用户名: 密码: 验证码:
拉莫三嗪对癫痫幼鼠认知及其海马中多药耐药基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分拉莫三嗪对癫痫幼鼠认知功能的影响
     目的
     癫痫是一种常见的慢性神经系统疾病,部分癫痫患者伴有认知功能的损害。很多学者认为其认知的损害与抗癫痫药物的副作用有关。随着新型抗癫痫药物拉莫三嗪在临床的广泛使用,其对认知的影响也越来越引起人们的关注。本研究利用海人酸致癫痫持续状态后形成的慢性自发性颞叶癫痫幼鼠模型,初步探讨了长期应用拉莫三嗪对发育期大脑空间学习记忆能力的影响。
     方法
     将出生后7d的雄性wistar大鼠65只随机分为海人酸(KA)组33只和对照(control)组32只,KA组给予海人酸(kainic acid,KA)1mg/kg(浓度0.5mg/ml)腹腔注射,control组只腹腔注射相同剂量生理盐水。按照Lado幼鼠癫痫发作分级标准,腹腔注射后连续观察8h,癫痫发作达5级以上癫痫持续状态的大鼠若两周后出现自发性反复惊厥发作则为造模成功。
     将KA组中造模成功的26只存活大鼠随机分为癫痫未治疗(EP)组13只、癫痫拉莫三嗪治疗(EP+LTG)组13只,control组随机分为生理盐水(NS)组、生理盐水拉莫三嗪治疗(NS+LTG)组16只。治疗组均于自发性发作出现一周后给予抗癫痫新药拉莫三嗪治疗,观察大鼠癫痫行为的改变,在用药5周后对大鼠进行Morris水迷宫行为测试以评价其视觉-空间学习和记忆能力。
     结果
     KA组大鼠在注射海人酸2~10min后出现连续性点头动作及交替前肢痉挛,平均潜伏时间4.3±3.1min,15~20min后出现双侧前肢痉挛、后退、摔倒及强直发作等,随后发展为癫痫持续状态,持续约1~1.5h。注射KA后8小时内大鼠死亡5只,24h后又死亡2只。注射生理盐水的对照组均未发生惊厥,也无死亡。KA组大鼠自注射海人酸2周后陆续出现SRS,LTG用药结束前一周内EP组平均每只大鼠出现SRS 5.94±1.53次,EP+LTG组有2只未见发作,平均每只大鼠出现SAS 2.18±1.16次,两组比较差异具有显著性(P<0.001)
     在Morris水迷宫测试中,与NS组相比,EP组大鼠逃逸潜伏期明显延长,在目的象限停留时间缩短(P<0.05),EP+LTG组大鼠较EP组大鼠逃逸潜伏期明显缩短,在目的象限停留时间延长(P<0.05),LTG对未经海人酸致痫的大鼠水迷宫操作无影响(P>0.05).
     结论
     拉莫三嗪能有效抑制海人酸致痫大鼠的反复惊厥发作,具有明显抗癫痫作用,且能改善发育期癫痫大鼠的空间学习记忆能力。
     第二部分拉莫三嗪对癫痫幼鼠海马中多药耐药基因表达的影响
     目的
     癫痫患者中约有四分之一对大部分抗癫痫药物耐药从而发展为难治性癫痫。多药耐药基因(multipledrug resistant gene-1,MDR1)及其基因产物P-糖蛋白(P-gp)的高表达被认为与癫痫耐药密切相关。近年学者们多以成年大鼠急性期癫痫持续状态作为研究多药耐药基因的模型,但许多研究表明,在个体发育不同阶段,癫痫的产生、维持以及对抗癫痫药物的反应不尽相同,因此我们以海人酸致癫痫持续状态后形成的慢性自发性颞叶癫痫幼年大鼠模型为研究对象,探讨多药耐药基因及其表达产物在大鼠海马中的表达及抗癫痫新药拉莫三嗪对其表达的影响。
     方法
     将出生后7d的雄性wistar大鼠65只随机分为海人酸(KA)组33只和对照(control)组32只,KA组给予海人酸(kainic acid,KA)1mg/kg(浓度0.5mg/ml)腹腔注射,control组只腹腔注射相同剂量生理盐水。按照Lado幼鼠癫痫发作分级标准,腹腔注射后连续观察8h,癫痫发作达5级以上癫痫持续状态的大鼠若两周后出现自发性反复惊厥发作则为造模成功。
     将KA组中造模成功的26只存活大鼠随机分为癫痫未治疗(EP)组13只、癫痫拉莫三嗪治疗(EP+LTG)组13只,control组随机分为生理盐水(NS)组、生理盐水拉莫三嗪治疗(NS+LTG)组16只。治疗组均于自发性发作出现一周后给予抗癫痫新药拉莫三嗪治疗6周,然后将所有大鼠断头取海马,用RT-PCR法测定多药耐药基因mdrla和mdrlb mRNA的表达。
     结果
     EP组、EP+LTG组的mdrla和mdrlb mRNA表达均比NS组明显增高(P<0.001)EP+LTG组及NS+LTG组的mdrla和mdrlb mRNA表达分别较EP组及NS组增高,但无统计学意义(P>0.05)。
     结论
     反复癫痫发作可使癫痫幼鼠海马中mdrla、mdrlb mRNA表达增加,抗癫痫新药拉莫三嗪对癫痫及正常幼鼠海马中mdrla、mdrlb mRNA的表达无明显影响。
Objective
     Epilepsy is a common chronic disease of nervous system.Some epilepsy patients have impaired cognitive abilities.Many scholars hold that the antiepileptic drugs may contribute to this impairment.With the widely clinical usage of lamotrigine,the effect of lamotrigine on connitive has attracted more and more attention.In this study,an immature murine model of chronic spontaneous temporal epilepsy,which is attributed to statural epilepticus induced by kainic acid,was used to investigate the chronic effect of lamotrigine on spatial learning and memory.
     Methods
     The number of 65 male young rats of 7 days old were randomly divided into experimental group and control group.Rats in the experimental group were received intraperitoneal injection of 1 mg/kg kainic acid to induce seizures,and control rats were injected with the same dose of sodium chloride.According to Lado standard classification of seizures,those young rats whose seizure degree were beyond five and became status epilepticus after intraperitoneal injection were used as successful seizure models if they caught the spontaneous seizures after two weeks.
     When spontaneous seizures were developed,the 26 survived epileptic rats were divided into EP group and EP+LTG group.Rats of control group were divided into NS group and NS+LTG group.Rats of EP+LTG group and NS+LTG group were treated with therapeutic dose of lamotrigine after the spontaneous seizures developed for a week.Spontaneous recurrent seizures were recorded everyday.Spatial learning and memory ability was evaluated by Morris water maze after 5 weeks drug treatment.
     Results
     In KA group,the rats received intraperitoneal injection of kainic acid suffered from epileptic seizure after 2-10 min injection.The latent time was average 4.3±3.1min.Five rats died whin eight hours and two rats died after 24 hours.In control group,no rats suffered from seizures or died.Rats of KA group gradually developed spontaneous recurrent seizure (SRS)2 weeks after kainic acid injection.During the last week of Lamotrigine treatment,in EP group,the mean times of SRS was 5.94±1.53. In EP+LTG group,two rats did not suffer from SRS,and the mean times of SRS was 2.18±1.16.There was significant difference between the two groups(P<0.05).
     In the test of Morris water maze,the EP group spent the most time in finding the platform but the shortest time in the target quadrant. Compared with the EP group,EP+LTG group spent less time in finding the platform and the more time in the target quadrant(P<0.05).LTG had no effect on water maze performance to rats without KA induction.
     Conclusion
     LTG can control the spontaneous recurrent seizure of spontaneous epileptic immature rats perfectly.For developing epileptic rat brain, LTG can improve the ability of Spatial Learning and Memory.
     Objective
     About 25%of patients with epilepsy suffer from intractable seizures,which cannot be properly controlled by antiepileptic drugs. Overexpression of multidrug resistance gene and p-glycoprotein is thought to have close relationship with Refractory Epilepsy. Recently,many scholars used the murine model of status epilepicus to study the multipledrug resistant gene,nevertheless,some research showed that the production and maintenance of epilepsy is not similar in different periods of ontogeny.In this study,childhood rat model of spontaneous seizures induced by kainic acid was used to explore whether the new antiepileptic drug-lamotrigine affects the expression of mdr1a,mdr1b and P-Glycoprotein(P-gp)in the hippocampus of spontaneous seizures rat.
     Methods
     The number of 65 male young rats of 7 days old were randomly divided into experimental group and control group.Rats in the experimental group were received intraperitoneal injection of 1 mg/kg kainic acid to induce seizures,and control rats were injected with the same dose of sodium chloride.According to Lado standard classification of seizures,those young rats whose seizure degree were beyond five and became status epilepticus after intraperitoneal injection were used as successful seizure models if they caught the spontaneous seizures after two weeks.
     When spontaneous seizures were developed,the 26 survived epileptic rats were divided into EP group and EP+LTG group.Rats of control group were divided into NS group and NS+LTG group.Rats of EP+LTG group and NS+LTG group were treated with therapeutic dose of lamotrigine after the spontaneous seizures developed for a week.All rats were killed at the 42th day of administration.Mdr1a and mdr1b mRNA in the hippocampus was measured by RT-PCR.
     Results
     Compared with the control groups,expression of mdr1a and mdr1b mRNA in the hippocampus increased significantly in EP and EP+LTG group(P<0.001)Mdr1a and mdr1b mRNA expression level of EP+LTG group was higher than that of EP group,and NS+LTG group higher than NS group,but there was no statistical difference(P>0.05).
     Conclusion
     Frequent seizures results inoverexpression of mdr1a,mdr1b mRNA in the hippocampus.Lamotrigine dose not enhance the expression of mdr1a,mdr1b mRNA in the hippocampus.
引文
1.Bourgeoise BFD. Determining the effects of antiepileptic drugs on cognitive function in pediatric patients with epilepsy.J Child Neurol,2004, 19:15-24.
    
    2. Motamedi G, Meador K. Epilepsy and cognition. Epilepsy Behav , 2003 , 4:25-38.
    
    3. Crumrine RC , Bergst rand K, Cooper AT , et al. Lamotrigine protects hippocampal CA1 neurons f rom ischemic damage after cardiac arrest. Stroke,1997,28:2230-2237.
    
    4.Calabresi P, Picconi B, Saulle E , et al.Is pharmacological neuropr otection dependent on reduced glutamate release ? St roke, 2000, 31: 766-772.
    5.Kwan P.Brodie MJ.Neuropsychological effects of epilepsy and antiepileptic drugs.Lancet,2001, 357:216-222.
    6.Martin RC,Griffith HR,Faught E,et al. Cognitive functioning in community dwelling older adults with chronic partial epilepsy. Epilepsia,2005,46:298-303.
    7.Sanchez-Carpintero R.Neville BG. Attentional ability in children with epilepsy. Epilepsia, 2003, 44:1340-1349.
    8.Wu CL, Huang LT,Liou CW,et al. Lithium-pilocarpine-induced status epilepticus in immature rats result in long-term deficits in spatial learning and hippocampal cell loss.Neurosci Lett, 2001,312:113-117.
    9.Mortazavi F,Ericson M,Story D. Spatial learning deficits and emotional impairments in pentylenetetrazole-kindled rats. Epilepsy Behav,2005,7:629-638.
    10.Huttenlocher PR,Hapke RJ. A follow-up study of intractable seizures in childhood. Ann Neurol,1990,28:699-705.
    11. Meador KJ, Loring DW, Huh K, et al. Comparative cognitive effects of anticonvulsants.Neurology,1990, 40:391-394.
    
    12. Meador KJ, Loring DW, Allen ME, et al. Comparative cognitive effects of carbamazepine and phenytoin in healthy adults. Neurology, 1991, 41:1537-1540.
    
    13. Meador KJ, Loring DW, Moore EE, et al. Comparative cognitive effects of phenobarbital, phenytoin, and valproate in healthy adults. Neurology, 1995,45:1494-1499.
    
    14. Brunbech L , Sabers A. Effect of antiepileptic drugs on cognitive function in individuals with epilepsy : a comparative review of newer verus older agents . Drugs, 2002, 62:593-604.
    
    15. Cramer JA , De Rue K, Devinsky O , et al. A systematic review of the behavioral effects of levetiracetam in adults with epilepsy , cognitive disorders , or an anxiety disorder during clinical trials. Epilepsy Behav,2003,4:124-132.
    
    16.Hamilton MJ , Cohen AF , Yuen AW, et al . Carbamazepine and lamotrigine in healthy volunteers : relevence to early tolerance and clinical dosage.Epilepsia, 1993, 34:166-173.
    17. Martin R, Kuzniecky R, Ho S , et al . Cognitive effect s of toprimate , gabapentin, and lamotrigine in heathy young adults. Neurology, 1999,52:321-327.
    18.Meador KJ ,Loring DW,Ray PG,et al.Differential cognitive and behavioral effect s of carbamazepine and lamot rigine. Neurology ,2001,56:1187-1192.
    19. Aldenkamp AP , Arends J, Bootsma HP, et al. Randomized , double-blind parallel-group study comparing cognitive effects of a low dose lamotrigine with valproate and placebo in heathy volteers. Epilepsia, 2002, 43:19-26.
    20.Gillham R,Kane K,Bryant-Comstock L, et al. A double-blind comparison of LTG and carbamazep ine in newly diagnosed epilepsy with health-related quality of life as an outcome measure.Seizure,2000,9:375-379.
    21.BlumD,Meador K,BitonV,et al.Cognitive effects of lamotrigine compared with topiramate in patients with epilepsy.Neurology,2006,67:400-406.
    22.Pressler RM,Binnie CD,Coleshill SG,et al.Effect of lamotrigine on cognition in children with epilepsy.Neurology,2006,66:1495-1499.
    23.王延平,朱德仪.抗癫痫药物对癫痫患儿智力的影响初探.广州医学院学报,1995,23:70-72.
    24.Halonen T,Nissinen J,Pitkanen A.Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat.Epilepsy Res,2001,46:205-223.
    25.Shannon HE,Love PL.Effects of antiepileptic drugs on attention as assessed by a five-choice serial reaction time task in rats.Epilepsy Behav,2005,7:620-628.
    26.Shannon HE,Love PL.Effects of antiepileptic drugs on learning as assessed by a repeated acquisition of response sequences task in rats.Epilepsy Behav,2007,10:16-25.
    27.Shannon HE,Love PL.Effects of antiepileptic drugs on working memory as assessed by spatial alternation performance in rats.Epilepsy Behav,2004,5:857-865.
    1.Regesta G,Tanganelli P.Clinical aspects and biological bases of drug-resistant epilepsies.Epilepsy Res.1999;34:109-22.Review.
    2.leiri I,Takane H,Otsubo K.The MDRI(ABCB1)gene polymorphism and its clinical implications.Clin Pharmacokinet,2004,43:553-576.
    3.Falip M,Gratacos M,Santamarina E,et al.Prognostic factor for medical control for seizures in patient with radiologic evidence for mesial temporal lobe sclerosis.Rev Neurol,2003,36:501-506.
    4.左启华.小儿神经系统疾病[M].北京:人民卫生出版社,1981,100.
    5.林庆,叶露梅.小儿癫痫的现代诊断与治疗[M].天津:天津科学技术出版社,1996.144.
    6.Yolk HA,Burkhardt K,Potschka H,et al.Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures.Neuroscience,2004,123:751-759.
    7.裴印权.原发性动物癫痫模型.中国药理学通报,1991,7:81.
    8.Ben-Ari Y.Limbic seizure and brain damage produced by kainic acid:mechanisms and relevance to human temporal lobe epilepsy.Neuroscience,1985,14:375-403.
    9.Ben-Ari Y,Tremblay E,Riche D,et al.Electrographic,clinical and pathological alterations following systemic administration of kainic acid,bicuculline or pentetrazole:metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy.Neuroscience,1981,6:1361-1391.
    10.Robinson J and Deadwyler S.A.Kainic acid produces depolarization of CA3 pyramidal cells in the vitro hippocampal slice.Brain Res,1981,221:117-127.
    11.Golden GT,Smith GG,Ferraro TN,et al.Strain differences in convulsive response to the excitotoxin kainic acid.Neurol Report,1991,2:141-144.
    12. Dawson RJ, Wallace DR. Kainic-induced seizures in Nenrol aged rats: neurochemical correlates. Brain Res Bull, 1992, 29:459-468.
    
    13. Olney JW, Fuller T,De Gubareff T.Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res, 1979, 176:91-100.
    
    14. Schwob JE, Fuller T, Price JL,et al. Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study.Neuroscience, 1980,5:991-1014.
    
    15. Sperk G, Lasssmann H, Baran H, et al. Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience, 1983, 10:1301-1315.
    
    16. Scheibel ME, Scheibel AB.Hippocampal pathology in temporal lobe epilepsy. A golgi survey. In epilepsy. Its phenomena in Man(ed. Brazier MAB),pp. 311-337. Academic Press, New York.
    
    17. Cavalheiro EA,Riche D, Le Gal La Salle G. Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol, 1982,53:581-589.
    
    18. Franck JE,Schwartzkroin PA. Do Kainate lesioned hippocampi become epileptogenic? Brain Res, 1985, 329:309-313.
    
    19. Clifford DB, Lothman EW, Dodson WE, et al. Effect of anticonvulsant drugs on kainic acid-induced epileptiform activity. ExpNeurol, 1982, 76:156-167.
    
    20. Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia, 2005 46:224-235.
    
    21. Daschner PJ, Ciolino HP, Plouzek CA, et al. Increased AP-1 activity in drug resistant human breast cancer MCF-7 cells. Breast Cancer ResTreat, 1999, 53:229-240.
    
    22. Rappa G, Finch RA, Sartorelli AC, et al. New insights into the biology and pharmacology of the multidrug resistance protein (MRP) from gene knockout models. Biochem Pharmacol, 1999, 58:557-562.
    
    23. Van Vliet E, Aronica E, Redeker S, et al. Selective and persistent upregulation of mdr1b mRNA and P-glycoprotein in the parahippocampal cortex of chronic epileptic rats. Epilepsy Res, 2004, 60:203-213.
    
    24. Demeule M, LabelleM, Regina A, et al. Isolation of endothelial cells from brain, lung, and kidney: expression of the multidrug resistance P-glycoprotein isoforms. Biochem Biophys Res Commun, 2001, 281: 827-834.
    
    25. Kwan P, Sills GJ, Butler E, et al. Diferential expression of multidrug resistance genes in naive rat brain. Neurosci Lett, 2003,339:33-36.
    
    26. Lee G, Dallas S, Hong M, etal. Drug transporters in the central nervous system:brain barriers and brain parenchyma considerations. Pharmacol Rev, 2001,53:569-596.
    
    27. Sisodiya SM, Lin WR, Harding BN,et al. Drug resistance in epilepsy: expression of drug resistance proteins in common cause of refractory epilepsy. Brain,2002,125:22-31.
    
    28. Rosado C, Cross SE,Pugh WJ, et al. Effect of vehicle pretreatment on the flux, retention, and diffusion of topically applied penetrants in vitro. Pharm Res, 2003, 20:1502-1507.
    
    29. Rizzi M, Caccia S, Guiso G, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci,2002, 22: 5833-5839.
    
    30. Tishler DM, Weinberg KI, Hinton DR, et al. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia, 1995, 36: 1-6.
    
    31. Dombrowski SM, Desai SY, Marroni M, et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refract- tory epilepsy.Epilepsia, 2001, 42:1501-1506.
    32. Lazarowski A, Sevlever G, Taratuto A, et al. Tuberous sclerosis associated with MDR1 gene expression and drug-resistant epilepsy. Pediat Neurol, 1999,21:731-734.
    
    33. Lazarowski A, Lubieniecki F, Camarero S , et al.Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy. Pediat Neurol,2004, 30:102-106.
    
    34. Kwan P, Sills GJ, Brtler E, et al. Regional expression of multidrug resistance genes in genetically epilepsy-prone rat brain after a single audiogenic seizure. Epilepsia, 2002, 43:1318-1323.
    
    35. Bond TD, Valverde MA, Higgins CF. Protein kinase C phosphorylation disengages human and mouse-la P-glycoproteins from influencing the rate of activation of swelling-activated chloride currents. J Physiol. 1998,508:333-340.
    
    36. Lecureur V, Thottassery JV, Sun D, et al. Mdrlb facilitates p53-mediated cell death and p53 is required for Mdrlb upregulation in vivo. Oncogene, 2001, 20:303-313.
    
    37. Marroni M, Agrawal ML, Kight K, et al. Relationship between expression of multiple drug resistance proteins and p53 tumor suppressor gene proteins in human brain astrocytes. Neuroscience, 2003, 121:605-617.
    
    38. Volk HA, PotschkaH , Loscher W . Increased expression of the multidrug transporter p-glycoprotein in limbic brain regions after amygdala-kindled seizures in rats. Epilepsy Res, 2004, 58: 67-79.
    
    39. Seegere U, Potschka H. Loscher W. Lack of effects of prolonged treatment with phenobarbital or phenytoin on the expression of p-glycoprotein in various rat brain regions. Eur J Pharmacol, 2002. 451: 149-155.
    
    40. Sisodiya SM, Heffernan J, Squier MV. Over-expression of P-glycoprotein in malformations of cortical development. Neuroreport, 1999,10:3437-3441.
    
    41. Sisodiya SM, Thorn M. Widespread upregulation of drug-resistance proteins in fatal human status epilepticus.Epilepsia,2003,44:261-264.
    42.leiri I,Takane H,Otsubo K.The MDRI(ABCB1)gene polymorphism and its clinical implications.Clin Pharmacokinet,2004,43:553-576.
    43.Fisher R,Blum D.Clobazam,oxcarbazepine,tiagabine,topiramate,and other new antiepileptic drugs.Epilepsia,1995,36:105-114.
    44.吕洋,王学峰,晏勇,等.西比灵逆转抗癫痫药诱导的多药耐药基因的表达.重庆医学,2000,29:193-195.
    45.王学峰,晏勇,吕洋.氟桂利嗪抗癫痫及逆转难治性癫痫病人多药耐药基因的表达.中国新药与临床杂志,2001,20:363-365.
    46.Potschka H,Loscher W.Multidrug resistance-associated protein is involved in the regulation of phenytoin in the brain.Neuroreport,2001,12:2387-2389.
    47.Potschka H.Loscher W.In vivo evidence for Pglycoprotein-mediated transport of phenytoin at the blood-brain barrier of rats.Epilepsia,2001,42:1231-1240.
    48.Potschka H,Fedrowitz M,Loscher W.P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain.Neuroreport,2001,12:3557-3560.
    49.Potschka H,Fedrowitz M,Loscher W.P-Glycoprotein-mediated efflux of phenobarbital,lamotrigine,and felbamate at the blood-brain barrier:evidence from microdialysis experiments in rats.Neurosci Lett,2002,327:173-176.
    50.Potschka H,Fedrowitz M,Loscher W.Multidrug resistance protein MRP2contributes to blood-brain barrier function and restricts antiepileptic drug activity.J Pharmacol Exp Ther,2003,306:124-131.
    51.Meador KJ.Cognitive outcomes and predictive factors in epilepsy.Neurology,2002,58:21-26.
    52. Summers MA,Moore JL, McAuley JW. Use of verapamil as a potential P- glycoprotein inhibitor in a patient with refractory epilepsy. Ann Pharmacother, 2004, 38:1631-1634.
    
    53. Iannetti P, Spalice A, Parisi P. Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia, 2005, 46:967-969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700