Hospital were identified and the clinical data were collected.
     (2)The antibiotic susceptibility pattern of the staphylococcal isolates to 16 clinical routing used antibiotics was studied,and then the strains were screened with vancomycin-containing plates and verified by E-test.
     (3)The Nitrocefin plates were used for detectingβ-lactamase activity in two types of strains,the original isolates and the isolated induced by oxacillin-containing plates at the concentration of 0.05μg/ml.
     (4)The status of gene mecA carrying was investigated with PCR amplification to identify MRS strains.
     (5)The genotyping of SCCmec with multiplex PCR was progressed on the mecA gene positive strains,to explain the molecular epidemiological characteristic.
     Results:
     (1)The total of 138 staphylococcal isolates included 65 Staphylococcus aureus strains (SA)and 73 coagulase-negative staphylococci strains(CNS),the oxacillin-resistant rates were 10.8%and 80,8%,respectively.SA strains were mainly isolated from sputum of respiratory tract,and CNS strains were mostly from blood cultures.
     (2)The CNS strains suggested higher resistance to oxacillin,erythromycin, cidomycin,benzyl-sulbactam,cefradine,ciprofloxacin,cefepime and rectocillin than SA strains(P<0.05);The resistance of MRCNS strains to cefradine,cefatrizine, rectocillin,benzyl-sulbactam,erythromycin were higher than the MSCNS strains(P<0.05).The MRCNS strains were characterized with multi-drug resistance.All isolates were sensitive to vancomycin.
     (3)Theβ-lactamase isolating rates of SA and CNS strains changed after induced by oxacillin-containing plates.Theβ-lactamase positive rate of SA increased from 50.8% to 89.2%and CNS from 61.6%to 90.4%.It indicates we could reduce the false negative rate by oxacillin induced in clinical detection of theβ-lactamase.
     (4)The mecA carrying rate was 38%.5 of 7 MRSA strains were carrying mecA.In 59 MRCNS isolates,47 isolates were mecA positive,while other 13 isolates were negative(false rate is 22%).No mecA positive strains were detected in phenotypic MSSA,and only one was mecA positive in phenotypic MSCNS.
     (5)In 5 mecA positive SA isolates,three were carrying SCCmec typesⅠ,ⅢandⅣ, respectively.47 mecA positive CNS strains including 6 for typeⅠ,10 for typeⅢ,9 for typeⅣ,3 for typeⅤand novel variants of SCCmec 4 strains for typeⅠ-like,5 strains for typeⅠA-like,the rest 10 CNS strains and 2 SA strains were not-typeable.
     Conclusions:
     The antibiotic resistance of CNS is much more severe than that of SA,Which needs more attention from clinician.All the strains are sensitive to vancomycin. When detecting theβ-lactamase,the strains induced by oxacillin could decrease the false negation.More than half of the SCCmec in CNS could be typed by the current multiplex PCR assays,but there are two novel variants of SCCmec in the staphylococci isolates,tentatively designated typeⅠ-like and typeⅠA-like.
引文
[1]尚秀英,尚磊,江逊.医院内感染的调查与分析[J].中国医院统计,2006,13(2):141-143.
    [2]杨志辉,牟静,阮菊琴,等.2000-2004年住院患者医院感染调查[J].中华医院感染学杂志,2006,16(17):755-757.
    [3]Zotti CM,Ioli GM,Charrier L,et al.Hospital-acquired infections in Italy:a region wide prevalence study[J].Journal of Hospital Infection,2004,56:142-149.
    [4]Burke JP.Infection control- a problem for patient safety[J].New Engl J Med,2003,348(7):651-656.
    [5]Fluit AC,Wielders CLC,Verhoef J,et al.Epidemiology and susceptibility of 3,051 Staphylococcus aureus isolates from 25 university hospitals participating in the European SENTRY Study[J].J Clin Microbiol,2001,39:3727-32.
    [6]Vincent JL.Microbial resistance:lessons from EPIC study,European prevalence of infection[J].Intensive Care Med,2000,26(suppl 1):S3-8.
    [7]李家泰,Wein AJ.中国细菌耐药检测研究[J].中华医学杂志,2001,81(1):8-16.
    [8]Stewart GT.Changes in sensitivity of staphylococci to methicillin[J].Br Med,1961,1:863-866.
    [9]Arias CA,Reyes J,Zuniga M.Multicentre surveillance of antimicrobial resistance in enterococci and staphylococci from Colombian hospitals,2001-2002[J].J Antimicrob Chemother,2003,51(1):59-68.
    [10]Nicoletti G,Bonfiglio G,Bartoloni A,et al.Distribution and antibiotic resistance of isolates from lower respiratory tract and blood cultures from patients in three Italian intensive care units:a 2-year comparison[J].Int J Antimicrob Agent,2000,15:265-269.
    [11]Elek SD,Fleming PC.A new technique for the control of hospital cross infections[J].Lancet,1960,ⅰ:569-572.
    [12]Tomasz A.Accelerated evolution:emergence of multidrug resistant gram-positive bacterial pathogens in the 1990s[J].Neth J Med,1998,52: 219-227.
    [13] Hiramatsu K, Cui LZ, Kuroda M, et al. The emergence and evolution of methicillin-resistant Staphylococcus aureus [J]. J Trends in Microbiology, 2001, 9(10): 486-493.
    [14] Ito T, Katayama Y, Asada A, et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus [J]. Antimicrob Agents Chemother, 2001,45(5): 1323-36.
    [15] Ito T, Katayama Y, Hiramatsu K. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315 [J]. Antimicrob Agents Chemother, 1999,43(6): 1449.
    [16] Ito T, Ma X, Takeuchi F, et al. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC [J]. Antimicrob Agents Chemother, 2001,45(5): 1323.
    [17] Archer GL, Thanassi JA, Niemeyer DM, er al. Characterization of IS1272, an insertion sequence-like element from Staphylococcus haemolyticus [J]. Antimicrob Agents Chemother, 1996,40: 924-929.
    [18] Oliveira DC, de Lencastre H. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus [J]. J Antimicrob Agents Chemother, 2002, 46(7): 2155-2161.
    [19] Zhang K, McClure JA, Elsayed S, et al. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus [J]. J Clin Microbiol, 2005, 43(10): 5026-5033.
    [20] Huebner J, Goldmann DA. Coagulase-negative staphylococci: role as pathogens. Annu Rev Med, 1999, 50: 223-236.
    
    [21] Livermore DM. Antibiotic resistance in staphylococci [J]. J Antimicrob Agents, 2000,16(Suppl1): S3-10.
    [22] Stefani S, Varaldo PE. Epidemiology of methicillin-resistant staphylococci in Europe [J]. J Clin Microbiol Infect, 2003, 9(12): 1179-1180.
    [23]胡红兵,刘翎,罗德娟,等.儿童医院葡萄球菌感染现状及耐药性调查.中华医院感染学杂志,2005,15(2):197-199.
    [24]Hiramatsu K,Hanaki H,Ito T,et al.Methicillin-resistant staphylococcus clinical strains with reduced vancomycin susceptibility[J].J Antimicrob Chemother,1997,40(1):135-136.
    [25]CDC.Staphylococcus aureus resistant to vancomycin-United States.MMWR Morb Mortal Wkly Rep,2002,51(26):565-567.
    [26]CDC.Public Health Dispatch:Vancomycin Resistant Staphylococcus aureusPennsylvania,2002.Morb Mortal Wkly Rep,2002,51(40):902.
    [27]Hiramatsu K,Aritaka N,Hanaki H,et al.Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin[J].Lancet,1997,350(12):1670-1673.
    [28]Poly MC,Grelaud C,Martin C,et al.First clinical isolate of vancomycin-intermediate Stsaphylococcus in a French hospital[J].Lancet,1998,351:1212.
    [29]Marchese A,Balistreri G,Tonoli E,et al.Heterogeneous vancomycin resistance in methicillin-resistant Staphylococcus aureus strains isolated in a large Italian hospital[J].J Clin Microbiol,2000,38(2):866-869.
    [30]Sieradzki K,Villari P,Tomasz A.Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of Staphylococci[J].Antimicrob Agents Chemother,1998,42(1):100-107.
    [31]Wong SS,Ho PL,Woo PC,et al.Bacteremia caused by staphylococci with inducible vancomycin heteroresistance[J].Clin Infect Dis,1999,29:760-767.
    [32]Viedma DG,Rabadan PM,Diaz M,et al.Heterogeneous antimicrobial resistance patterns in polyclonal populations of coagulase-negative Staphylococcus isolated from catheters[J].J Clin Microbiol,2000,38(4):1359-1363.
    [33]Weigel LM,Clewell DB,Gill SR,et al.Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus[J].Science,2003,302(5650):1569-71.
    [34]Cui LZ,Ma XX,Sato K,et al.Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus[J].J Clin Microbiol,2003,41 (1): 5-14.
    [35] Fridkin SK. Vancomycin-intermediate and -resistant Staphylococcus aureus: What the infectious disease specialist needs to know [J]. Clin Inf Dis, 2001, 32 (1): 108-115.
    [36] Wada A, Watanabe H. Penicillin-binding protein 1 of Staphylococcus aureus is essential for growth [J]. J Bacteriol, 1998,180: 2759-2765.
    [37] Murakami K, Fujimura T, Doi M. Nucleotide sequence of the structural gene for the penicillin-binding protein 2 of Staphylococcus aureus and the presence of a homologous gene in other staphylococci[J]. FEMS Microbiol Lett, 1994, 117: 131-136.
    [38] Pinho MG, Lencastre DE, Tomasz A. Cloning, characterization, and inactivation of the gene pbpC, encoding penicillin-binding protein 3 of Staphylococcus aureus [J]. J Bacteriol, 2000,182: 1074-1079.
    [39] Henze UU, Berger-Bfichi B. Staphylococcus aureus penicillin binding protein 4 and intrinsic β-lactam resistance [J]. Antimicrob Agents Chemother, 1995, 39: 2415-2422.
    [40] Reynolds PE, Brown DFJ. Penicillin-binding proteins of β-lactam-resistant strain of Staphylococcus aureus: effects of growth conditions [J]. FEBS Lett, 1985, 192:28-32.
    [41] Reynolds PE and Fuller C. Methicillin-resistant strains of Staphylococcus aureus: presence of identical additional penicillin-binding protein in all strains examined [J]. FEMS Microbiol Lett, 1986, 33: 251-254.
    [42]Chambers HF, Coagulase-negative staphylococci resistant to beta-lactam antibiotics in vivo produced penicillin-binding protein 2a [J]. Antimicrob Agents Chemother, 1982, 31:1919-1924.
    
    [43] Ubukata K, Yamashita N, Koono M. Occurrence of a beta-lactam-inducible penicillin binding protein in methicillin-resistant staphylococci [J]. Antimicrob Agents Chemother, 1985,27: 851-857.
    [44] Wilke MS, Hills TL, Zhang HZ, et al. Crystal structures of the Apo and penicillin-acylated forms of the BIaR1 beta-lactam sensor of Staphylococcus aureus [J]. J Biol Chem, 2004, 279(45): 47278-47287.
    [45] Safo MK, Zhao Q, Ko TP, et al. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons [J]. J Bacteriol, 2005, 187(5): 1833-1844.
    
    [46] MeKinney TK, Sharma VK, Craig WA, et al. Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and beta-lactamase regulators [J]. J Baeteriol, 2001,183(23): 6862-6868.
    [47] Kuwahara A, Kondo KN, Hori S, et al. Suppression of methicillin resistance in a mec A -containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP 2' production [J]. Antimicrob Agents Chemother, 1996,40:2680-5.
    [48] Matthews P, Tomasz A. Insertional inactivation of the mec gene in a transposon mutant of a methicillin-resistant clinical isolate of Staphylococcus aureus [J]. Antimicrob Agents Chemother, 1990, 34(9): 1777-9.
    [49] Katayama Y, Ito T, Hiramatsu K. A new class of genetic element staphylococcus cassette mec, encodes methicillin resistance in Staphylococcus aureus [J]. Antimicrob Agents Chemother, 2000,44(6): 1549-1555.
    [50] Ito T, Okuna K, Ma XX, et al. Insights on antibiotic resistance of Staphylococcus aureus from it whole genome: genomic island SCC [J]. Drug Resistance Updates, 2003,6:41-52.
    [51] Oliveira DC, Tomasa A, de Lencastre H. The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus identification of two ancestral genetic backgrounds and the associated mec elements [J]. Microb Drug Resist, 2001,7(4):349.
    [52] Daum RS, Ito T, Hiramatsu K, et al. A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus isolates of diverse genetic backgrounds [J]. J Infect Dis, 2002, 186: 1344-7.
    [53] Hanssen AM, Ericson Sollid JU. SCCmec in staphylococci: genes on the move [J]. FEMS Immunol Med Microbiol, 2006,46(1):8-20.
    
    [54] Mombach Pinheiro Machado AB, Reiter KC, Paiva RM, et al. Distribution of staphylococcal cassette chromosome mec (SCCmec) types I, II, III and IV in coagulase-negative staphylococci from patients attending a tertiary hospital in southern Brazil[J].J Med Microbiol.2007,56(10):1328-1333.
    [55]Wisplinghoff H,Rosato AE,Enright Me,et al.Related clones containing SCCmec type Ⅳ predominate among clinically significant Staphylococcus epidermidis isolates[J].Antimicrob Agents Chemother,2003,47(11):3574-3579.
    [56]Oliveira,D.C.,and H.de Lencastre.Multiplex PeR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus[J].Antimicrob Agents Chemother,2002,46:2155-61.
    [57]Shore A,Rossney AS,Keane CT,et al.Seven novel variants of staphylococcal chromosomal cassette mec in methicillin-resistant Staphylococcus aureus isolates from Ireland[J].Antimicrob Agents Chemother,2005,49(5):2070-2083.
    [58]欧阳范献,卜平凤,黄惠琴,等.MRSA的7种新SCCmec型别及其抗药特性[J].微生物学报,2007,47(2):201-207.
    [1]Livermore DM.Antibiotic resistance in staphylococci[J].Int J Antimicrob Agents,2000,16(Suppl1):S3-10.
    [2]Stefani S,Varaldo PE.Epidemiology of methicillin-resistant staphylococci in Europe[J].J Clin Microbiol Infect,2003,9(12):1179-1180.
    [3]Trulzsch K,Rinder H,Trcek J,et al."Staphylococcus pettenkoferi",a novel staphylococcal species isolated from clinical specimens[J].Diagn Microbiol Infect Dis,2002,43:175-282.
    [4]Jarraud S,Mougel C,Thioulouse J,et al.Relationships between Staphylococcus aureus genetic background,virulence factors,agr groups(alleles),and human disease[J].Infection and Immunity,2002,70(2):631.
    [5]Holt RJ.The opportunist pathogenicity of coagulase-negative staphylococci[J].J Clin Pathol,1971,24(8):770.
    [6]Huebner J,Goldmann DA.Coagulase-negative staphylococci:role as pathogen[J].Annu Rev Med.1999,50:223-236.
    [7]von Eiff C,Proctor RA,Peters G.Coagulase-negative staphylococci:Pathogens have major role in nosocomial infections[J].Postgrad Med,2001,110:63-64,69-70,73-76.
    [8]Isaacs D.A ten year,multicentre study of coagulase negative staphylococcal infections in Australasian neonatal units[J].Arch Dis Child Fetal Neonatal Ed,2003,88:89-93.
    [9]Bjorkqvist M,Soderquist B,Tornqvist E.Phenotypic and genotypic characterisation of blood isolates of coagulase-negative staphylococci in the newborn[J].APMIS,2002,110:332-339.
    [10]Stan Deresinski.Methicillin-Resistant Staphylococcs aureu:An Evolutionary, Epidemiologic [J]. Clin Infect Dis, 2005,40(15): 562-573.
    [11] Chambers HF. The changing epidemiology of Staphyilococcus aurcus? [J]. Emerg Infect Dis, 2001. 7(2): 178-182.
    [12] de Mattos EM, Teixeira LA, Alves VM, et al . Isolation of methicillin-resistant coagulase-negative staphylococci from patients undergoing continuous ambulatory peritoneal dialysis (CAPD) and comparison of different molecular techniques for discriminating isolates of Staphylococcus epidermidis [J]. Diagn Microbiol Infect Dis, 2003, 45: 132.
    [13] Kumari N, Rai A, Jaiswal CP, et al. Coagulase negative staphylococci as causative agents of urinary tract infections prevalence and resistance status in IGMS [J]. Patna. Indian J Pathol Microbiol, 2001, 44: 415-419.
    [14] Berger-Bachi B, Rohrer S. Factors influencing methicillin resistance in staphylococci [J]. Arch Microbiol, 2002, 178 (3): 165-171.
    [15] Pinho MG, de Lencastre H, Tomasz A. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci [J]. Proc Natl Acad Sci USA, 2001, 98 (19): 10886-10891.
    [16] Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications [J]. Clin Microbiol Rev, 1997,10 (4): 781-791.
    [17] Hiramatsu K. Molecular evolution of MRSA [J]. Microbiol Immunol, 1995, 39: 531.
    [18] Hackbarth CJ, Chambers HF. BlaI and blaR1 regulate β-lactamase and PBP2a production in methicillin-resistant Staphylococcus aureus [J]. Antimicrob Agents Chemother, 1993, 37: 1144.
    
    [19] Berge-Bachi B. Grenetic basis of methicillin resistance in Staplylocoocus aureus [J]. Cell Mol Life Sci, 1999, 56(9-10): 764.
    
    [20] Matthews P, Tomasz A. Insertional inactivation of the mec gene in a transposon mutant of a methicillin-resistant clinical isolate of Staphylococcus aureus [J]. Antimicrob Agents Chemother, 1990,34(9): 1777-9.
    [21] CDC. Staphylococcus aureus resistant to vancomycin-United States. MMWR Morb Mortal Wkly Rep, 2002, 51(26): 565-567.
    [22] Hiramatsu K, Hanaki H, Ito T, et al. Methicillin-resistant staphylococcus clinical strains with reduced vancomycin susceptibility [J]. J Antimicrob Chemother, 1997,40(1): 135-136.
    [23] Hiramatsu K, Aritaka N, Hanaki H, et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin [J]. Lancet, 1997, 350 (12): 1670-1673.
    [24] Sieradzki K, Villari P, Tomasz A. Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of Staphylococci [J]. Antimicrob Agents Chemother, 1998,42 (1): 100-107.
    [25] Poly MC, Grelaud C, Martin C, et al. First clinical isolate of vancomycin intermediate Stsaphylococcus in a French hospital [J]. Lancet, 1998, 351: 1212.
    [26] Wong SS, Ho PL, Woo PC, et al. Bacteremia caused by staphylococci with inducible vancomycin heteroresistance [J]. Clin Infect Dis, 1999, 29(4): 760-767.
    [27] Viedma DG, Rabadan PM, Diaz M, et al. Heterogeneous antimicrobial resistance patterns in polyclonal populations of coagulase-negative Staphylococcus isolated from catheters [J]. J Clin Microbiol, 2000, 38 (4): 1359-1363.
    [28] Noble WC, Virani Z, Cree RG. Cotransfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus [J]. FEMS Microbiol Lett, 1992, 72(2): 195-198.
    [29] Showsh SA, De-Boever EH, Clewell DB. Vancomycin resistance plasmid in Enterococcus faecalis that encodes sensitivity to a sex pheromone also produced by Staphylococcus aureus [J]. Antimicrob Agents Chemother, 2001, 45(7): 2177-2178.
    [30] Cui LZ, Murakami H, Kuwahar-Arai K, et al. Contribution of a Thickened Cell Wall and Its Glutamine Nonamidated Component to the Vancomycin Resistance Expressed by Staphylococcus aureus, Mu50 [J]. Antimicrob Agents Chemother, 2000, 44(9): 2276.
    [31] Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance [J]. Lancet Infect Dis, 2001, 1(3): 147.
    [32] Finan JE, Archer GL, Pucci MJ, et al. Role of penicillin binding protein 4 in expression of vancomycin resistance among clinical isolates of oxacillin-resistant Staphylococcus aureus [J]. Antimicrob Agent Chemother, 2001, 45(11): 3070.
    [33] Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus [J]. Antimicrob Agents Chemother, 2000,44: 1549.
    [34] Suzuki E, Hiramatsu K, Yokot T. Survey of methicillin resistant clinical strains of coagulase-negative staphylococci for mecA gene distribution [J]. Antimicrob Agents Chemother, 1992, 36(2): 429.
    [35] Ito T, Katayama Y, Asada A, et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus [J]. Antimicrob Agents Chemother, 2001,45(5): 1323-36.
    [36] Ito T, Ma X, Takeuchi F, et al. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC [J]. Antimicrob Agents Chemother, 2001,45(5): 1323.
    [37] Ito T, Katayama Y, Asada A, et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus [J]. Antimicrob Agents Chemother, 2001,45(5): 1323-36.
    [38] Oliveira DC, Tomasa A, de Lencastre H. The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus identification of two ancestral genetic backgrounds and the associated mec elements [J]. Microb Drug Resist, 2001,7(4):349.
    [39] Ito T, Katayama Y, Hiramatsu K. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315 [J]. Antimicrob Agents Chemother, 1999, 43(6): 1449.
    [40] Shore A, Rossney SA, Keane CT, et al. Seven novel variants of the staphylococcal chromosomal cassette mec in methicillin-resistant Staphylococcus aureus isolates from Ireland [J]. Antimicrob Agents Chemother, 2005, 49(5): 2070.
    [41] Cha HY, Moon DC, Choi CH, et al. Prevalence of the ST239 clone of methicillin resistant Staphylococcus aureus and differences in antimicrobial susceptibilities of ST239 and ST5 clones identified in a Korean hospital [J]. J Clin Microbiol, 2005,43(8): 3610.
    [42] Ma XX, Ito T, Tiensasitorn C, et al. Novel type of staphylococcal chromosomal cassette mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains [J]. Antimicrob Agents Chemother, 2002, 46(4): 1447.
    [43] Ito T, Okuna K, Ma XX, et al. Insights on antibiotic resistance of Staphylococcus aureus from it whole genome: genomic island SCC [J]. Drug Resistance Updates, 2003, 6: 41-52.
    [44] Hisata K, Kuwahara-Arai K, Yamanoto M, et al. Dissemination of methicillin resistant staphylococci among healthy Japanese children [J]. J Clin Microbiol, 2005,43(7): 3364.
    [45] Oliveira, D. C, and H. de Lencastre. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus [J]. Antimicrob Agents Chemother, 2002,46:2155-61.
    [46] Katayama Y, Takeuchi F, Ito T, et al. Identification in methicillin susceptible Staphylococcus hominis oa an active primoridial mobile genetic element for the staphylococcal chromosomal cassette mec of methicillin resistant Staphylococcus aureus [J]. J Clin Microbiol, 2003,185(9): 2711.
    [47] Katayama Y, Ito Y, Hiramatst K. Genetic organization of the chromosome region surrounding mecA in clinical staphylococcal strains: role of IS431 -mediated mecl deletion in expression of resistance in mecA-carrying, low level methicillin resistant Staphylococcus haemolyticus [J]. Antimicrob Agents Chemother, 2001, 45(46): 1955.
    [48] Shore A, Rossney AS, Keane CT, et al. Seven novel variants of staphylococcal chromosomal cassette mec in methicillin-resistant Staphylococcus aureus isolates from Ireland [J]. Antimicrob Agents Chemother, 2005, 49(5): 2070-2083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700