用户名: 密码: 验证码:
高速铁路大跨度钢桁拱桥梁轨相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:高速铁路大跨度桥梁温度跨度大、活载作用下梁端转角大,且常承载多线铁路,桥梁与轨道因非线性约束的作用构成相互耦合相互制约的力学平衡体系,梁轨间相互作用是大跨度桥梁与无缝线路设计及安全使用的重要控制因素之一。本文以高速铁路线上的大跨度钢桁拱桥为研究对象,基于大跨度桥梁与轨道结构的非线性空间分析理论,建立了反映线路阻力非线性特性的梁轨一体化空间耦合模型,编制开发了计算模块,考虑了梁轨体系内加载历史的影响,对该类桥梁在温度、活载、地震激励等多场耦合作用下的梁轨相互作用特性和桥上无缝线路轨道结构的稳定性及钢轨断裂进行了研究。本文主要研究内容如下:
     (1)基于无缝线路纵向阻力的时变特性,推导了纵向阻力的迭代公式,改进了梁轨间纵向阻力的模拟方式,提出了实现线路阻力在无载、有载工况间自由转换的“阻力差值法”,该方法能考虑加载历史对梁轨非保守系统的影响,可对温度滞回、列车过桥、列车桥上制动等过程进行全历程分析。
     (2)建立了轨道-桥面板-纵横梁-主桁架-墩台-基础一体化的钢桁拱桥梁轨系统空间耦合模型,采用改进的“重叠非线性杆单元”模拟梁轨间纵向阻力,选用考虑卸载的理想弹塑性阻力模型来计入加载历史的影响,模拟了线路的纵、横向阻力及竖向刚度,该模型能更准确地反映轨道、桥面、纵横梁、主桁架、支座、桥墩、桩基等各组成间的关系,可模拟单线行车、多线行车等不同工况,可同时对梁轨间纵向附加力与桥上轨道稳定性进行分析。通过与相关文献算例进行对比,验证了本文模型的可靠性。
     (3)研究了钢桁拱桥梁轨间各项纵向附加力的特征及分布规律,对考虑加载历史的多荷载耦合非线性分析与线性叠加结果进行了对比性分析,探讨了温度组合工况、行车方向、活载模式、列车编组、制动力率、线路阻力、墩台刚度、临跨桥梁布置、活动支座摩擦力等敏感因素对梁轨纵向力的影响,阐述了钢轨伸缩调节器、轨道结构型式、桥墩上锁定阻尼装置及桥面系型式对无缝线路纵向力的削减机理及优选布置方案。
     (4)以轨道初始水平不平顺与高低不平顺的耦合为初始条件,对大跨度钢桁拱桥桥上无缝线路的轨道稳定性及钢轨断裂力传递进行了研究,对比研究了考虑梁轨相互作用与否时轨道的失稳状态,探讨了钢轨类型、道床横向阻力、线路竖向刚度及初始不平顺矢度等敏感性因素对桥上轨道结构稳定性的影响,同时对钢轨瞬态断裂过程进行了全历程追踪,对静态、动态断轨力进行了比较。
     (5)采用改进的Penzien模型模拟桩土效应,编制了人工地震波生成程序,分析了考虑轨道约束与否对大跨度钢桁拱桥梁轨系统自振特性的影响,总结了不同地震动输入模式下(包括地震波频谱特性、场地相位差等)大跨度钢桁拱桥梁轨系统的地震响应,探讨了道床阻力、滑动支座摩擦效应、相邻结构支座布置、墩台刚度等因素对其梁轨系统地震力的的影响规律,并对温度力、制动挠曲力与地震荷载的耦合作用进行了研究,提出设置伸缩调节器、粘滞阻尼器及比选轨道结构型式等梁轨适应性措施。
Abstract:For long-span bridges on high-speed railway (HSR), the expansion length and the deck-end rotation are relatively large. Carrying multiple railway lines, the bridge and the track constitute a mechanical equilibrium system due to the nonlinear constraint between them. In general, the track-bridge interaction is a quite significant dominant factor for the design and safe operation of the long-span bridges and continuous welded rails (CWR).
     In this dissertation, the long-span steel-truss arch bridge in HSR was discussed and researched. Integrative coupling spatial models, considering the nonlinear characteristics of resistance between the bridge and the track, were established on the basis of nonlinear analytical theory of long-span bridge. By developing specialized calculating modules, taking the effect of loading history into account, the numerical research was focused on the mechanical characteristics of the CWR and long-span steel-truss arch bridge system subjected to the multi-field coupling actions of temperature, traffic loads and seismic load. In addition, the stability of CWR on arch bridge as well as the transient fracture process of rails were investigated. The main contents of this dissertation are given as follows:
     1. Based on the time-varying characteristic of longitudinal resistance between track and bridge, the iterative formulas were derived, and the simulating method has been improved. Furthermore, the Resistance-difference Method was proposed to transfer the resistance from unloaded condition to loaded condition freely, and vice versa. Adopting this new method considering the influence of previous load history on nonconservative mechanical system of track and bridge, the full-process analysis could be executed on those static or dynamic behaviors such as temperature hysteresis, trains passing over bridge, trains braking on bridge, etc.
     2. The new integrative spatial model of rails-deck system-stringers-cross beams-main trusses-pier-foundation was established, adopting improved overlapping nonlinear link element to simulate the longitudinal resistance between track and bridge. In this new model, ideal elastic-plastic resistance model capable of unloading to include the influence of load history was selected, and the longitudinal resistance, transverse resistance as well as vertical stiffness were simulated. This model could represent the correlative relations among tracks, deck, transverse and horizontal girders, main trusses, supports, piers as well piles more accurately. Moreover, it could also calculate different operation conditions including single line load case and multi-line load case, and analyze the additional longitudinal forces of CWR and the track's stability on bridges. The validity of the model in this thesis has been verified through a series of comparative analyses with those in relative codes or papers.
     3. The characteristics and distribution law of various longitudinal forces in the track-beam system of steel-truss arch bridge were described. The nonlinear calculations considering multi-load history and the results calculated by linear superposition method were comparatively analyzed. The influence of several sensitive factors on the longitudinal force was discussed, such as temperature combination cases, trains' moving direction, live load model, train formation, braking force ratio, ballast resistance, stiffness of pier and abutment, layout scheme of adjacent spans, friction of movable supports and other factors. Besides, the curtailment mechanism of locating the Rail Expansion Joints (REJ), selecting the track type and the deck form, as well as setting up the Shock Transmission Unit (STU) on piers were illustrated and the optimal schemes were expounded.
     4. Taking the coupling of initial level irregularity and vertical profile irregularity into consideration, the track stability of CWR on the long-span steel-truss arch bridge and the transmission law of track fracture force were researched. Comparative study on the track's instability status with track-bridge interaction or not was carried out, and sensitive research was conducted to investigate the effect of rail type, transverse resistance, vertical stiffness of railway line, and initial irregularity vector. Meanwhile, the whole transient process of track's fracture was traced and surveyed, and the static and dynamic rail-breaking forces were compared.
     5. Utilizing improved Penzien model to simulate pile-soil effect, developing self-programming software to generate artificial seismic waves, the natural vibration characteristics of long-span steel-truss arch bridge considering track constraint or not were described, the seismic responses under different input modes of earthquake motion (including seismic wave's spectral characteristics, site phase difference and so on) were studied for the track-bridge system of long-span steel-truss arch bridge. Besides, the influence law of sensitive factors such as ballast resistance, frictional effect of movable supports, layout of adjacent span, stiffness of pier and abutment were summarized, and the coupling effect of temperature, bending-braking force as well as earthquake acceleration was investigated. Additionally, some seismic applicability measures were proposed and analyzed, such as REJ, nonlinear viscous damper and track types.
引文
[1]郑健.中国高速铁路桥梁[M].北京:高等教育出版社,2008:299-504.
    [2]李向国.高速铁路技术[M].北京:中国铁道出版社,2007:89-104.
    [3]孙树礼.高速铁路桥梁设计与实践[M].北京:中国铁道出版社,2011:166-193.
    [4]向着技术更加优化的高速铁路桥梁迈进[C].铁道部工程设计鉴定中心、铁道第三勘察设计院有限公司.2008中国高速铁路桥梁技术国际交流会论文集(上册).北京:中国铁道出版社,2008.
    [5]DAI Gong-lian, HU Nan, LIU Wenshuo. The recent improvement of high-speed railway bridges in China[C]. The 34th International Symposium on Bridge and Structural Engineering. Venice:IABSE,2010,168-169.
    [6]DAI Gong-lian, HU Nan. The Introduction of High Speed Railway Bridges in Wuhan-Guangzhou Passenger Line[C]. IABSE Symposium 2009 Bangkok. Bangkok:IABSE,2009:62.
    [7]LIU Wen-shuo, DAI Gong-lian. Research on the major dominant bridges of the Wuhan-Guangzhou High-speed Railway [J]. World Bridge Construction,2012, (1):30-39.
    [8]LIU Wen-shuo, DAI Gong-lian. Dongping Channel Bridge: Long-Span Steel Arch Bridge with three main trusses in the Wuhan-Guangzhou High-speed Railway, China [J]. Structural Engineering International,2011,21(4):492-496.
    [9]陈良江,乔健.中国高速铁路大跨度桥梁发展与实践[J].铁道经济研究,2010(6):46-50.
    [10]高宗余.我国近期建设的高速铁路大跨度钢桥[C].中国土木工程学会桥梁及结构工程分会、上海市城乡建设和交通委员会.第十九届全国桥梁学术会议论文集(上册).上海:中国土木工程学会桥梁及结构工程分会,2010:7.
    [11]广钟岩,高慧安.铁路无缝线路[M].北京:中国铁道出版社,200:139-289.
    [12]卢耀荣.无缝线路研究与应用(第二版)[M].北京:中国铁道出版社,2004:1-35.
    [13]北方交通大学线路教研室.国外无缝线路发展概况[J].北方交通大学学报,1976,21(1),01:133-147.
    [14]三浦重,李惠春.国外无缝线路的发展与现状[J].哈铁科技通讯,1990(3):28-32.
    [15]卢耀荣.中国与欧洲桥上无缝线路设计理念的差异[J].铁道建筑,2006(1):73-75.
    [16]卢耀荣.再议中国与德国桥上无缝线路设计理念的差异[J].铁道建筑,2007(6):75-77.
    [17]蒋金洲.桥上无缝线路钢轨附加纵向力及其对桥梁墩台的传递[J].中国铁道科学,1998,19(2):67-75.
    [18]王福敏,徐伟,李军等.特大跨径钢桁架拱桥设计技术[M].重庆:重庆大学出版社,2010.
    [19]戴公连,宋旭明.漫话桥梁[M].北京:中国铁道出版社,2009.
    [20]孙海涛.大跨度钢桁架拱桥关键问题研究[D].上海:同济大学,2007.
    [21]肖海珠,易伦雄.南京大胜关长江大桥主桥上部结构设计[J].桥梁建设,2010(1):1-4.
    [22]易伦雄.南京大胜关长江大桥大跨度钢桁拱桥设计研究[J].桥梁建设,2009(5):1-5.
    [23]H eppding H G. Zur berechnung nichtlinearer verbundprobleme, dargestellt am beispiel der laengskraftermittlung in eisenbahnbruecken(Analysis of nonlinear compound problems, exemplarily shown on the determination of longitudinal forces in railroad bridges). Bauingenieur,1987,62(11):523-531.
    [24]Pahnke, Ulf. Einfluss der Biegung einer Eisenbahnbruecke auf die Schiene in Laengstrichtung(Longitudinal influence on the rail by bending of a railway bridge deck), Stahlbau,1998,67(8),634-641.
    [25]Eickmann Carla. Klaus Martin. Langskraftabtragung bei esenbahnbrucken unter temperatureinwirkung (Disspation of longitudinal forces on railway bridges due to temperature influences). Eisenbahningenieur,2001,52(2):36-40.
    [26]German Standard DS899/59, Special procedures on railway Shinkansen bridge [S]. Bridge Research Institute of Railway Bridge Authority,1985.
    [27]张履棠等译.德国标准DS804.铁路桥梁及其它工程结构物规范[S].铁道部标准计量研究所,1995,11.
    [28]佐藤吉彦.新轨道力学(徐涌等译)[M].北京:中国铁道出版社,2001.
    [29]日本土木学会.日本国有铁道混凝土结构设计标准和解释[S].1992.
    [30]American Railway Engineering Association. Concrete Structures & Foundation [S].1980.
    [31]孙毓贤.关于俄罗斯铁路无缝线路若干技术问题的讨论[J].中国铁路,1996(11):29-30.
    [32]铁三院情报组.XX线水阳江2#桥制动力试验报告[R].天津:铁道第三勘察设计院,1975.
    [33]西南交通大学.高墩桥上无缝线路制挠力整体分析研究报告[R].成都:西南交通大学,1989.
    [34]西南交通大学.高墩桥上无缝线路试验研究总报告[R].成都:西南交通大学,1989.
    [35]铁道科学研究院,柳州铁路局.1994年红水河铁路斜拉桥静动载试验报告[R].北京:铁道科学研究院,1994.
    [36]铁道科学研究院,铁道第三勘察设计院.新建铁路秦皇岛—沈阳客运专线桥上无缝线路设计评估报告[R].北京:铁道科学研究院,2000.
    [37]铁道部建设管理司、铁道部科技教育司.秦沈客运专线跨区间无缝线路设计暂行规定[S].北京:中国铁道出版社,2001.
    [38]中华人民共和国铁道部.京沪高速铁路设计暂行规定(上、下)(铁建设[2004]157号)[S].北京:中国铁道出版社,2004.
    [39]中华人民共和国铁道部,TB 10082-2005.铁路轨道设计规范[S].北京:中国铁道出版社,2005.
    [40]中华人民共和国铁道部.《新建铁路桥上无缝线路设计暂行规定》(铁建设函[2003]205)[S].北京:中国铁道出版社,2003.
    [41]中铁第四勘察设计院集团有限公司等.《铁路无缝线路设计规范》(送审搞)[S].北京:铁道部经济规划研究院,2008.
    [42]中华人民共和国铁道部.TB 2034-88铁路轨道强度检算法[S].北京:中国铁道出版社,1988.
    [43]李保友.提速干线钢桁梁桥上无缝线路纵向附加力研究[D].长沙:中南大学,2006.
    [44]鲍列耶夫柯.铁路桥梁承受制动力的问题[M].桥梁丛译,1964(4).
    [45]Braking and acceleration force on bridges-Braking and starting tests on track. ORE D101/RP1/E,1969.
    [46]Braking and acceleration force on bridges-Development of measuring cell. ORE D101/RP2/E,1970.
    [47]Braking and acceleration force on bridges-Measurement and evaluation methods. ORE D 101/RP3/E,1970.
    [48]Braking and acceleration force on bridges-Tests on three steel bridges without ballast. ORE D 101/RP4/E,1971.
    [49]Braking and acceleration force on bridges-Tests on various bridges. ORE D 101/RP 5,8,11/E,1973,1976,1977.
    [50]Braking and acceleration force on bridges-Theoretical studies of braking and acceleration forces on bridges. ORE D 101/RP 6/E.1974.
    [51]Braking and acceleration force on bridges-Measurements with long train. ORE D 101/RP 7/E,1975.
    [52]Braking and acceleration force on bridges and interactions between track and structures-Enquiry into the laying of continuous welded rails on structures. ORE D 101/RP 10/E,1977.
    [53]Braking and acceleration force on bridges and interactions between track and structures-Measuring methods adopted in the study of thermal phenomena associated with interaction between CWR track and bridges. ORE D 101/RP 12/E,1978.
    [54]Braking and acceleration force on bridges and interactions between track and structures-Tests on various bridges. ORE D 101/RP 16~19,21-24/E, 1980-1983.
    [55]Braking and acceleration force on bridges and interactions between track and structures-Theoretical considerations and calculations.ORED101/RP 20/E, 1983.
    [56]Braking and acceleration force on bridges and interactions between track and structures-Thermal phenomena in the interaction between CWR and bridges in the case of a DB pre-stressed concrete bridge with ballasted track. ORE D 101/RP 25/E,1984.
    [57]B.Γ.安德列耶夫,Γ.K格雷比那.铁路桥梁承受制动力问题.桥梁译丛,1970(4).
    [58]Fryba L. Quasi-static distribution of braking and starting forces in rail and bridges [J]. Rail International.1974.22(11):698-716.
    [59]Fryba L. Braking test on straight track with a long train[J]. Rail International. 1977.25(4).
    [60]Fryba L. The rail interaction of long welded rails with rail bridges[J].Rail international,1985,16(3):58-71.
    [61]Fryba L. Thermal interaction of long welded rail and railway bridges[J].Rail international,1985,16(3):5-24.
    [62]伊藤裕等.日本东海道新干线轨道研究[M].北京:人民铁道出版社,1979.
    [63]ARYA A S, AGRAWAL S R. Dispersion of tractive and braking force in railway bridges-theoretical analysis [J]. RAIL International,1982,13(4):12-25.
    [64]Coenraad Esveld. Modern Railway Tracks[M]. Netherlands:Koninklijke van de Garde BV,1989.
    [65]UIC Code 774-3, Track/Bridge Interaction Recommendations for Calculation [S].International Union of Railways,2001.
    [66]Maragakis E. M., B. M. Douglas, S. Haque, et al. Full-scale resonance tests of a railway bridge[C]. Structures Congress-Proceedings Ⅰ, Building an international community of structural engineers,1996:183-190.
    [67]Duane E. Otter, Ali Tajaddini, Semih F Kalay, E. Maragakis. Seismic performance of railway bridges[J]. Railway Track & Structure,1996,92(5): 13-14.
    [68]IABSE Symposium 2003 Antwerp[C]. Antwerp:IABSE,2003.
    [69]D F. Track-structure interactions for the Taiwan High Speed Rail project[C]. IABSE Symposium 2003 Antwerp. Antwerp:IABSE,2003.
    [70]Moelter T M. Closed and open joints for bridges on high speed lines[C]. IABSE Symposium 2003 Antwerp. Antwerp:IABSE,2003.
    [71]Evangelista L, Petrangli M P, Traini G. The cable-stayed bridge over the Po river[C]. IABSE Symposium 2003 Antwerp. Antwerp:IABSE,2003.
    [72]Place D, Davis S, Barron M. Track-structure interaction on the Taiwan high speed rail viaducts[C]. IABSE Symposium 2003 Antwerp. Antwerp:IABSE, 2003.
    [73]P.Ruge, C.Birk. Longitudinal forces in continuously welded rails on bridge decks due to nonlinear track-bridge interaction [J]. Computers & Structures, 2007,85(11):458-475.
    [74]P.Ruge, D.R.Widarda, G. Schmalzlin, L. Bagayoko. Longitudinal track-bridge interaction due to sudden change of coupling interface [J]. Computers & Structures,2009,87(10):47-58.
    [75]P.Ruge, C.Trinks, M.Muncke, et al. Langskraftbeanspruchung von durchgehend geschweissten Schienen auf Brucken fur Lastkombinationen, Bautechnik 81, 537-548,2004.
    [76]N. Matsumoto, K. Asanuma. Some experiences on track-bridge interaction in Japan [M]//. Rui Calcada, Raimundo Delgado, Antonio Campos e Matos, et al. Track-Bridge Interaction on High-Speed Railways. London:2009:77-94.
    [77]R. Simoes, R. Calcada, R. Delgado. Track-bridge interaction in railway lines: Application to the study of the bridge over the River Moros [M]//. Rui Calcada, Raimundo Delgado, Antonio Campos e Matos, et al. Track-Bridge Interaction on High-Speed Railways. London:2009:201-210.
    [78]Rui Calcada, Raimundo Delgado, Antonio Campos e Matos, et al. Track-Bridge Interaction on High-Speed Railways [M]. London:Taylor & Francis Group, 2009.
    [79]P. Ramondenc, D. Martin, P.Schmitt. Track-bridge interaction-the SNCF experience [M]//. Rui Calcada, Raimundo Delgado, Antonio Campos e Matos, et al. Track-Bridge Interaction on High-Speed Railways. London:2009:63-75.
    [80]A. J. Reis, N. T. Lopes, D. Ribeiro. Track-structure interaction in long railway bridge [M]//. Rui Calcada, Raimundo Delgado, Antonio Campos e Matos, et al. Track-Bridge Interaction on High-Speed Railways. London:2009:185-200.
    [81]Roman Okelo, Afisu Olabimtan. Nonlinear Rail-Structure Interaction Analysis of an Elevated Skewed Steel Guideway [J]. Journal of Bridge Engineering,2011 (2):392-399.
    [82]H.Sedarat, A.Kozak, et al. Nonlinear dynamic analysis of a track bridge structure designed for a floating bridge[C]. Conference Proceedings of the Society for Experimental Mechanics Series 35, New York, USA,2013.
    [83]罗学海,朱蒇,谢逢萱.铁路实体桥墩动力分析的简化方法[J].地震工程与工程振动,1982(3):87-96.
    [84]王光前.桥上无缝线路的伸缩力及其变形随梁温变化时的重分布[J].铁道标准设计通讯,1984,04:8-15.
    [85]杨少宏.桥上无缝线路挠曲附加力的研究[D].兰州:兰州铁道学院,1990.
    [86]蔡成标.高墩桥上无缝线路挠曲附加力的整体分析方法[D].成都:西南交通大学,1989.
    [87]王天伟.高墩桥上无缝线路挠曲附加力的模型试验研究[D].成都:西南交 通大学,1989.
    [88]蒋金洲.大跨度连续钢桁梁桥焊接长钢轨伸缩力和挠曲力的计算[D].北京:铁道部科学研究院,1993.
    [89]庄军生.铁道部科学研究院铁道建筑研究所.高速铁路桥梁纵向力传递机理及传力构造研究[R].北京:铁道部科学研究院,1997.
    [90]卜一之.高速铁路桥梁纵向力传递机理研究[D].成都:西南交通大学,1998.
    [91]阴存欣.铁路桥梁纵向附加力的静动力非线性分析与仿真研究[D].北京:铁道部科学研究院,2000.
    [92]李宏年.列车制动力荷载及对桥梁作用机理的研究[D].北京:北方交通大学,2001.
    [93]杨梦蛟,邢建鑫.轨道结构与桥梁共同作用力学计算模型的研究[J].中国铁道科学,2001(3):60-65.
    [94]田振,吴迅.高架桥无缝线路纵向力分析模型[J].城市轨道交通研究,2002(1):28-31.
    [95]江海波,吴迅.城市轨道交通桥梁无缝线路纵向力的空间一体化模型分析[J].城市轨道交通研究,2003(1):33-37.
    [96]马坤全,陈文艳.轨道交通高架桥合理抗震设计参数及抗震措施研究[J].中国铁道科学,2001(4):66-71.
    [97]黄艳,阎贵平,刘林.轨道约束对铁路桥梁纵向地震反应特性的影响[J].铁道学报,2002(5):124-128.
    [98]黄艳.考虑轨道约束的铁路桥梁抗震研究[D].北京:北方交通大学,2003.
    [99]徐庆元.高速铁路无缝线路纵向附加力三维有限元静力与动力分析研究[D].长沙:中南大学,2005.
    [100]李保友.提速干线钢桁梁桥上无缝线路纵向附加力研究[D].长沙:中南大学,2006.
    [101]朱剑月.高速铁路有碴轨道结构动力特性分析研究[D].上海:同济大学,2006.
    [102]陈鹏,高亮,马鸣楠.空间钢桁梁桥上无缝线路梁轨相互作用耦合模型[J].钢结构,2007(9):28-30.
    [103]曾志平,陈秀方,金守华,周小林,张向民.跨兴闫公路特大桥无缝线路综合试验研究[J].铁道科学与工程学报,2007(2):34-38.
    [104]李秋义,孙立.桥墩温差荷载引起的桥上无缝线路钢轨附加力[J].中国铁 道科学,2007(4):50-54.
    [105]张迅,斯朗拥宗,李小珍.桥墩温差荷载对连续梁桥上无缝线路纵向附加力的影响[J].铁道建筑,2008(12):4-6.
    [106]闫子权.不同型式桥梁无缝线路纵向力研究[D].北京:北京交通大学,2009.
    [107]孔文斌.高速铁路长大桥梁无砟轨道无缝线路纵向力研究[D].上海:华东交通大学,2010.
    [108]赵卫华.斜拉桥上无缝线路设计计算方法研究[D].成都:西南交通大学,2010.
    [109]宋杨,张瑶,陈小平,王平CRTSI型板式轨道在地震荷载作用下的动力响应[J].铁道建筑,2010(10):97-99.
    [110]刘艳,罗雁云.无缝线路纵向温度力作用下的动力特性分析[J].城市轨道交通研究,2011,14(5):21-25.
    [111]曹龙.安庆长江大桥桥上无缝线路设计方案研究.铁路工程造价[J].2011(5):38-42.
    [112]徐井芒,刘丹,王平.大跨度尼尔森体系钢箱提篮拱桥桥上无缝线路计算分析[J].铁道建筑,2011(11):122-124.
    [113]徐金辉,王平.大跨度中承式拱桥桥上无缝线路计算分析[J].铁道建筑,2011(10):92-94.
    [114]朱彬.大跨度钢箱混合梁斜拉桥无缝线路设计研究[J].铁道标准设计,2012(2):4-6
    [115]张永亮,陈兴冲,李子奇.轨道约束系统对高速铁路多跨简支梁桥地震反应的影响[J].世界地震工程,2010(4):6-12.
    [116]谢旭,王炎,陈列.轨道约束对铁路减隔震桥梁地震响应的影响[J].铁道学报,2012(6):75-82.
    [117]吴亮秦,吴定俊,李奇.城市轨道交通桥梁列车制动力试验研究[J].铁道学报,2012(3):88-93.
    [118]张华平.高铁中小跨度连续梁桥梁轨相互作用研究[D].长沙:中南大学,2010.
    [119]刘从新.考虑收缩徐变影响的斜拉桥梁轨相互作用研究[D].长沙:中南大学,2012.
    [120]刘舟.收缩徐变和日照温差对高铁连续梁桥梁轨纵向力影响研究[D].长沙:中南大学,2012.
    [121]田卿.基于梁轨共同作用的高速铁路桥梁地震动力响应研究[D].长沙:中南大学,2012.
    [122]YAN Bin, DAI Gong-lian, ZHANG Hua-ping. Beam-track interaction of high-speed railway bridge with ballast track [J]. Journal of Central South University,2012.19(5):1447-1453.
    [123]DAI Gong-lian, YAN Bin. Longitudinal forces of continuously welded track on high-speed railway cable-stayed bridge considering impact of adjacent bridges [J]. Journal of Central South University,2012(8):2348-2353.
    [124]薛嵩.槽型断面斜拉桥日照温差模式及效应研究[D].长沙:中南大学,2013.
    [125]LIU Wen-shuo, DAI Gong-lian. Additional Longitudinal Expansion Force between Continuous Welded Rails and Extra-long Continuous Bridges of High-speed Railway[C]. Applied Mechanics and Materials,2012:2304-2307.
    [126]LIU Wen-shuo, DAI Gong-lian. Applicability research of small resistance fastener on long-span Continuous bridges of high-speed railway [J]. Journal of Central South University,2013,20(5):1426-1433.
    [127]刘文硕,戴公连.大跨径无砟连续梁上小阻力扣件的适应性研究[J].华中科技大学学报(自然科学版),2013(7):36-41.
    [128]LIU Wen-shuo, DAI Gong-lian, HE Xu-hui. Sensitive Factors Research for Track-bridge Interaction of a Long-span X-style Steel-box Arch Bridge on High-speed Railway [J]. Journal of Central South University,2013, 20(13):3314-3323.
    [129]刘峰.无缝线路稳定性有限元分析[D].北京:北京交通大学,2010.
    [130]Nam-Hyoung Lim, Nam-Hoi Park, Young-Jong Kang. Stability of continuous welded rail track [J]. Computers and Structures,2003(81):2219-2236.
    [131]陈秀方,娄平等.无缝线路原始弯曲极限的概率分析[J].中国铁道科学,1999,20(1):19-24.
    [132]周毅.无缝线路温度撇曲失稳过程的有限元分析[J].中国铁道科学,1988(2):12-20.
    [133]雷晓燕.铁路轨进结构数值分析方法[M].北京:中国铁道出版社,1998.
    [134]雷晓燕.轨道力学与工程新方法[M].北京:中国铁道出版社,2002.
    [135]冯青松.无缝线路稳定性有限元分析[D].南昌:华东交通大学,2004.
    [136]罗信伟,雷晓燕,冯青松.小半径曲线无缝线路稳定性有限元分析[J].铁道工程学报,2006(3):8-12.
    [137]李秋义.高速铁路无缝线路动力稳定性概率分析理论研究[D].长沙:中南大学,2003.
    [138]高亮,范俊杰,刘秀波.散体道床流变力学特性的研究[J].铁道学报,2001(1):85-89.
    [139]张向民,陈秀方.内外力矩平衡法计算无缝线路轨道稳定性[J].铁道科学与工程学报,2007(1):49-52.
    [140]张向民,陈秀方,杨小礼.荷载变形关系求解无缝线路轨道稳定性[J].工程力学,2007(6):189-192+116.
    [141]张向民,陈秀方.考虑剪切变形的无缝线路轨道稳定性分析[J].铁道科学与工程学报,2006(6):66-68.
    [142]张向民,陈秀方.无缝线路轨道稳定性简便计算方法[J].铁道学报,2007(1):124-126.
    [143]罗雁云,李振廷.轨道参数变化对无缝线路稳定性影响[J].中国铁道科学,2008,29(2):33-37.
    [144]杨冠岭.高墩大跨桥上有砟轨道无缝线路稳定性研究[D].成都:西南交通大学,2012.
    [145]Long welded rails[M]. Pune:Indian Railway Institute of Civil Engineering.
    [146]徐庆元,徐秀芳.小阻力扣件桥上无缝线路附加力[J].交通运输工程学报,2003,3(1):25-29.
    [147]曾真,付廷龙,马红超等.小阻力扣件有荷阻力取值分析[J].路基工程,2011(1):19-24.
    [148]杨艳丽WJ7. WJ8型扣件纵向阻力现场试验与研究[J].铁道标准设计,2010(2):51-52.
    [149]陈秀方,朱文珍,刘新建,唐乐.广义变分原理在桥上无缝线路伸缩附加力计算中的应用[J].铁道科学与工程学报,2005(2):13-17.
    [150]陈秀方,李秋义,向延念,娄平.高速铁路无缝道岔结构体系分析广义变分原理[J].中国铁道科学,2002(1):60-64.
    [151]商跃进.有限元原理与ANSYS应用指南[M].北京:清华大学出版社,2005.
    [152]曾攀.有限元分析基础教程[M].北京:清华大学出版社,2009.
    [153]王其昌,翟婉明,蔡成标,吴细水.UIC60与CHN60钢轨性能比较[J].铁道标准设计,1999(3):22-25.
    [154]中华人民共和国铁道部.高速铁路设计规范(试行)(TB 10621-2009)[S].北 京:中国铁道出版社,2010.
    [155]Idriss, I.M., Sun, J.I. SHAKE91:A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits, User's Guide [R]. California: University of California, Davis,1992.
    [156]Lysmer J., Richart R. E. Dynamic response of footings to vertical loading[J]. Journal of the Soil Mechanics and Foundations Division,1966,92(1):65-91.
    [157]陈令坤.地震作用下高速铁路列车-无砟轨道-桥梁系统动力响应及走行安全研究[D].长沙:中南大学,2012.
    [158]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [159]章惠冬.ANSYS单元生死技术软件在结构设计及施工中的应用[J].建筑施工,2008(9):824-825.
    [160]翁运新.基于ANSYS二次开发的PC箱梁徐变效应分析[D].长沙:中南大学,2011.
    [161]东平水道大桥施工图设计图纸[R].武汉:中铁第四勘察设计院集团有限公司,2007.
    [162]盛其平.列车制动力和加速力与梁轨间的相互作用[J].铁道标准设计,2006(10):26-30.
    [163]王锐锋,李宏年.铁路桥梁列车制动力荷载研究[J].北方交通大学学报,2003(1):63-67.
    [164]李东异,李学斌,刘文荐,牛斌.国内外关于铁路桥梁列车制动力率取值的差异分析[A].中国土木工程学会桥梁及结构工程分会.第二十届全国桥梁学术会议论文集(上册)[C].中国土木工程学会桥梁及结构工程分会,2012:5.
    [165]Fryba. Thermal interaction of long welded rails with railway bridges[J]. Rail international,1985(3):682-691.
    [166]中铁大桥局集团有限公司.新广州站相关工程东平水道桥址概况[R].武汉:中铁大桥局集团有限公司,2009.
    [167]刘文硕,戴公连,胡楠.高速铁路中小跨径连续梁的设计[J].铁道科学与工程学报,2010,7(2):45-51.
    [168]戴公连,刘文硕,李玲英.关于高速铁路中小跨度桥梁设计活载模式的探讨[J].土木工程学报,2012,45(10):50-58.
    [169]辛学忠,张玉玲,戴福忠,潘际炎.铁路列车活载图式[J].中国铁道科学,2006(2):31-36.
    [170]黄时寿,叶国荣.重载列车制动对轨道纵向力影响的研究[J].西南交通大 学学报,1992(3):1-8.
    [171]戴福忠,陈雅兰.重载铁路桥梁设计列车标准活载的研究[J].中国铁道科学,2004(4):81-86.
    [172]中铁第三勘察设计院集团有限公司,中国铁道科学研究院.重载铁路设计规范试用版[S]北京:中华人民共和国铁道部,2010.
    [173]TB10621-2009高速铁路设计规范(试行)条文说明[S].北京:中国铁道出版社,2010.
    [174]中华人民共和国铁道部.《铁路桥涵设计基本规范》(TB1002.1-2005)[S].北京:中国铁道出版社,2005.
    [175]高佳,李羽逍.武广高速铁路新旧运行图交替方案编制方法探讨[J].铁道运输与经济,2012(5):27-30.
    [176]李华云.浅谈无缝线路轨道的桥梁孔跨布置[J].桥梁建设,2006(2):65-68+71.
    [177]胡汉舟,文武松,秦顺全,宋伟俊.高速铁路南京大胜关长江大桥技术总结[M].北京:中国铁道出版社,2011.
    [178]胡汉舟,刘自明,秦顺全,潘东发.武汉天兴洲公铁两用长江大桥斜拉桥技术总结[M].北京:中国铁道出版社,2009.
    [179]朱应娟.长连续梁桥无缝线路设计研究——以合武铁路为例[J].科技创业月刊,2009(8):147-148.
    [180]张志才,邓文洪,李晓波.140m钢箱系杆拱拼装及无砟轨道施工技术[J].铁道建筑,2010(1):78-81.
    [181]蒋金洲,卢耀荣.我国客运专线桥上无缝线路采用小阻力扣件的建议[J].铁道建筑,2007(11):90-93.
    [182]陈鹏,高亮,马鸣楠.空间钢析梁桥上无缝线路梁轨相互作用耦合模型[J].钢结构,2007(9):28-30
    [1 83]梅大鹏.南京大胜关长江大桥道碴整体桥面结构方案比选[D].长沙:中南大学,2008.
    [184]侯文崎,叶梅新.南京大胜关长江大桥三主桁钢正交异性板整体桥面结构受力特性的试验研究[J].铁道科学与工程学报,2008(3):11-17.
    [185]陈永祁,耿瑞琦,马良喆.桥梁用液体黏滞阻尼器的减振设计和类型选择[J].土木工程学报,2007(7):55-61.
    [186]陈永祁.桥梁工程液体粘滞阻尼器设计与施工[M].北京:铁道出版社,2012.
    [187]瞿伟廉,秦顺全,涂建维,刘嘉,周强.武汉天兴洲公铁两用斜拉桥主梁和 桥塔纵向列车制动响应智能控制的理论与关键技术[J].土木工程学报,2010(8):63-72.
    [188]李海峰.天兴洲大桥列车制动及地震反应的被动控制[D].武汉:武汉理工大学,2007.
    [189]张永亮,陈兴冲,颜志华.Lock-up装置在连续梁桥上的减震性能研究[J].世界地震工程,2010(2):48-52
    [190]谢红兵.冲击传递装置(STU)设计及其在孟加拉国帕克西桥中的应用(英文)[J].华中科技大学学报(城市科学版),2004(1):91-96.
    [191]Ralph (Wei) Zhang, Helen Wu. Understanding of stability of turnouts in continuous welded rail track. Proceedings of the 2013 Joint Rail Conference, April 15-18,2013, Knoxville, Tennessee, USA.
    [192]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2010:1-42
    [193]余娟.基于ANSYS的无缝线路稳定性的分析[D].武汉:湖北工业大学,2011.
    [194]练松良.轨道工程[M].上海:同济大学出版社,2006.
    [195]铁木辛柯.弹性稳定理论[M].北京:中国铁道出版社,2010.
    [196]中华人民共和国铁道部,TB 10082-2005.铁路轨道设计规范[S].北京:中国铁道出版社,2005.
    [197]魏贤奎,王平,徐浩,陈嵘,肖杰灵.铁路上承式拱桥上无缝线路断缝影响因素[J].中南大学学报(自然科学版),2013(7):3053-3060.
    [198]郑鹏飞,闫斌,戴公连.高速铁路斜拉桥上无缝线路断缝值研究[J].华中科技大学学报(自然科学版),2012(9):85-88.
    [199]王健峰,宋建伟.滑动支座对桥墩纵向受力的影响[J].中外公路,2011(3):174-176.
    [200]刘波.大跨度结构滑动支座的力学性能分析[D].合肥:合肥工业大学,2010.
    [201]范立础主编.桥梁抗震[M].上海:同济大学出版社,1996.
    [202]叶爱君主编.桥梁抗震[M].北京:人民交通出版社,2002.
    [203]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [204]戴公连,李德建,桥梁结构空间分析设计方法与应用[M].北京:人民交通出版社,2001.
    [205]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [206]Clough R.W., Penzien J. Dynamics of Structures[M]. McGraw-Hill, Inc., New York,1993.
    [207]全伟.大跨桥梁多维多点地震反应分析研究[D].大连:大连理工大学,2008.
    [208]Harichandran R. S., Vanmarcke E. H. Stochastic variation of earthquake ground motion in space and time. Journal of Engineering Mechanics,1986, 112(2):154-175.
    [209]Loh C. H., Yeh Y. T. Spatial variation and stochastic modeling of seismic differential ground movement. Earthquake Engineering and Structural Dynamics,1988,16(5):583-596.
    [210]王君杰.多点多维地震动随机模型及结构的反应谱分析[D].哈尔滨:国家地震局工程力学研究所,1992.
    [211]Oliveira C. S., Hao H., Penzien J. Ground motion modeling for multiple-input structural analysis. Structural Safety,1991(10):79-93.
    [212]凌亮,肖新标,吴磊,金学松.地震激励下高速列车动态响应与运行安全边界研究[J].铁道学报,2012(10):16-22.
    [213]刘学毅.轨道刚度的影响分析及动力学优化[J].西南交通大学学报,2004(1):1-5.
    [214]王平,刘学毅.无缝道岔受力与变形的影响因素分析[J].中国铁道科学,2003(2):61-69.
    [215]赵卫华,王平,曹洋.大跨度钢桁斜拉桥上无缝线路制动力的计算[J].西南交通大学学报,2012(3):361-366.
    [216]宋子威,蔡小培.粘滞性阻尼器在高速铁路长联大跨连续梁中的应用[J].清华大学学报(自然科学版),2012(8):1102-1105.
    [217]方志,王飞,张志田,王成启,丁望星.粘滞阻尼器参数对大跨度桥梁抗震性能影响研究[J].公路交通科技,2009(2):73-78.
    [219]J. T. P. Yao. Concept of Structure Control[J]. Journal of Structural Division.1972, Vol.98(7).
    [220]叶爱君,范立础.附加阻尼器对大跨度斜拉桥的减震效果[J].同济大学学报(自然科学版),2006,34(7):859-863.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700