用户名: 密码: 验证码:
梓葛冻干粉针对大鼠脑微循环障碍的改善作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     “梓葛冻干粉针”为本实验室自主创制的抗脑缺血卒中的中药单体复方新药,由梓醇和葛根素组成,已经申请技术发明专利。课题组前期已经进行了该制剂对大鼠永久性脑缺血后神经功能恢复,对脑梗死面积、脑血管新生和改善气虚血瘀证等方面的研究。但该制剂对脑部微循环是否有影响,尚不确定,有待研究。目的
     在整体动物与离体细胞实验中,观察梓葛冻干粉针对脑缺血再灌注损伤的保护作用效果,并从调节微血管的舒缩功能、通透性和血液流变性的角度,探讨其对脑微循环保护作用的机制。
     方法
     1.梓葛冻干粉针对大鼠局灶性脑缺血/再灌注损伤脑微循环障碍的改善作用
     取雄性SD大鼠80只,采用随机数字法分为假手术组(10只)、缺血1h再灌注组(20只,造模成功16只)、缺血2h再灌注组(20只,造模成功14只)、缺血4h再灌注组(20只,造模成功8只)和尼莫地平组(缺血2h后再灌注,2.00mg·kg-1,10只,造模成功8只),大鼠再灌注时即刻给药(再灌注0h),尾静脉注射给药,每天1次(10mL·kg-1,体质量),连续给药14d,假手术组和模型组给同等体积的生理盐水。采用大鼠大脑左侧中动脉线栓法(MCAO)复制脑缺血/再灌注(I/R)模型,进行神经行为学评定,分别在缺血1h、2h和4h后再灌注,并于造模后1d、4d、7d、14d对大鼠进行改良神经功能缺损评分(mNSS)。
     取雄性SD大鼠540只,线栓法复制I/R模型,随机分为假手术组(60只)、模型组(80只,造模成功61只)、葛根素注射液组(30.00mg·kg-1,80只,造模成功68只)、尼莫地平组(2.00mg·kg-1,80只,造模成功69只)、梓葛冻干粉针16.40mg·kg-1(80只,造模成功65只)、32.70mg·kg-1(80只,造模成功68只)和65.40mg·kg-1组(80只,造模成功70只),大鼠再灌注时即刻给药(再灌注0h),尾静脉注射给药,每天1次(10mL·kg-1,体质量),考察时间点分为缺血2h再灌注1d、4d、7d和14d,假手术组和模型组给同等体积的生理盐水。大鼠进行神经功能缺损评分,应用激光多普勒血流量仪测定软脑膜血流量的变化;HE染色光镜下观察大鼠皮层区病理形态学变化和损伤状况;TTC染色测定梗死体积;干湿法测定脑组织含水量;伊文氏蓝(EB)含量测血管的通透性;免疫组化染色法检测CD31表达。
     取雄性SD大鼠960只,随机分为假手术组(96只)、模型组(144只,造模成功109只)、葛根素注射液组(30.00mg·kg-1,144只,造模成功120只)、尼莫地平组(2.00mg·kg-1,144只,造模成功123只)、梓葛冻干粉针16.40mg·kg-1(144只,造模成功117只)、32.70mg·kg-1(144只,造模成功122只)和65.40mg·kg-1(144只,造模成功126只)组,大鼠再灌注时即刻给药(再灌注0h),尾静脉注射给药,每天1次(10mL·kg-1,体质量),考察时间点分为缺血2h再灌注1d、4d、7d和14d,假手术组和模型组给同等体积的生理盐水。酶免疫试剂盒检测患侧脑皮层微血管中一氧化氮合成酶(NOS)、内皮素(ET-1)、6-酮-前列腺素F1α(6-Ke-to-PGF1α)和血栓素B2(TXB2)的含量;应用荧光定量PCR(qPCR)和免疫印迹(Western blot)检测脑皮层微血管的MMP-9、ZO-1、Occludin及Claudin-5mRNA和蛋白的表达变化。2.梓葛冻干粉针对高分子葡聚糖大鼠脑微循环障碍的改善作用
     取雄性SD大鼠120只,随机分为正常对照组、模型组、尼莫地平(2.00mg-kg-1)、梓葛冻干粉针16.40ng·kg-1、32.70mg·kg-1和65.40mg·kg1组,每组20只,尾静脉注射给药,每天1次(10mL·kg-1,体质量),连续给药14d后开颅窗,并于末次给药30min后,大鼠(除正常对照组)再经股静脉给予10%高分子葡聚糖T-500(10nL·kg-1)复制大鼠急性脑微循环障碍模型,生物显微镜下观察大鼠造模前5min和造模后1、5、10、20、40、60min时间点软脑膜微动静脉直径,激光多普勒血流仪监测血流量,电阻法测红细胞压积,全自动血液流变仪测流变学指标。
     3.梓葛冻干粉针对体外缺氧/复氧损伤大鼠脑微血管内皮细胞mmp-9蛋白表达的影响
     采用氧糖剥夺的方法,建立体外培养大鼠脑微血管内皮细胞的缺氧复氧模型(模拟体内脑缺血再灌注损伤模型)。MTT法检测内皮细胞的增殖。内皮细胞缺糖缺氧2h再复氧24h损伤后,Western blot检测mmp-9蛋白表达。结果
     1.梓葛冻干粉针对大鼠局灶性脑缺血/再灌注的脑微循环障碍的改善作用
     (1)大鼠局灶性脑缺血/再灌注模型复制及神经行为学评定
     脑缺血/再灌注损伤后大鼠神经功能缺损明显,其中损伤后1dmNSS评分1h、2h、4h组分别为5.68±0.75、9.23±1.05、11.53±1.88;14d梗死面积比率分别为0.1026±0.0214、0.2245±0.0228、0.3828±0.0318。缺血1h组主要的梗死部位为皮质,2h、4h组主要梗死部位为皮质及基底节区。确定缺血2h为最佳的造模时间进行后续实验。
     (2)梓葛冻干粉针对脑缺血/再灌注大鼠脑微循环血流量、梗死体积及脑水肿的影响
     梓葛冻干粉针(16.40mg·kg-1、32.70mg·kg-1和65.40mg·kg-1)可在再灌注时使脑血流缓慢恢复。TTC染色结果显示,假手术组脑组织均呈深红色未见梗死灶;模型组可见大面积的梗死灶,多位于左侧皮质和基底节区;再灌注14d,与模型组相比,梓葛冻干粉针65.40mg·kg-1组梗死体积显著减少(P<0.05),提示梓葛冻干粉针可减轻大鼠脑缺血/再灌注的损伤。
     与假手术组相比,模型组大鼠脑组织含水量和EB含量显著升高(P<0.01),显示造模成功。再灌注7d和14d,与模型组相比,梓葛冻干粉针(16.40mg·kg-1、32.70mg·kg-1和65.40mg·kg1)可明显抑制大鼠的病变侧脑组织含水量和EB含量升高(P<0.05,P<0.01),提示其可改善脑缺血/再灌注损伤大鼠的血管通透性。
     HE染色观察,脑缺血再灌注后大鼠大脑缺血侧细胞层次紊乱,细胞坏死,胞核萎缩成不规则状,水肿,疏松,炎性细胞浸润。而梓葛冻干粉针(16.40mg·kg-1、32.70mg·kg-1和65.40mg·kg1)组在相应考察时间点可减少炎性细胞浸润,减小细胞周围间隙和水肿。
     (3)梓葛冻干粉针对局灶性脑缺血/再灌注大鼠脑微血管密度的影响
     免疫组化结果显示,假手术组CD31阳性细胞表达很少。与假手术组相比,模型组再灌注后1d缺血侧大鼠皮层区有少量CD31阳性细胞表达,到4d、7d有较高表达,7d以后阳性细胞表达增多缓慢或基本不增长(P<0.01)。与模型组阳性细胞表达相比,葛根素注射液组(30.00mg·kg-1)、尼莫地平组(2.00ng·kg-1)、梓葛冻干粉针16.40ng·kg-1、32.70mg·kg-1和65.40mg-kg-1组的梗死灶周边区阳性细胞表达,除再灌注后1d的无显著差异外,其余各个时间点的阳性细胞表达均显著增多(P<0.01),提示其可能促进了脑缺血/再灌注损伤大鼠血管新生。
     (4)梓葛冻干粉针对脑缺血/再灌注大鼠的脑微循环中微血管舒缩功能的影响
     与假手术组相比,模型组的大鼠缺血侧脑皮质层微血管中总NOS (TNOS)和诱生型NOS (iNOS)活力均显著升高(P<0.01),而原生型NOS (cNOS)活力显著降低(P<0.01),显示造模成功。与模型组相比,再灌注1d,葛根素注射液组(30.00mg·kg1)、尼莫地平组(2.00mg·kg-1)、梓葛冻干粉针16.40mg·kg-1、32.70mg·kg-1和65.40mg·kg-1组均显著降低TNOS和iNOS活力(P<0.05,P<0.01);再灌注4d、7d和14d,各给药组均能显著降低TNOS、iNOS活力(P<0.01),且也能显著升高cNOS活力(P<0.01),提示梓葛冻干粉针有改善脑缺血/再灌注损伤大鼠微血管舒缩功能的效果。
     与假手术组相比,模型组的大鼠缺血侧脑皮质层微血管中ET-1含量均升高(P<0.01),且随着观察时间延长而逐渐增多,显示造模成功。再灌注1d,与模型组相比,梓葛冻干粉针32.70mg-kg-1组能显著降低大鼠缺血侧脑皮质层ET-1含量(P<0.05);再灌注4、7和14d时,与模型组相比,梓葛冻干粉针各剂量组均能极显著降低大鼠缺血侧脑皮质层微血管中ET-1含量(P<0.01),提示其有减轻血管收缩和血管内皮细胞损伤的作用。
     再灌注1、4、7和14d时,与假手术组相比,模型组的大鼠缺血侧脑皮质层微血管中TXB2含量升高和6-Ke-to-PGF1α含量降低(P<0.01),显示造模成功。而与模型组相比,梓葛冻干粉针16.40mg·kg-1、32.70ng·kg-1和65.40mg·kg-1组能显著抑制大鼠缺血侧脑皮质层TXB2含量升高和6-Ke-to-PGF1α含量降低(P<0.05,P<0.01),且能降低TXB2/6-Ke-to-PGF1比值(P<0.01),提示其有改善脑缺血/再灌注损伤大鼠微血管舒缩功能的效果。
     (5)梓葛冻干粉针对脑缺血/再灌注大鼠的脑微循环中微血管通透性的影响
     荧光定量PCR结果显示,假手术组皮层脑组织中有少量MMP-9mRNA表达,脑缺血再灌注后,各时间点(1、4、7和14d),与假手术组相比,模型组的大鼠缺血侧脑皮质层微血管中MMP-9mRNA表达均显著升高(P<0.01),显示造模成功。与模型组相比,梓葛冻干粉针16.40mg·kg-1、32.70mg、kg-1和65.40mg·kg-1组均能显著降低大鼠缺血侧脑皮质层微血管中MMP-9mRNA表达水平(P<0.05,P<0.01);与假手术组相比,模型组的大鼠缺血侧脑皮质层微血管中Claudin-5mRNA、Occludin mRNA、ZO-1mRNA表达均显著降低,而与模型组相比,梓葛冻干粉针各剂量组在相应时间点能显著增加大鼠缺血侧脑皮质层微血管中Claudin-5mRNA、Occludin mRNA、ZO-1mRNA表达(P<0.05,P<0.01)。
     Western blot检测蛋白结果与其基因水平结果基本一致。在再灌注1、4、7和14d,与假手术组相比,模型组的大鼠缺血侧脑皮质层微血管中MMP-9蛋白表达均显著升高(P<0.01),显示造模成功。与模型组相比,各给药组均能显著降低大鼠缺血侧脑皮质层微血管中MMP-9蛋白表达(P<0.01);与假手术组相比,模型组的大鼠缺血侧脑皮质层微血管中Claudin-5、Occludin、ZO-1蛋白水平均显著降低,而与模型组相比,梓葛冻干粉针各剂量组在相应时间点能显著升高大鼠缺血侧脑皮质层微血管中Claudin-5、Occludin、ZO-1蛋白表达水平(P<0.05,P<0.01),提示其有改善脑缺血/再灌注损伤大鼠微血管通透性的效果。2.梓葛冻干粉针对高分子葡聚糖大鼠急性脑微循环障碍的改善作用
     与正常组相比,在考察相对应的时间点,模型组的大鼠软脑膜微动脉,微静脉内径显著缩小,且血流量呈显著下降(P<0.01),显示造模成功;与模型组相比,梓葛冻干粉针16.40mg·kg-1,32.70mg·kg-1和65.40mg-kg-1组中大鼠软脑膜的微动脉、微静脉内径恢复显著(P<0.01),且能使血流量在10min以后基本恢复至造模前的血流量。与正常组相比,模型组的全血粘度、血浆粘度、红细胞压积和红细胞聚集指数均显著升高,显示造模成功;与模型组相比,梓葛冻干粉针65.40mg·kg-1组能显著降低血液流变学的各项指标(P<0.01);梓葛冻干粉针16.40mg·kg-1口32.70mg·kg-1组能显著降低除红细胞压积以外的其它项血液流变学的指标(P<0.05,P<0.01),提示梓葛冻干粉针具有对大鼠急性脑微循环障碍的改善作用。
     3.梓葛冻干粉针对体外缺氧/复氧损伤大鼠脑微血管内皮细胞mmp-9蛋白表达的影响
     MTT法结果显示,梓葛冻干粉针作用于脑微血管内皮细胞的ICso值为860μg·mL-1。缺氧/复氧损伤下,与正常对照组相比,复氧24h后,模型组的BMECs细胞中MMP-9蛋白表达显著升高(P<0.01),显示造模成功。与模型组相比,梓葛冻干粉针24.50μg·ML-1、49.00μg·mL1和98.00μg·mL-1可抑制BMECs缺氧/复氧损伤下MMP-9蛋白升高,提示其对血管内皮细胞完整性具有保护作用。结论
     1.采用Longa线栓法制备脑缺血模型最佳的缺血/再灌注时间为缺血2h,模型稳定,可控性和可重复性好。梓葛冻干粉针对脑缺血/再灌注损伤大鼠,能使脑血流在再灌注时缓慢恢复,减小脑梗死体积,减小脑组织含水量和EB含量,可以减轻脑水肿和血脑屏障的破坏程度;梓葛冻干粉针能促进缺血侧大鼠皮层区CD31的表达,表明可促进脑缺血/再灌注损伤大鼠的血管新生;梓葛冻干粉针改善脑微循环可能与调节微血管舒缩功能,抑制iNOS的活化,减少TNOS和ET-1的生成,抑制大鼠缺血侧脑皮质层TXB2和6-Ke-to-PGF1。表达有关;同时,梓葛冻干粉针可抑制MMP-9mRNA及蛋白表达和促进Claudin-5、Occludin、ZO-1mRNA及蛋白表达,保护微血管完整性,降低微血管通透性,改善脑微循环。
     2.梓葛冻干粉针对急性脑微循环障碍大鼠,可扩张脑微动静脉管径,逆转脑血流量下降的趋势和血液粘稠,提示梓葛冻干粉针具有对急性脑微循环障碍的改善作用。
     3.梓葛冻干粉针能抑制BMECs缺氧/复氧损伤下MMP-9蛋白表达,提示其对血管内皮细胞完整性的保护作用机制可能与降低MMP-9蛋白表达有关。
Background
     Our research team researched a pharmaceutical preparation with the anti-ischemic effect of Zige lyophilized powder that contained catalpol and puerarin and had a patent. Zige lyophilized powder for injection had the effects of the neural functional recovery in permanent cerebral ischemia of rats, reducing cerebral infarction area, angiogenesis, improving blood stasis and blood brain barrier (BBB) permeability, and so on. But we had not research the effects of Zige lyophilized powder for injection in the celebral microcirculation.
     Objective
     It aims to research possible mechanism of Zige lyophilized powder for injection against cerebral ischemia-reperfusion injury in the celebral microcirculation through the pathological causes of contraction, permeability and blood rheology of microvessel in experiments of animal and cell.
     Methods
     1. The improving effects of Zige lyophilized powder for injection against focal cerebral ischemia-reperfusion injury in the disturbance of microcirculation
     80male sprague-dawley rats were randomly divided into sham group (10), ischemia1h group (16/20), ischemia2h group (16/20), ischemia4h group (16/20), nimodipine injection (ischemia1h and reperfusion,2.00mg·kg-1,8/10), and were administered intraperitoneally at a dose of10mL·kg-1·d-1on the basis of body weight for14days with drugs in reperfusion for0h, sham group and model group were administered intraperitoneally with an equal volume of saline solution. It made a cerebral ischemia-reperfusion (I/R) model using the line in the left middle cerebral artery occlusion (MCAO) of rats and test neuro-behavioral evaluation by a method of modified neurological severity scores (mNSS) in ischemia for1h,2h,4h and reperfusion for1d,4d,7d and14d.
     540male sprague-dawley rats were randomly divided into sham group (60), model group (61/80), puerarin injection group(30.00mg·kg-1,68/80), nimodipine injection (2.00mg·kg-1,69/80), Zige lyophilized powder groups(16.40mg·kg-1,65/80;32.70mg·kg-1,68/80;65.40mg·kg-1,70/80) in ischemia for2h and reperfusion for1d,4d,7d and14d, and were administered intraperitoneally at a dose of10mL·kg-1·d-1on the basis of body weight for14days with drugs in reperfusion for0h, sham group and model group were administered intraperitoneally with an equal volume of saline solution. Blood flow volume of pia mater in rats was observed by laser doppler flowmetry. Pathomorphism changes and damaged conditions in rat cortex were observed by HE staining. The volume of the cerebral infarction was estimated by2%TTC staining. The water content was calculated by dry and wet weight method. The disruption of micro vessel permeability was detected by the EB content. The expression of CD31was detected by immunohistochemical staining method.
     960male sprague-dawley rats were randomly divided into sham group (96), model group (109/144), puerarin injection group(30.00mg·kg-1,120/144), nimodipine injection (2.00mg·kg-1,123/144), Zige lyophilized powder groups(16.40mg·kg-1,117/144;32.70mg·kg-1,122/144;65.40mg·kg-1,126/144) in ischemia for2h and reperfusion for1d,4d,7d and14d, and were administered intraperitoneally at a dose of10mL·kg-1·d-1on the basis of body weight for14days with drugs in reperfusion for0h, sham group and model group were administered intraperitoneally with an equal volume of saline solution.Nitric oxide synthase (NOS), endothelin-1(ET-1),6-ketone-prostaglandin F1α (6-Ke-to-PG-F1α) and thromboxane B2(TXB2) content of the brain microvessel in the lateral ischemic cerebral cortex was detected by enzyme immunoassay kits. The expression of MMP-9、ZO-1、Occludin and Claudin-5protein and mRNA of the brain microvessel in the lateral ischemic cerebral cortex was detected by fluorescence quantitative PCR (qPCR) and Western blot (WB).
     2. The protective effect of Zige lyophilized powder for injection against the acute disturbance of cerebral microcirculation in rats by intravenous injection of high molecule dextran
     120male rats were divided into normal control group, model group, nimodipine injection (2.00mg·kg-1), Zige lyophilized powder groups(16.40mg·kg-1,32.70mg·kg-1and65.40mg·kg-1) with20for each goup, and made window craniotomy after the administration of drugs for14days (tail vein injection,1time per day), the model of rats with the disturbance of cerebral microcirculation was estabished by intravenous injection of high molecule dextran (10%T-500,10mL·kg-1) after the last administrat-ion of drug for30min. The effects of micro-vein diameter for5min in normal rats and1,5,10,20,40,60min in making model of rats were observed through the inverted microscope. Blood flow volume on brain meninx was observed through laser doppler flowmetry. HCT was measured by electric resistance method, hemorheological indexes were observed by auto-hemorheological instrument.
     3. The protein expression levels of mmp-9to Zige lyophilized powder for injection on brain microvascular endothelial cells after hypoxia-reoxygenation injury were detected in vitro
     It made a hypoxia-reoxygenation injury model on cultured BMECs of rat (simulated cerebral ischemia-reperfusion injury model) in vitro by oxygen-glucose deprivation. The proliferation of endothelial cells was detected by MTT method. Endothelial cells were cultured by oxygen-glucose deprivation for2h and reoxygenation for24h, it determined to detect the protein expression levels of mmp-9by WB method.
     Results
     1. The improving effects of Zige lyophilized powder for injection against focal cerebral ischemia-reperfusion injury in the celebral microcirculation
     (1) The focal cerebral ischemia-reperfusion model of rats and neuro-behavioral test after I/R rats have significantly neurological deficit,1d after I/R, the mNSS score of1h,2h and4h groups were5.68±0.75,9.23±1.05,11.53±1.881, respectively. Percentages of the infarction area of three groups in14d were0.1026±0.0214,0.2245±0.0228,0.3828±0.0318, respectively. The main infarction area of1h group was cortex, and the main infarction area of2h and4h groups was cortex and basal ganglia. The best time of making the ischemia-reperfusion model is2h to ischemia for subsequent experiments.
     (2) The effect of Zige lyophilized powder for injection against the model rats of blood flow volume, infarction volume and brain edema in cerebral microcirculation.
     In this experiment, Zige lyophilized powder(16.40,32.70and65.40mg-kg-1) showed a trend of slow recovery during reperfusion. In TTC staining, sham group appeared in deep red and had not the brain infarcts, model group had a large area of infarcts and located in the left side of the cortex and basal ganglia. Compared with model group, Zige lyophilized powder groups (65.40mg-kg-1) decreased significantly infarction volume in14d(P<0.05).
     Compared with sham group, the water content and EB content increased significantly (P<0.05, P<0.01) in model group,and it made a successful model. Compared with model group in reperfusion for7d and14d, Zige lyophilized powder groups (16.40mg·kg-1,32.70mg·kg-1and65.40mg·kg-1) could inhibit significantly the water content and EB content in lesion side of the rat brain tissue (P<0.05,P<0.01), these showed that Zige lyophilized powder protected against cerebral ischemic injury by improving microvessel permeability.
     In HE staining, cells of brain ischemia side in all groups after cerebral ischemia-reperfusion appeared necrosis, shrinking nucleus into irregular shape, edema, loosen and infiltration by inflammatory cells. Zige lyophilized powder groups(16.40mg·kg-1,32.70mg·kg-1and65.40mg·kg-1) could inhibit infiltration by inflammatory cells, and reduce intercellular space and edema in the corresponding time.
     (3) The effect of Zige lyophilized powder for injection against focal cerebral ischemia-reperfusion injury in microvascular density of the celebral microcirculation.
     In immunohistochemical experiment, a few of CD31cells expressed in sham group. It showed that the expression of CD31after ischemia-reperfusion in lateral cortex of rats had a few in reperfusion for1d, and had higher in reperfusion for4d and7d, and increased slowly or no growth in reperfusion after7d. Compared with model group in reperfusion for1d,4d,7d and14d, the expression of CD31of puerarin injection group (30.00mg·kg-1), Nimodipine injection (2.00mg·kg-1), Zige lyophilized powder groups (16.40mg·kg-1,32.70mg·kg-1and65.40mg·kg-1) had higher significantly in the corresponding time except reperfusion for1d (P<0.01). These show that Zige lyophilized powder protect against cerebral ischemia-reperfusion injury by promoting angiogenesis.
     (4) The effect of Zige lyophilized powder against the microvascular contraction function after cerebral ischemia-reperfusion injury of rats in the microcirculation
     In this experiment, compared with sham group, it showed that TNOS and iNOS enzyme activity had increased and cNOS enzyme activity had decreased significantly after ischemia-reperfusion in lateral cortex of rats (P<0.01). Compared with model group in reperfusion for1d, puerarin injection group (30.00mg·kg-1), Nimodipine injection (2.00mg·kg-1), Zige lyophilized powder groups (16.40mg·kg-1,32.70mg·kg-1and65.40mg·kg-1) had reduce significantly TNOS and iNOS enzyme activity (P<0.05, P<0.01). Compared with model group in reperfusion for4,7and14d, all drug groups had reduce significantly TNOS and iNOS enzyme activity and increased significantly cNOS enzyme activity. These show that Zige lyophilized powder protect against cerebral ischemia-reperfusion injury by improving the microvascular contraction function in the celebral microcirculation.
     Compared with sham group, it showed that the level of ET-1after ischemia-reperfusion in lateral cortex of rats had a rising trend and increased gradually with prolonged observation. In reperfusion for1d, compared with model group, Zige lyophilized powder group (32.70mg·kg-1) could reduce significantly the level of ET-1 (P<0.05). In reperfusion for4,7and14d, compared with model group, Zige lyophilized powder groups (16.40mg·kg-1,32.70mg·kg-1and65.40mg·kg-1) had reduce significantly the level of ET-1in micro vessel of the lateral ischemic cerebral cortex (P<0.01). These show that Zige lyophilized powder protect against cerebral ischemia-reperfusion injury by improving the microvascular contraction function and endothelial cell damage.
     In reperfusion for1,4,7and14d, compared with sham group, it showed that the level of TXB2had increased and6-Ke-to-PGF1α had decreased significantly in model group. Zige lyophilized powder groups(16.40mg·kg-1,32.70mg·kg-1and65.40mg·kg-1) could inhibit significantly the level of TXB2and6-Ke-to-PGF1α(P<0.05,P<0.01)and the ratio of TXB2/6-Ke-to-PGF1α(P<0.01). These show that Zige lyophilized powder protect against cerebral ischemia-reperfusion injury by improving microvascular contraction function in microcirculation.
     (5) The effect of Zige lyophilized powder for injection against the microvascular permeability after cerebral ischemia-reperfusion injury of rats in the celebral microcirculation
     In real-time quantitative PCR, the cortex of sham group had a few of mmp-9mRNA levels. After focal cerebral ischemia-reperfusion, comparing with sham group in reperfusion for1,4,7and14d, it showed that mmp-9mRNA levels in lateral cortex of rats had increased significantly in model group. Zige lyophilized powder groups (16.40mg·kg-1,32.70mg·kg-1and65.40mg·kg-1) could reduce significantly mmp-9mRNA levels. Comparing with sham group, it showed that claudin-5mRNA、occludin mRNA、zo-1mRNA levels in lateral cortex of rats had reduced significantly in model group. Three groups of Zige lyophilized powder could increase significantly claudin-5mRNA、occludin mRNA、zo-1mRNA levels respectively (P<0.05,P<0.01).
     In the experiment of western blot, a change trend of protein expression and genetic level is basically identical. Compared with sham group in reperfusion for1,4,7and14d, it showed that mmp-9protein expression in lateral cortex of rats had increase significantly in model group and all drug groups could reduce mmp-9protein expression significantly. Comparing with sham group, it showed that the protein expressions of claudin-5、occludin、zo-1in lateral cortex of rats had reduced significantly in model group. Three groups of Zige lyophilized powder could increase significantly claudin-5、occludi、zo-1levels in the corresponding time, respectively (P <0.05,P<0.01).These show that Zige lyophilized powder protect against cerebral ischemia-reperfusion injury by improving microvascular permeability.
     2. The protective effect of Zige lyophilized powder for injection against the acute disturbance of cerebral microcirculation in rats by intravenous injection of high molecule dextran
     Compared with normal control group in the corresponding time, it showed that pia mater microvenule diameter and microartery diameter in rats had shrink significantly and blood flow volume had decrease significantly in model group. Compared with model group, Zige lyophilized powder for injection(16.40,32.70and65.40mg·kg-1) had significantly expended micro-vein diameter (P<0.01),and returned normal trend of blood flow volume after10min of making model. Compared with normal control group, it showed that blood viscosity, erythrocyte agglutination index, plasma viscosity and hematocrit in rats had increase significantly in model group. Compared with model group, Zige lyophilized powder (65.40mg·kg-1)could significantly reduce blood rheology indicators (P<0.01),and Zige lyophilized powder for injection(16.40,32.70mg·kg-1)had could significantly reduce other blood rheology indicators except hematocrit (P<0.05,P<0.01).
     3. The protein expression levels of mmp-9to Zige lyophilized powder on brain microvascular endothelial cells (BMECs) after hypoxia-reoxygenation injury were detected in vitro
     The IC50value is860μg·ml-1by MTT method in cultured BMECs by Zige lyophilized powder for injection. Compared with normal control group in the reoxygenation time for24h, it showed that the level of mmp-9protein had increase significantly in model group. Zige lyophilized powder groups (24.50、49.00and98.00μg·ml-1)had inhibit significantly the increased levels of mmp-9protein in a hypoxia-reoxygenation injury.
     Conclusions
     1. The best time of making I/R model by Longa method is2h to ischemia, and it is stability, controllability and repeatability. Zige lyophilized powder for injection showed a trend of slow recovery during reperfusion, and could decrease infarction volume, and inhibit significantly the water content and EB content in lesion side of the rat brain tissue. These showed the fact that it could reduce the damage rate of the blood brain barrier and brain edema. Zige lyophilized powder for injection can promote CD31expression in lateral cortex of rats, it would be promote angiogenesis after ischemica-reperfusion injury, and improve the cerebral microcirculation, which is beneficial to the recovery of damaged nerve tissue. The possible mechanisms of Zige lyophilized powder for injection in the improving celebral microcirculation would adjust the microvascular contraction function, and inhibit the enzyme activity of iNOS, and reduce the generated TNOS and ET-1content, and inhibit the level of TXB2and6-Ke-to-PGF1a. Zige lyophilized powder for injection can protect the microvascular integrity, and reduce microvascular permeability, and improve cerebral microcirculation through it can inhibit the increasing trend of mmp-9mRNA and protein expression and the decreasing trend of claudin-5, occludin, zo-1mRNA and protein level.
     2. Zige lyophilized powder for injection against the acute disturbance of cerebral microcirculation in rats can change trend of pia mater microartery and microvenule diameter, and improve celebral blood flow and blood viscosity, these showed that it would impove the effect of the acute disturbance of cerebral microcirculation.
     3. Zige lyophilized powder for injection had inhibited the increased levels of mmp-9protein in a hypoxia-reoxygenation injury on cultured BMECs. It showed that the possible mechanism of Zige lyophilized powder for injection on protecting the cell integrity would be associated with the decreasing mmp-9protein expression.
引文
[1]原欢欢,张继芬,王琴,等.RP-HPLC测定梓葛冻干粉针中的药物含量及有关物质[J].中国药学杂志,2011,46(16):1276-1279.
    [2]姜秀莲,徐理纳.葛根素对小鼠实验性微循环障碍的改善作用[J].药学学报,1989,24(4):251-254.
    [3]李定格,王世军,李以菊,等.葛根素对小鼠脑微循环血流量的影响[J].微循环学杂志,1998,8(2):8-9.
    [4]祝慧凤,万东,周佳丽,等.梓醇促局灶性脑缺血大鼠血管新生观察[J].中国中药杂志,2010,(2):232-236.
    [5]H.F. Zhu, D. Wan, Y. Luo, et al. Catalpol increases brain angiogenesis and up-regulates VEGF and EPO in the rat after permanent middle cerebral artery occlusion[J]. Int J Biol Sci,2010, 6(5):443-453.
    [6]马强.“脑神经血管单元”体外模型的构建及梓葛冻干粉对其缺氧缺糖损伤的保护研究[D].西南大学,2011.
    [7]王琴.梓葛冻干粉针的药代动力学及改善血脑屏障通透性的机制研究[D].西南大学,2012.
    [8]邓礼娟,王琴,原欢欢,等.梓葛冻干粉针对气虚血瘀证大鼠凝血功能,血液流变学和NO的影响[J].中国中药杂志,2012,37(10):029.
    [9]H.F. Zhu, D. Wan, Y. Luo, et al. Catalpol increases brain angiogenesis and up-regulates VEGF and EPO in the rat after permanent middle cerebral artery occlusion[J]. International journal of biological sciences,2010,6(5):443.
    [10]何正光,陈刚,祝慧凤,等.葛根素注射液对大鼠脑缺血/再灌注损伤的保护作用[J].中国药理学通报,2011,27(8):1181-1182.
    [11]张芬.梓葛配伍对大鼠脑水肿治疗作用的实验研究[D].西南大学,2011.
    [12]张聪聪.梓葛冻干粉针对脑缺血大鼠内皮祖细胞及HUVEC增殖的影响[D].西南大学,2013.
    [13]吴以岭.血管保护——脑梗死治疗的新靶点[J].疑难病杂志,2006,5(5):356-358.
    [14]金惠铭.微血管功能调节的中西医结合研究[J].微循环学杂志,2004,14(2):1-4.
    [15]孟淑静,曹春蕊,任艳焕,等.血管通透性及其相关因素研究进展[J].实用心脑肺血管病杂志,2011,19(10):1814-1815.
    [16]李向红.脑缺血的微血管改变[J].微循环学杂志,1997,7(1):13-13.
    [17]H. Jiao, Z. Wang, Y. Liu, et al. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult[J]. Journal of Molecular Neuroscience,2011,44(2):130-139.
    [18]L.A. Lapierre. The molecular structure of the tight junction[J]. Advanced drug delivery reviews,2000,41(3):255-264.
    [19]杨利孙,章翔,易声禹.脑损伤后脑循环障碍的机制及其与脑水肿的关系[J].中华创伤杂志,2000,16(1):49-51.
    [20]S. Lorthois, F. Cassot, F. Lauwers. Simulation study of brain blood flow regulation by intra-eortical arterioles in an anatomically accurate large human vascular network. Part II: Flow variations induced by global or localized modifications of arteriolar diameters[J]. NeuroImage,2011,54(4):2840-2853.
    [21]M. Pouliot, M.C. Deschenes, S. Hetu, et al. Quantitative and regional measurement of retinal blood flow in rats using N-isopropyl-p-[14C]-iodoamphetamine ([14C]-IMP)[J]. Experiment-al Eye Research,2009,89(6):960-966.
    [22]王晓哲,白波,张秋玲.脑缺血后脑血流量的变化[J].泰山医学院学报,2009,30(005):391-394.
    [23]赵希敏.脑血流量调节的研究进展[J].国外医学:生理病理科学与临床分册,2000,20(4):294-297.
    [24]N. Singh, N. Shukla, P. Singh, et al. Verbascoside isolated from Tectona grandis mediates gastric protection in rats via inhibiting proton pump activity[J]. Fitoterapia,2010,81(7):755-761.
    [25]M. Fisher, G. Feuerstein, D.W. Howells, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations[J]. Stroke,2009,40(6):2244-2250.
    [26]J. Rother. Neuroprotection does not work! [J]. Stroke,2008,39(2):523-524.
    [27]程发峰,宋文婷,郭少英,等.三种神经功能评分在鼠类局灶性脑缺血模型评价中的比较[J].中国康复医学杂志,2011,26(4):337-341.
    [28]刘家兰.梓葛冻干粉针对脑缺血小鼠神经功能和大鼠神经干细胞增殖的影响[D].西南大学,2012.
    [29]T. Tao, Y. Liu, J. Zhang, et al. Therapeutic hypercapnia improves functional recovery and attenuates injury via antiapoptotic mechanisms in a rat focal cerebral ischemia/reperfusion model[J]. Brain Research,2013, (1533) 52-62.
    [30]A. Chauhan, U. Sharma, N. Jagannathan, et al. Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats[J]. Behavioural brain research,2011, 225(2):603-609.
    [31]K. Hochrainer, K. Jackman, J. Anrather, et al. Reperfusion rather than ischemia drives the formation of ubiquitin aggregates after middle cerebral artery occlusion[J]. Stroke,2012,43(8): 2229-2235.
    [32]Q. Hu, C. Chen, J. Yan, et al. Therapeutic application of gene silencing MMP-9 in a middle cerebral artery occlusion-induced focal ischemia rat model[J]. Experimental neurology,2009, 216(1):35-46.
    [33]Z. Liu, P. Li, D. Zhao, et al. Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats[J]. Behav Brain Funct,2010,6:61.
    [34]J. Koizumi, Y. Yoshida, T. Nakazawa, et al. Experimental studies of ischemic brain edema, I:a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area[J]. Jpn J stroke,1986,8(1):1-8.
    [35]E.Z. Longa, P.R. Weinstein, S. Carlson, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989,20(1):84-91.
    [36]L.H. Shen, Y. Li, J. Chen, J. Zhang, et al. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke[J]. Neuroscience,2006,137(2):393-399.
    [37]J. Chen, Y. Li, L. Wang, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke,2001,32(4):1005-1011.
    [38]Y. CHEN, S. CONSTANTINI, V. TREMBOVLER, et al. An experimental model of closed head injury in mice:pathophysiology, histopathology, and cognitive deficits[J]. Journal of neurotrauma 1996,13(10):557-568.
    [39]C.V. Borlongan, T.S. Randall, D.W. Cahill, et al. Asymmetrical motor behavior in rats with unilateral striatal excitotoxic lesions as revealed by the elevated body swing test[J]. Brain Research,1995,676(1):231-234.
    [40]刘世民.大鼠脑缺血模型评价及大鼠脑缺血慢性期GFAP,NSE,SYN,Nogo-A表达与神经功能转归的相关性[D].南昌大学,2011.
    [41]丁炯,顾振,吴文忠,等.电针预处理对大鼠局灶性脑缺血的影响[J].中国临床康复,2004,8(1):106-107.
    [42]何正光.葛根素对大鼠脑缺血再灌注损伤的保护作用及机制研究[D].重庆医科大学,2006.
    [43]蒋祝昌,毕桂南,石胜良,等.石蜡线栓的大鼠局灶性脑缺血再灌注模型[J].中国临床神经科,2004,12(3):303-305.
    [44]马常升,马文领.插线法制备大鼠局灶性脑缺血再灌注模型的研究[J].解剖学杂志,1999,22(3):209-213.
    [45]徐秋英,刘亚敏,沈强,等.大鼠局灶性脑缺血再灌注模型的复制及评价[J].长春中医药大学学报,2010,26(4):483-485.
    [46]刘宇,孟然,闫峰,等.激光多普勒血流仪评价活体大鼠大脑中动脉栓塞模型成功的可行性分析[J].中国病理生理杂志,2011,27(3):620-624.
    [47]A.D. Allen, W.I. Rosenblum. Effects of two methods of craniotomy on microvascular responses in the mouse brainfJ]. Microvascular research,1984,27(3):385-386.
    [48]蒋鸿鑫,李慧勤,马兰.大鼠颅骨开窗术[J].首都医科大学学报,1995,3.
    [49]J. Chen. Animal models of acute neurological injuries[J]. Springer,2009.
    [50]R.J. Gerrits, E. A Stein, A.S. Greene. Laser-Doppler flowmetry utilizing a thinned skull cranial window preparation and automated stimulation[J]. Brain Research Protocols,1998,3(1):14-21.
    [51]吴劲松,陈衔城.激光多普勒血流测定法在局部脑血流量监测中的应用[J].国外医学:脑血管疾病分册,1999,7(3):162-164.
    [52]王晓峰.大豆异黄酮对脑缺血大鼠保护作用的研究[D].天津医科大学,2006.
    [53]刘海.益母草碱对实验性脑缺血大鼠神经保护作用及其机制的研究[D].河北医科大学,2011.
    [54]张鸿,赵冬雪,郑东明,等.银杏叶提取物对大鼠局灶性脑缺血再灌注损伤的保护作用[J].中国康复,2004,19(1):3-5.
    [55]徐兴顺,耿德勤,卜渊,等.促红细胞生成素对大鼠局灶性脑缺血再灌注后梗死体积和脑组织水肿的影响[J].临床神经病学杂志,2003,16(3):156-158.
    [56]J. Zhao, N. Kobori, J. Aronowski, et al. Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents[J]. Neuroscience Letters,2006,393(2):108-112.
    [57]R.A. Swanson, M.T Morton, G. Tsao-Wu, et al. A Semiautomated Method for Measuring Brainlnfarct Volume[J]. Journal of Cerebral Blood Flow & Metabolism,1990,10(2):290-293.
    [58]刘婷婷.头穴丛刺法对大鼠脑缺血再灌注早期神经损伤及脑水肿的保护作用机制研究[D].黑龙江中医药大学,2008.
    [59]吴艳霞.冰冻切片的制作方法分析[J].吉林医学,2009,30(6):493-493.
    [60]曹书芬,张丽,田林,等.快速冰冻HE染色切片方法的改进[J].山西医科大学学报,2006,37(5):507-508.
    [61]李晓锋. Leica CM1900 冰冻切片机的体会[J].实用医技杂志,2008, 15(22):2943-2944.
    [62]刘宇,孟然,吉训明.激光多普勒血流仪动态观察镁对脑缺血再灌注损伤保护作用[J]. 中国病理生理杂志,2011,27(9):1811-1815.
    [63]史晓瑞,董明敏,董民声,等.激光多普勒测试微循环研究的方法论思考[J].医学与哲学,1997,(9).
    [64]李少华,吴中立.伊文思蓝荧光法测定肺血管壁通透性[J].中国病理生理杂志,1990,6(4):220-221.
    [65]左朝.电针对局灶性脑缺血再灌注大鼠脑组织血管新生及HGF,HIF-1α表达的影响[J].湖北中医药大学,2012.
    [66]常丽萍.通心络对局灶性脑缺血大鼠微血管新生及其代偿作用的实验研究[J].河北医科大学,2011.
    [67]N. Weidner, J.P. Semple, W.R. Welch, et al. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma[J]. New England Journal of Medicine 1991,324(1):1-8.
    [68]常丽萍,魏聪,贾振华,等.通心络对缺血性脑卒中大鼠微血管新生及血流灌注状态的影响[J].中国中西医结合杂志,2013,32(12):1667-1670.
    [69]闻名,蔡定芳.急性脑缺血损伤的微循环障碍机制[J].国外医学:脑血管疾病分册,2004,12(004):289-291.
    [70]柯家祥,张庆富,王青.化学因素对脑微循环调节研究的若干进展[J].中国微循环,2005,9(4):288-291.
    [71]戴高中,陈跃来.电针对脑出血模型大鼠脑组织一氧化氮,内皮素,总抗氧化能力的影响[J].中国针灸,2002,22(7):488-490.
    [72]A.F. Samdani, T.M. Dawson, V.L. Dawson. Nitric oxide synthase in models of focal ischemia[J]. Stroke,1997,28(6):1283-1288.
    [73]V.E. Thiel, K.L. Audus. Nitric oxide and blood-brain barrier integrity[J]. Antioxidants and Redox Signaling 2001,3(2):273-278.
    [74]郭平,王浩,王晶.补阳还五汤对脑缺血再灌注大鼠脑组织NO和NOS作用的研究[J].中国实验方剂学杂志,2001,7(5):47-48.
    [75]邓芬,胡长林,谢运兰.丹红注射液对大鼠局灶脑缺血后一氧化氮合酶的影响[J].中西医结合心脑血管病杂志,2006,4(10):880-881.
    [76]王超,孙峰,丁晓洁.脑缺血再灌注损伤过程中一氧化氮合酶的表达[J].中国组织工程研究与临床康复,2007,11(8):1589-1592.
    [77]I.R. Rise, O.J. Kirkeby. Effect of reduced cerebral perfusion pressure on cerebral blood flow following inhibition of nitric oxide synthesis[J]. Journal of neurosurgery,1998,89(3):448-453.
    [78]M. Anctil, I. Poulain, C. Pelletier. Nitric oxide modulates peristaltic muscle activity associated with fluid circulation in the sea pansy Renilla koellikeri[J]. Journal of experimental biology, 2005,208:2005-2017.
    [79]毛庆菊,王汉兵,陈邦国,等.电针对局灶性脑缺血再灌注大鼠外周血中可溶性细胞间粘附分子-1和内皮素-1的影响[J].针刺研究,2006,31(5):272-275.
    [80]王新陆,席加秋.补阳还五汤对脑缺血再灌注损伤大鼠脑组织ET—-1基因表达的影响[J].山东中医药大学学报,2002,26(1):66-68.
    [81]O. Durieu-Trautmann, C. Federici, C. Creminon, et al. Nitric oxide and endothelin secretion by brain microvessel endothelial cells:regulation by cyclic nucleotides[J]. Journal of cellular physiology,1993,155(1):104-111.
    [82]R. Hall, J. Murdoch. Brain protection:physiological and pharmacological considerations. Part Ⅱ:The pharmacology of brain protection[J]. Canadian Journal of Anesthesia/Journal canadien d'anesthesie,1990,37(7):762-777.
    [83]J. Murdoch, R. Hall. Brain protection:physiological and pharmacological considerations. Part I:The physiology of brain injury[J]. Canadian Journal of Anesthesia/Journal canadien d'anesthesie,1990,37(6):663-671.
    [84]陈震,刘鲁明,何以蓓.血瘀证模型大鼠血栓烷B2,6-酮-前列腺素F1α与肿瘤肝转移的关系[J].中西医结合学报,2003,1(3):199-201.
    [85]李晓宁.心复宁V号对垂体后叶素致急性心肌缺血大鼠血浆TXA2及PG12的影响[J].数理医药学杂志,2009,22(4):453-455.
    [86]吴会生,郭培培,尚游,等.氟比洛芬酯预处理对大鼠全脑缺血/再灌注时脑组织TXA2/PG12的影响[J].中国药理学通报,2009,25(9):1176-1180.
    [87]B.T. Hawkins, T.J. Abbruscato, R.D. Egleton, et al. Nicotine increases in vivo blood-brain barrier permeability and alters cerebral microvascular tight junction protein distribution[J]. Brain Research,2004,1027(1):48-58.
    [88]M.T. Heneka, D.L. Feinstein. Expression and function of inducible nitric oxide synthase in neurons[J]. Journal of neuroimmunology,2001,114(1):8-18.
    [89]K.S. Mark, A.R. Burroughs, R.C. Brown, et al. Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature[J]. American Journal of Physiology-Heart and Circulatory Physiology,2004,55(1):H174.
    [90]M.N. Nakashima, K.I. Ajiki, K. Nakashima, et al. Possible role of nitric oxide in anxiety following transient cerebral ischemia in mice[J]. Journal of pharmacological sciences,2003, 91(1):47-52.
    [91]杨卫忠,陈春美,王春华,等.一氧化氮和一氧化氮合酶在大鼠局灶性脑缺血中的表达特点[J].中国神经精神疾病杂志,2007,33(6):335-339.
    [92]孙蓉,吕丽莉,刘国卿.芍药苷对沙土鼠不全性脑缺血后能量代谢,NO和NOS的影响[J].中国中药杂志,2006,31(10):832-835.
    [93]M. Moro, A. Cardenas, O. Hurtado, et al. Role of nitric oxide after brain ischaemia[J]. Cell calcium,2004,36(3):265-275.
    [94]G.J. del Zoppo, T. Mabuchi. Cerebral microvessel responses to focal ischemia[J]. Journal of Cerebral Blood Flow & Metabolism,2003,23(8):879-894.
    [95]D.Y. Zhu, Q. Deng, H.-H. Yao, et al. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice[J]. Life Sciences,2002, 71(17):1985-1996.
    [96]段小花,代蓉,李秀芳,等.天麻酚类成分对脑缺血模型大鼠海马一氧化氮和一氧化氮合酶的影响[J].中华老年心脑血管病杂志,2011,13(7):653-655.
    [97]C. Iadecola. Bright and dark sides of nitric oxide in ischemic brain injury[J]. Trends in neurosciences,1997,20(3):132-139.
    [98]汤彦,杨光田.山莨菪碱在大鼠急性全脑缺血再灌注损伤中对一氧化氮[J].中国急救医学,2000,20(4):201-203.
    [99]W.W. Lin, C.Y. Lee, D.-M. Chuang. Endothelin-1 stimulates the release of preloaded D-aspartate from cultured cerebellar granule cells[J]. Biochemical and biophysical research communications,1990,167(2):593-599.
    [100]杨瑞龙,张谦,李妍怡,等.中风膏对脑缺血再灌注损伤大鼠脑组织一氧化氮,内皮素-1含量的影响[J].中医研究,2010,23(6):19-21.
    [101]M. Yanagisawa, H. Kurihara, S. Kimura, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells[J]. Nature,1988,332(6163):411-415.
    [102]胡永奇,张连元,李宏杰,等.一氧化氮,内皮素-1对大鼠肢体缺血/再灌注后脑损伤的影响[J].中国应用生理学杂志,2005,21(1):30-33.
    [103]吴苏宁.内皮素与缺血性脑血管疾病的治疗研究进展[J].国外医学:老年医学分册,1999,20(3):97-99.
    [104]范有明,高钰琪,刘福玉,等.缺氧对大鼠脑星形胶质细胞释放NO,PGI2,TXA2,ET-1的影响[J].第三军医大学学报,2004,26(1):1-4.
    [105]刘少星,刘丹彦,吴会生,等.帕瑞昔布预处理对大鼠局灶脑缺血再灌注时脑组织TXA2/PGI2的影响[J].重庆医科大学学报,2011,36(1):23-24.
    [106]王文安,周永炜,程洁,等.三七皂甙对局灶性脑缺血再灌注后MMP-9表达的影响[J].上海第二医科大学学报,2005,24(9):731-733.
    [107]S.A. Mayer, A. Lignelli, M.E. Fink, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage a SPECT study[J]. Stroke,1998,29(9):1791-1798.
    [108]G. Wang, Q. Guo, M. Hossain, et al. Bone marrow-derived cells are the major source of MMP-9 contributing to blood-brain barrier dysfunction and infarct formation after ischemic stroke in mice[J]. Brain Research,2009,1294:183-192.
    [109]Y. Yang, E.Y. Estrada, J.F. Thompson, et al. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat[J]. Journal of Cerebral Blood Flow & Metabolism,2007, 27(4):697-709.
    [110]L. Wojcik, A. Sawicka, S. Rivera, et al. Neurogenesis in gerbil hippocampus following brain ischemia:focus on the involvement of metalloproteinases[J]. Acta Neurobiol Exp (Wars), 2009,69(1):52-61.
    [111]乔会敏.木犀草素对实验性脑缺血大鼠的脑保护作用及机制研究[D].河北医科大学,2012.
    [112]王力娜.紫草素对局灶性脑缺血再灌注损伤小鼠的脑保护作用及其相关机制研究[D].河北医科大学,2013.
    [113]孙微.脑缺血—再灌注损伤时MMP-9的表达及银杏叶的干预作用[D].吉林大学,2006.
    [114]G. Rosenberg, E. Estrada, J. Dencoff. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain[J]. Stroke,1998,29(10): 2189-2195.
    [115]雷立芳,涂秋云,资晓宏.依达拉奉对脑缺血再灌注大鼠血脑屏障通透性及MMP-9表达的影响[J].广东医学,2008,29(7):1128-1130.
    [116]袁毅,雷立芳,涂秋云,等.大鼠脑缺血再灌注中血脑屏障通透性的改变与基质金属蛋白酶9表达的关系[J].中国动脉硬化杂志,2008,16(7):510-512.
    [117]C. Lohmann, M. Krischke, J. Wegener, et al. Tyrosine phosphatase inhibition induces loss of blood-brain barrier integrity by matrix metalloproteinase-dependent and-independent pathways[J]. Brain Research,2004,995(2):184-196.
    [118]王静云,王国峰,赵仁亮.脑缺血预处理对脑缺血再灌注大鼠血脑屏障通透性和基质金属蛋白酶-9表达的影响[J].国际脑血管病杂志,2010,18(9):668-673..
    [119]王静娥,田国萍,周进,等.大鼠脑缺血时紧密连接相关蛋白occludin和cllaudin-5表达的变化[J].解剖科学进展,2010,16(2):149-152.
    [1]皮业庆,尤家录.山莨菪碱对急性脑微循环障碍的防治作用[J].中风与神经疾病杂志,1994,11(3):135-137.
    [2]刘正泉,侯亚利,牛春雨,等.中药干预微循环障碍的研究进展[J].微循环学杂志,2010,20(1):56-59.
    [3]邓礼娟,王琴,原欢欢,等.梓葛冻干粉针对气虚血瘀证大鼠凝血功能,血液流变学和NO的影响[J].中国中药杂志,2012,37(10):29-31.
    [4]王琴.梓葛冻干粉针的药代动力学及改善血脑屏障通透性的机制研究[D].西南大学,2012.
    [5]Zhu H F, Wan D, Luo Y, et al. Catalpol increases brain angiogenesis and up-regulates VEGF and EPO in the rat after permanent middle cerebral artery occlusion[J]. Int J Biol Sci,2010, 6(5):443-453.
    [6]何正光,陈刚,祝慧凤,等.葛根素注射液对大鼠脑缺血/再灌注损伤的保护作用[J].中国药理学通报,2011,27(8):1181-1182.
    [7]张聪聪,马强,薛强,等.梓葛冻干粉对人脐静脉内皮细胞缺氧/复氧损伤的保护作用[J].中国中药杂志,2012,37(7):996-999.
    [8]Allen A D, Rosenblum W I. Effects of two methods of craniotomy on microvascular responses in the mouse brain[J]. Microvascular Res,1984,27(3):385-386.
    [9]蒋鸿鑫,李慧勤,马兰.大鼠颅骨开窗术[J].首都医科大学学报,1995,16(3):219-222.
    [10]刘萍,崔学顺,何新荣,等.注射用丹参(冻干)粉针对大鼠脑微循环的影响研究[J].中国医院用药评价与分析,2008,8(9):679-680.
    [11]刘宇,孟然,闫峰,等.激光多普勒血流仪评价活体大鼠大脑中动脉栓塞模型成功的可行性分析[J].中国病理生理杂志,2011,27(3):620-624.
    [12]刘萍,周文斌,武博,等.天王补心丸中桔梗对丹参改善大鼠脑微循环的促进作用[J].中国中药杂志,2007,32(22):2391-2396.
    [13]李定格,王世军,李以菊,等.葛根素对小鼠脑微循环血流量的影响[J].微循环学杂志,1998,8(2):8-9.
    [14]吴劲松,陈衔城.激光多普勒血流测定法在局部脑血流量监测中的应用[J].国外医学脑血管疾病分册,1999,7(3):162-164..
    [15]胡金麟,脑微循环与生物流变学[J].微循环学杂志,1996,6(3):57-59.
    [16]谭立祥.血粘度与脑血流量以及脑梗塞的关系[J].医学信息,2010,5(012):3530.
    [17]Theilen H, Kuschinsky W. Fluorescence labeling of the capillary network in rat brains[J]. J Cerebr Blood Flow Metabol,1992,12(2):347-350.
    [18]尚远宏,田金凤,汪宏锦,等.梓葛冻干粉针对大鼠急性脑微循环障碍的改善作用[J].中国中药杂志,2014,39(4):733-738.
    [1]G. Schiera, E. Bono, M.P. Raffa, et al. Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture[J]. Journal of cellular and molecular medicine,2003,7(2):165-170.
    [2]M.A. Ansari, H.M. Abdul, G. Joshi, et al. Protective effect of quercetin in primary neurons against Aβ (1-42):relevance to Alzheimer's disease[J]. The Journal of Nutritional Biochemistry,2009,20(4):269-275.
    [3]Q. Xue, Y. Liu, H. Qi, et al. A novel brain neurovascular unit model with neurons, astrocytes and microvascular endothelial cells of rat[J]. International journal of biological sciences,2013, 9(2):174-176.
    [4]Y. Liu, Q. Xue, Q. Tang, et al. A simple method for isolating and culturing the rat brain microvascular endothelial cells[J]. Microvascular research,2013, (90) 199-205.
    [5]马强.“脑神经血管单元”体外模型的构建及梓葛冻干粉对其缺氧缺糖损伤的保护研究[D].西南大学,2011.
    [6]刘星,季宇彬.MTT法测定高三尖杉酯碱对人肝癌HepG2抑制作用[J].哈尔滨商业大学学报:自然科学版,2012,28(4):393-395.
    [7]赵斌,葛金芳,朱娟娟,等.小议在MTT法测细胞增殖抑制率中IC50的计算方法[J].安徽医药,2007,11(9):834-836.
    [8]王建民,施永德.大鼠脑血管内皮细胞的分离培养与形态学观察[J].解剖学杂志,1998,21(6):495-499.
    [9]M.J. Merkel, L. Liu, Z. Cao, et al. Estradiol abolishes reduction in cell death by the opioid agonist Met5-enkephalin after oxygen glucose deprivation in isolated cardiomyocytes from both sexes[J]. American Journal of Physiology-Heart and Circulatory Physiology,2008, 295(1):H409-H415.
    [10]G. Wang, Q. Guo, M. Hossain, et al. Bone marrow-derived cells are the major source of MMP-9 contributing to blood-brain barrier dysfunction and infarct formation after ischemic stroke in mice[J]. Brain Research,2009, (1294) 183-192.
    [1]田牛,李玉珍,刘凤英.脑微循环的特点[J].微循环学杂志,1999,9(3):40-44.
    [2]吴蠡荪.微循环与脑血管疾病[J].蛇志,2011,23(3):338-339.
    [3]金惠铭.微血管功能调节的中西医结合研究[J].微循环学杂志,2004,14(2):1-4.
    [4]骆秉铨.微循环概念的延伸及争议[J].中国微循环,2003,7(4):260-265.
    [5]伊藤义彰.脑微循环的正常状态和各种病理变化—不同于其他脏器的特征[J].日本医学介绍,2002,23(011):492-496.
    [6]于永发,董国淑.白细胞,血小板和凝血酶与脑微循环障碍[J].国外医学脑血管疾病分册,2001,9(4):222-224.
    [7]D.B. Cines, E.S. Pollak, C.A. Buck, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders[J]. Blood,1998,91(10):3527.
    [8]S. Lorthois, F. Cassot, F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part Ⅱ: Flow variations induced by global or localized modifications of arteriolar diameters[J]. NeuroImage,2011,54(4):2840-2853.
    [9]M. Pouliot, M.C. Deschenes, S. Hetu, et al. Quantitative and regional measurement of retinal blood flow in rats using N-isopropyl-p-[14C]-iodoamphetamine([14C]-IMP) [J]. Experimental Eye Research,2009,89(6):960-966.
    [10]王晓哲,白波,张秋玲.脑缺血后脑血流量的变化[J].泰山医学院学报,2009,30(005):391-394.
    [11]赵希敏.脑血流量调节的研究进展[J].国外医学:生理病理.斗学与临床分册,2000,20(4):294-297.
    [12]柯家祥,张庆富,王青.化学因素对脑微循环调节研究的若干进展[J].中国微循环,2005,9(4):288-291.
    [13]A.F. Samdani, T.M. Dawson, V.L. Dawson. Nitric oxide synthase in models of focal ischemia[J]. Stroke,1997,28(6):1283-1288.
    [14]V.E. Thiel, K.L. Audus. Nitric oxide and blood-brain barrier integrity[J]. Antioxidants and Redox Signaling,2001,3(2):273-278.
    [15]丁春华,张少丹,张君岚,等.新生大鼠缺血缺氧性脑病时脑微循环血流及氧化氮的变化[J].中国病理生理杂志,1865,20(10):1870.
    [16]O. Durieu-Trautmann, C. Federici, C. Creminon, et al. Nitric oxide and endothelin secretion by brain microvessel endothelial cells:regulation by cyclic nucleotides[J]. Journal of cellular physiology,1993,155(1):104-111.
    [17]K.W. Hong, C.D. Kim, B.Y. Rhim, et al. Effect of co-conotoxin GVIA and co-agatoxin IVA on the capsaicin-sensitive calcitonin gene-related peptide release and autoregulatory vasodilation in rat pial arteries[J]. Journal of Cerebral Blood Flow & Metabolism,1999,19(l):53-60.
    [18]王斌,肖继皋.脑血流自动调节的研究进展[J].临床神经病学杂志,1999,12(2):121-122.
    [19]R. Hall, J. Murdoch. Brain protection:physiological and pharmacological considerations. Part Ⅱ:The pharmacology of brain protection[J]. Canadian Journal of Anesthesia,1990,37(7): 762-777.
    [20]J. Murdoch, R. Hall. Brain protection:physiological and pharmacological considerations. Part Ⅰ:The physiology of brain injury[J]. Canadian Journal of Anesthesia,1990,37(6):663-671.
    [21]B.T. Hawkins, T.P. Davis. The blood-brain barrier/neurovascular unit in health and disease[J]. Pharmacological reviews,2005,57(2):173-185.
    [22]H. Wang, J. Casley-Smith. Drainage of the prelymphatics of the brain via the adventitia of the vertebral artery [J]. Cells Tissues Organs,1989,134(1):67-71.
    [23]R. Cohen, J. Shepherd, P. Vanhoutte.5-Hydroxytryptamine can mediate endothelium-depend-ent relaxation of coronary arteries[J]. Am. J. Physiol,1983.
    [24]闻名,蔡定芳.急性脑缺血损伤的微循环障碍机制[J].国外医学:脑血管疾病分册,2004,12(004):289-291.
    [25]于永发,董国淑,黄湘楠.急性脑梗塞脑微循环障碍研究进展[J].中国微循环,2002,6(4):251-253.
    [26]杨利孙,章翔,易声禹.脑损伤后脑循环障碍的机制及其与脑水肿的关系[J].中华创伤杂志,2000,16(1):49-51.
    [27]钱冠清.白细胞在微循环中的行为及在疾病中的作用[J].微循环学杂志,1994,4(3):1-3.
    [28]于永发,董国淑.白细胞,血小板和凝血酶与脑微循环障碍[J].国外医学:脑血管疾病分册,2001,9(4):222-224.
    [29]M. Galdiero, GC. de L'Ero, A. Marcatili. Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins[J]. Infection and immunity,1997,65(2):699-707.
    [30]施咏梅,刘韶华,周红军.缺血性脑卒中与血浆纤维蛋白原及活化血小板的相关性研究[J].中国卒中杂志,2006,1(2):95-97.
    [31]王慧,李红雪,刘景宇.缺血性脑卒中与血浆纤维蛋白原的相关性研究[J].中国实用医药,2008,3(12):42-43.
    [32]S. Eisenberg. Blood viscosity and fibrinogen concentration following cerebral infarction[J]. Circulation,1966,33(5S2):Ⅱ10-Ⅱ14.
    [33]M. Harrison, B. Kendall, S. Pollock, et al. Effect of haematocrit on carotid stenosis and cerebral infarction [J]. The Lancet,1981,318(8238):114-115.
    [34]周凤鑫.组织血液灌注与微循环的病理生理(7)-缺血-再灌注损伤[J].外科理论与实践,2008,13(3):38-42.
    [35]褚晓凡,饶明俐,彭健,等.大鼠局灶脑缺血再灌注神经细胞与微循环形态学动态病理变化[J].中国临床康复,2002,6(13):1904-1905.
    [36]J. Gehrmann, R. Banati, C. Wiessnert, et al. Reactive microglia in cerebral ischaemia:an early mediator of tissue damage[J]. Neuropathology and applied neurobiology,1995,21(4): 277-289.
    [37]黄如训,方燕南,苏镇培.高血压鼠局部脑梗塞后脑超微结构改变动态观察[J].中风与神经疾病杂志,1996,13(3):130.
    [38]王俊华,刘秀华,刘风英,等.缺血预处理对缺血/再灌注脑的保护及其与微循环调节功能的关系研究[J].中国病理生理杂志,2003,19(4):533-536.
    [39]姚树桐,刘秀华,汤旭明,等.缺血后处理改善脑缺血再灌注大鼠软脑膜微循环[J].中国病理生理杂志,2009,25(3):451-455.
    [40]李定格,王世军,李以菊,等.葛根素对小鼠脑微循环血流量的影响[J].微循环学杂志,1998,8(2):8-9.
    [41]付艳,刘凤英,刘秀华,等.葛根素对自发性高血压大鼠脑微循环的影响[J].微循环学杂志,2005,15(2):43-44.
    [42]何正光,陈怡,祝慧凤,等.葛根素对大鼠脑缺血再灌注损伤的保护作用及其时效关系[G].第3届临床中药学学术研讨会论文集.北京:中华医学会,2010,32-38.
    [43]邓娟,周华东,陈曼娥.葛根素注射液对急性脑梗塞患者微循环保护机制的临床研究[J].微循环学杂志,20011,1(1):14-15.
    [44]刘萍,崔学顺,何新荣,等.注射用丹参(冻干)粉针对大鼠脑微循环的影响研究[J].中国医院用药评价与分析,2008,8(9):679-680.
    [45]王秋华,蒋玉凤,汪芸,等.丹酚酸B对低血压小鼠脑缺血能量代谢的影响3[J].北京中医药大学学报,2006,29(12):820-825.
    [46]魏林树.丹参对脑缺血再灌注区白细胞与内皮细胞粘附的影响[J].西南国防医药,2006,16(6):596-597.
    [47]王玉德,崔勇,孙波.核因子-κB活化与重症急性胰腺炎微循环障碍的关系[J].中国交通医学杂志,2006,19(5):431-432.
    [48]邹节明,潘佐静,张家铨,等.中药脑脉泰防治急性脑微循环障碍的实验研究[J].新医学,2003,(z1):15-16.
    [49]陈健文,蓝秀健,陈少锐,等.三七三醇皂苷对大鼠局灶性脑缺血损伤的保护作用和脑血流量的影响[J].热带医学杂志,2007,7(12):1159-1161.
    [50]柏俊,黄世福,孙备.血塞通分散片对血液流变学,血栓形成及微循环作用的实验研究[J].中国中医药科技,2007,14(2):93-95.
    [51]王世军,李定格,史仁华.川芎嗪,丹参注射液对正常状态及实验性微循环障碍小鼠脑微循环的影响[J].中国微循环,2000,4(4):213-215.
    [52]李玲,彭芳.银杏叶提取成分抗脑缺血研究现状与展望[J].国外医学:药学分册,1999,26(3):143-146.
    [53]谭华,李小刚,张泽兰,等.银杏叶提取物对急性脑梗死患者神经功能及血液流变学和血清自由基的影响[J].中国临床康复,2004,8(31):6960-6961.
    [54]皮业庆,尤家录.山莨菪碱对急性脑微循环障碍的防治作用[J].中风与神经疾病杂志,1994,11(3):135-137.
    [55]李麟仙,周凤鸣,杨良,等.灯盏素影响微循环障碍的实验研究[J].云南中医杂志,1986,5:5-9.
    [56]王殿俊.微循环与中医中药研究[J].微循环学杂志,1999,9(2):1-2.
    [57]余善强,杨重钧.中药改善微循环和血流变的实验研究进展[J].中国中医药信息杂志,1999,6(1):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700