用户名: 密码: 验证码:
新型硫化矿捕收剂的合成及其浮选性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化矿是有色金属的主要矿床资源,捕收剂是硫化矿综合回收的技术核心。在已有的研究基础上,以N-烃氧羰基异硫氰酸酯为中间体,合成了具有新结构的N-烃氧羰基硫氨酯、N-烃氧羰基硫脲以及N-烃氧羰基硫氮酯捕收剂,并由此研制出了新结构的二烃氧羰基双硫氨酯、二烃氧羰基双硫脲捕收剂。通过一类希夫碱相转移催化剂的制备,实现了有机相中N-烃氧羰基异硫氰酸酯及其衍生物的一锅法高效合成。考察了新型捕收剂对硫化矿单矿物和实际矿石的捕收性能,研究了捕收剂与矿物之间的作用机理。
     采用异硫氰酸酯为中间体,分别与醇、胺以及硫醇反应,制备出三类新结构的捕收剂。以氯甲酸乙酯和硫氰酸钠为原料,于3-8℃的低温水相中在双(4-N,N-二甲基氨基苯基)甲烷的相转移催化作用下,反应4h合成了N-乙氧羰基异硫氰酸酯中间体,基于氯甲酸乙酯的收率为96.2%。将N-乙氧羰基异硫氰酸酯与乙醇在45℃下反应3h合成了O-乙基-N-乙氧羰基硫氨酯,基于异硫氰酸酯的收率为95.3%。将N-乙氧羰基异硫氰酸酯和丙胺在0-5℃下反应1h合成了N-丙基-N-乙氧羰基硫脲,基于异硫氰酸酯的收率为98.2%。将N-乙氧羰基异硫氰酸酯和苄硫醇在20℃下反应4h合成了S-苄基-N-乙氧羰基硫氮酯(BITCM),基于异硫氰酸酯的产率为92.53%。根据相同条件,合成了多种N-乙氧羰基硫氨酯和N-乙氧羰基硫脲。采用熔点测试、元素分析、紫外光谱分析、红外光谱分析、核磁共振波谱分析、质谱分析等手段对捕收剂进行了结构和性能表征。
     设计出异硫氰酸酯分别与二元醇、二元胺经亲核加成反应制备浮选捕收剂的合成路线,制备了两类新型双配体捕收剂二乙氧羰基双硫氨酯(DTC)和二乙氧羰基双硫脲(DTU)。通过合成工艺条件的系统实验研究,得到了优化工艺条件与制备方法:制备DTC时反应温度为50℃,反应时间为4h;制备DTU时反应温度为20℃,反应时间为1h。制备出N,N’-二乙氧羰基-O,O’-(1,2-亚乙基)双硫氨酯(DTC-2)、N,N’-二乙氧羰基-O,O'-(1,4-亚丁基)双硫氨酯(DTC-4)、N,N’-二乙氧羰基-O,O’-(1,6-亚已基)双硫氨酯(DTC-6)、N,N’-二乙氧羰基-N",N’”-(1,2-亚乙基)双硫脲(DTU-2)、N,N’-二乙氧羰基-N”,N’”-(1,2-异丙基)双硫脲(DTU-3)、N,N’-二乙氧羰基-N”,N’”-(1,6-亚已基)双硫脲(DTU-6)两个系列共六种捕收剂。DTC系列捕收剂的产率均在95%以上,DTU系列捕收剂的产率均在83%以上。采用元素分析、紫外光谱、红外光谱、核磁共振氢谱和碳谱、质谱等分析手段,对产物进行了结构和性能表征,并测定了熔点等物理性质。
     发明了以硫氰酸盐和氯甲酸酯为原料、在希夫碱类相转移催化剂的作用下于有机相中一锅法合成异硫氰酸酯及其衍生物的路线。设计出在催化剂对甲苯磺酸的作用下经酮(醛)胺缩聚反应制备希夫碱类催化剂的合成路线,制备了三种新型希夫碱类相转移催化剂:N-(N’,N’-二甲氨基丙基)甲基异丁基亚胺(PMIA)、N-苯基甲基异丁基亚胺(BMIA)、N-(N’,N’-二甲氨基丙基)苯甲亚胺(APPA)。再以硫氰酸钠和氯甲酸乙酯为原料,在新型希夫碱的催化作用下于有机溶剂中合成N-乙氧羰基异硫氰酸酯。通过合成工艺条件的系统实验研究,得到了优化工艺条件与制备方法:制备希夫碱时胺与酮(醛)的摩尔比为1:1.10,对甲苯磺酸与胺的摩尔比为2.5%:1,反应温度为110~120℃,反应时间为2h;制备N-乙氧羰基异硫氰酸酯时在邻苯二甲酸二乙酯体系中以PMIA为催化剂,原料的物质的量之比为硫氰酸钠:氯甲酸乙酯=1.10:1,反应时间为2h、反应温度为35℃,PMIA的最佳用量为硫氰酸钠摩尔用量的1.5%,产率为97.7%。由有机相中合成的异硫氰酸酯中间体,制备了复配捕收剂DT。
     系统地研究了新型捕收剂对硫化矿中典型的两种单矿物和实际矿石的捕收性能。考察了几种硫氨酯捕收剂对黄铜矿和黄铁矿的捕收性能,得到有效分离黄铜矿和黄铁矿的最佳pH值为9.5~10,最佳捕收剂用量为60.24mg/L,得出上述捕收剂中性能最好的是O-异辛基-N-乙氧羰基硫氨酯(IOECTC)。将IOECTC和BITCM.DTC-4.DTU-3分别复配,考察了这三种复配捕收剂在不同配比下对黄铜矿和黄铁矿的捕收性能,并与单独使用IOECTC捕收剂时的效果进行了比较。试验结果表明,复配捕收剂的浓度越大,捕收能力越强,且在这三种复配捕收剂中,BITCM-IOECTC捕收剂的捕收能力优于另外两种复配捕收剂。对分别与IOECTC、BITCM-IOECTC、(DTC-4)-IOECTC和(DTU-3)-IOECTC作用前后的黄铜矿和黄铁矿进行了红外光谱表征,分析结果表明,捕收剂与黄铜矿之间发生的是化学作用,而与黄铁矿之间发生的是物理作用。对江西德兴铜矿的硫化铜矿石,在捕收剂用量非常小的条件下,新型捕收剂的捕收性能、黄铁矿选择性优于现有捕收剂丁基黄药,对铜有良好的捕收能力,而对钼的捕收能力远远高于Mac-12。对四川呷村的多金属硫化矿,新型捕收剂对硫化铜矿的捕收能力都很强,一段选铜所获得的回收率都比现场使用药剂BK905高,其中性能最优的是DTC-6。二段选铅结果表明DTU-6和BITCM对硫化铅的捕收能力都很强,优于现场使用药剂BK906,其中性能最优的是BITCM。秘鲁铜矿石浮选结果显示,复配捕收剂DT不但表现出对铜的强捕收能力,而且对砷具有很好的选择性,浮选性能优于Mac-12和Z-200。
     研究了新型捕收剂与硫化矿的作用机理。通过紫外光谱考察了BITCM、DTC和DTU三类捕收剂与Cu2+、Fe3+、Ni2+、Pb2+、Zn2+、Ag+、Co2+之间作用的强弱,发现这些捕收剂最容易与Cu2+发生络合,可与Ni2+、Pb2+、Zn2+、Ag+、Co2+发生一定的络合,几乎不与Fe3+发生络合。且DTC与铜离子发生络合的能力随碳链的增长而减小,DTU与之相反。分别制备了BITCM、DTC-4、DTU-6与铜离子形成的络合物,对它们进行了红外光谱的表征,分析结果表明,C=S中的硫原子可能参与和铜的成键。量子化学计算结果表明,新型捕收剂BITCM、DTC-4、DTU-6的捕收性能优于传统的捕收剂丁基黄药等,具有广阔的应用前景。
Sulfide ores are main mineral resource of non-ferrous metals, collectors are the technical core. N-ethoxycarbonyl thiocarbamates, N-ethoxycarbonyl thioureas and N-ethoxycarbonyl dithiocarbamate with new structures were synthesized using N-ethoxycarbonyl isothiocyanate as intermediate based on the past research, diethoxycarbonyl dithionocarbamates and diethoxycarbonyl dithioureas were developed, either."One-pot" synthesis of N-ethoxycarbonyl isothiocyanate and its derivatives in organic phase was achieved via the preparation of schiff base phase transfer catalysts. The flotation performance of the novel collectors to monominerals and sulfide ores were investigated, the interactions between collectors and ores were studied.
     Three types of novel collectors were prepared using isothiocyanate as intermediate and react with alchhol, amine or mercaptan. Isothiocyanate was synthesized with chloroformic ester and thiocyanate as raw materials, catalyzed by bis(4-N,N-dimethyl amino phenyl) methane in water in3~8℃for4h, and the yield was96.2%. O-ethyl-N-ethoxycarbonyl thiocarbamate was synthesized with N-ethoxycarbonyl isothiocyanate and ethanol in45℃for3h, the yield was95.3%. N-propyl-N-ethoxycarbonyl thiourea was synthesized with N-ethoxycarbonyl isothiocyanate and propylamine in0~5℃for1h, the yield was98.2%. S-benzyl-N-ethoxycarbonyl thiocarbamate was synthesized with N-ethoxycarbonyl isothiocyanate and benzyl mercaptan in20℃for4h, the yield was92.53%. With the same condition, several N-ethoxycarbonyl thiocarbamates and N-ethoxycarbonyl thioureas were prepared. Meltingtest, elemental analysis, UV spectrum, infrared spectrum,1H NMR,13C NMR and mass spectrum were adopted to characterize their structures and properties.
     Addition reaction of isothiocyanate with dihydric alcohol or diamine as raw materials were employed to design the synthesis route of flotation collectors, two novel types of flotation collectors dithiocarbamate(DTC) and dithiourea(DTU) were invented. Synthetic processes were studied systematically by experimental research, and optimal conditions were as follows:reaction temperature50℃and reaction time4h for preparation of DTC; reaction temperature20℃and reaction time1h for preparation of DTU. Two series and six kinds of collectors N,N'-diethoxycarbonyl-0,0'-(1,2-ethylidene) dithionocarbamate(DTC-2), N,N'-diethoxycarbon-yl-O,O'-(1,4-butylidene) dithionocarbamate(DTC-4), N,N'-diethoxycar-bonyl-O,O'-(1,6-hexylidene) dithionocarbamate(DTC-6), N,N'-diethoxy-carbonyl-N",N'"-(1,2-ethylidene) dithiourea(DTU-2), N,N'-diethoxycar-bonyl-N",N"'-(1,2-isopropyl) dithiourea(DTU-3), N,N'-diethoxycarbon-yl-N",N'"-(1,6-hexylidene) dithiourea (DTU-6) were prepared. Yields of DTC are all above95%, yields of DTU are all above83%. Elemental analysis, UV spectrum, infrared spectrum,1H NMR,13C NMR and mass spectrum were adopted to characterize their structures and properties, physical properties such as melting point were also assayed.
     "One-pot" synthesis route of isothiocyanate and its derivatives in organic phase catalyzed by schiff base phasetransfer catalyst with thiocyanate and chloroformic ester as raw materials was designed. Condensation polymerization with ketone (aldehyde) and amine was used to design the synthesis route of schiff base catalyst, and three new schiff based phasetransfer catalysts were developed, they are N-(N',N'-dimethyl amino propyl) methyl isobutyl imine (PMIA), N-phenyl methyl isobutyl imine (BMIA) and N-(N',N'-dimethyl amino propyl) phenyl methyl imine (APPA). N-ethoxylcarbonyl isothiocyanate was prepared with schiff base as catalyst, sodium thiocyanate and ethyl chloroformate as raw materials in organic solvent. Synthetic processes were studied systematically by experimental research, and optimal conditions were as follows:molar ratio of amine to methyl ketone(aldehyde)1:1.10, molar ratio of p-toluenesulfonic acid to amine2.5%:1, reaction temperature110~120℃, and reaction time2h for preparation of schiff base; use PMIA as catalyst, molar ratio of sodium thiocyanate to ethyl chloroformate1.10:1, molar ratio of PMIA to sodium thiocyanate1.5%:1, in diethyl phthaltate, reaction temperature35℃and reaction time2h for preparation of N-ethoxylcarbonyl isothiocyanate. Associative collector DT was prepared, too.
     Flotation properties of new collectors for monominerals and actual ores of sulfide ore were investigated systematically. Flotation properties of some thiocarbamate collectors for chalcopyrite and pyrite were discussed first, the optimal pH value to efficiently separate them was9.5~10, the optimal dosage of collectors was60.24mg/L. In those collectors, the best one was O-isooctyl-N-ethoxycarbonyl thiocarbamate (IOECTC). Mix IOECTC with BITCM, DTC-4and DTU-3separately in different ratios, the flotation performances of chalcopyrite and pyrite were studied. The results showed that the thicker the collector was, the better the collecting ability was. And among those mixed collectors, BITCM-IOECTC performed best. Chalcopyrite and pyrite before and after complexed with IOECTC or (DTC-4)-IOECTC or (DTU-3)-IOECTC or BITCM-IOECTC were characterized by infrared spectrum, the result indicated that adsorption of collectors on chalcopyrite surface was chemical adsorption and on pyrite surface was physical adsorption. For copper sulfide ore from Dexing copper mine, those novel collectors showed superior flotation properties and selectivity for pyrite with less dosage compared with butyl xanthate. They displayed good collecting ability for copper, and their collecting ability for molybdenum were better than Mac-12. For polymetallic sulfide ore from Gacun, those collectors all performed strong collecting ability for copper sulfide ore, the recoveries were high than BK905in first section to select copper from ores, and the best one was DTC-6. DTC-6and BITCM showed excellent collecting ability for lead sulfide ore compared with BK906, the optimal was BITCM. Flotation performance of copper ores form Peru indicated that, DT showed excellent collecting ability for copper and selectivity for arsenic, and are better than Mac-12and Z-200.
     The interaction mechanism of new collectors with sulfide ores was discussed. The intensity of interactions between BITCM, DTC, DTU and Cu2+, Fe3+, Ni2+, Pb2+, Zn2+, Ag+, Co2+were examined by ultraviolet spectrum. The results showed that, these collectors could complex with Cu2+easily, could complex with Ni2、Pb2+、Zn2+、Ag+、Co2+, and could hardly complex with Fe3+. The complexing abilities of DTC to Cu2+were weakened with the increase of the chain length, the condition of DTU was opposite. The complexes of DTC-4or DTU-6or BITCM with Cu2+was prepared, they were characterized by infrared spectrum and it was indicated that sulfur atom in C=S may bond with copper. The quantum chemistry calculation results demonstrated that BITCM, DTC-4and DTU-6have better flotation properties compared with now available collectors for sulfide ore such as butyl xanthate, and are hopeful to be put into practice.
引文
[1]王伟伟,于晨.2011年中国有色金属对外贸易分析与展望[J]。中国金属通报,2012(6):19-21.
    [2]Burger J R,徐政和.泡沫浮选进展[J].国外金属矿选矿,1984(5):29-33.
    [3]杨玉珠,张杰,郭宇.德钦羊拉硫化铜矿石选矿工艺流程研究[J].有色金属(选矿部分),2006(2):1-5.
    [4]彭会清,熊晨曦,文勤.安徽某难选硫化铜矿石浮选试验研究[J].金属矿山,2006(12):26-28,70.
    [5]艾光华,周源.低碱条件下某硫化铜矿石选矿工艺流程研究[J].金属矿山,2010(7):41-43.
    [6]邓传宏.铅锌浮选新技术在白牛厂银多金属矿的应用[J].有色金属设计,2006,33(2):13-21,35.
    [7]S·松.细粒方铅矿和闪锌矿的絮团浮选[J].国外金属矿选矿,2001,38(4):6-11.
    [8]陈家栋,邓敬石.富含铜、铅离子铅锌矿浮选研究[J].云南冶金,2001,30(4):8-11.
    [9]高起鹏.西藏玉龙某难选铜矿石选矿试验研究[J].铜业工程,2005(1):25-26.44.
    [10]Pauporte T, Schuhmann D. An electrochemical study of natural enargite under conditions relating to those used in flotation of sulphide minerals[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996, 111(1-2):1-19.
    [11]Tolley W, Kotlyar D, Van Wagoner R. Fundamental electrochemical studies of sulfide mineral flotation[J]. Minerals Engineering,1996,9(6):603-637.
    [12]Leppinen J O, Hintikka V V, Kalapudas R P. Effect of electrochemical control on selective flotation of copper and zinc from complex ores[J]. Minerals Engineering,1998,11(1):39-51.
    [13]Goktepe F, Williams K P. Electrochemical effects in flotation of a Turkish complex sulphide ore[J]. Minerals Engineering,1995,8(9):1035-1048.
    [14]Kocabag D, Guler T. Two-liquid flotation of sulphides:An electrochemical approach[J]. Minerals Engineering,2007,20(13):1246-1254.
    [15]鲁军,孔晓薇.复杂多金属硫化矿浮选新技术研究现状[J].矿产综合利用,2010(3):23-26.
    [16]Woods R. Electrochemical potential controlling flotation[J]. International Journal of Mineral Processing,2003,72(1-4):151-162.
    [17]Guo H, Yen W T. Selective flotation of enargite from chalcopyrite by electrochemical control[J]. Minerals Engineering,2005,18(6):605-612.
    [18]Ekmekci Z, Becker M, Tekes E B, et al. The relationship between the electrochemical, mineralogical and flotation characteristics of pyrrhotite samples from different Ni Ores[J]. Journal of Electroanalytical Chemistry, 2010,647(2):133-143.
    [19]J·O·列皮伦,刘万峰,肖力子.粗粒浮选的有效技术--泡沫中分选[J].国外金属矿选矿,2004,41(9):9-14.
    [20]Ata S, Ahmed N, Jameson G J. Collection of hydrophobic particles in the froth phase[J]. International Journal of Mineral Processing,2002,64(2-3): 101-122.
    [21]朱继生.狮子山铜矿尾矿选金试验研究[J].2002(10):148-150.
    [22]倪章元,曾建喜.黄沙坪铅锌矿选矿工艺改造生产实践[J].矿产保护与利用,2003(2):31-34.
    [23]高承家.短锥旋流器在狮子山铜矿尾砂选金中的应用[J].有色金属,2002,54(3):90-92.
    [24]B·基,李玉敏,林森.用法尔康B型选矿机回收微细粒金[J].国外金属矿选矿,2007,44(1):25-28.
    [25]朱喆.微生物絮凝剂在酸浸渣综合利用过程中的应用[D].上海:东华大学,2007.
    [26]宋京津,李科林.微生物絮凝剂处理重金属废水及贵金属回收的研究进展[J].消费导刊,2011(6):130-131,76.
    [27]杨慧芬,张强.草分枝杆菌与常规捕收剂对微细粒赤铁矿捕收能力的比较[J].矿冶工程,2003,23(4):32-34.
    [28]袁欣,袁楚雄,钟康年,等.非金属矿物的微生物加工技术研究(Ⅱ)——黄铁矿的微生物浮选研究[J].中国非金属矿工业导刊,2000(4):17-19,24.
    [29]K-A-拉塔拉扬,李长根,雨田.矿物微生物诱导浮选和絮凝[J].国外金属矿选矿,2004,41(9):15-20.
    [30]张明旭,李庆,王勇,等.球红假单胞菌对黄铁矿浮选脱除的影响[J].安徽理工大学学报(自然科学版),2003,23(3):45-49.
    [31]刘朝华.生物表面活性剂的制备及其浮选捕收性能研究[D].武汉:武汉理工大学,2004.
    [32]P·帕特拉,杨辉亚,雨田。在黄铜矿与石英和方解石分离中微生物诱导絮凝和浮选[J].国外金属矿选矿,2005,42(3):22-29.
    [33]李安,李宏煦,郭云驰,等.生物选矿的基本理论及研究进展[J].金属矿山,2010(6):109-113,122.
    [34]周桂英,阮仁满,温建康,等.微生物选矿药剂的研究进展[J].2006,26(8):128-130.
    [35]张泾生,阙煊兰.矿用药剂[M].北京:冶金工业出版社,2008:191.
    [36]蔡春林,覃文庆,邱冠周,等.新型浮选剂的合成及对硫化铜矿的应用研究[J].中国矿山工程,2006,35(2):34-36.
    [37]朱继生.新型甲基异戊基复合黄药研制及其浮选性能评价[J].有色金属(选矿部分),2006(5):47-49.
    [38]刘云派,胡玖林,戎敢.萜烯二硫代羧酸乙酯的合成及其选矿性能[J].福建林学院学报,2004,24(1):80-83.
    [39]刘广义,钟宏,王晖,等.T-2K捕收剂优先浮选硫化铜矿石的研究[J].金属矿山,2003(1):31-33.
    [40]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1996:24.
    [41]Hamm P C, Groves W, D'Amico J J, et al. Destroying vegetation with haloalkeny disubstituted thionocarbamates. United States:3224864[P], 1965-12-21.
    [42]俞继华.乙硫氨酯的合成[J].有色矿山,2001,30(6):31-32.
    [43]Bishop M D, Gray L A. Catalytic synthesis of thionocarbamates from xanthates and amines. United States:5041599[P],1991-08-20.
    [44]唐林生,李高宁,林强.O-乙基-N,N-二甲基硫氨酯的催化合成及浮选性能[J].有色金属(选矿部分),2000(3):33-34.
    [45]Lewellyn M E. Process for the preparation of N-allyl-O-alkyl thionocarbamates. United States:4482500[P],1984-11-13.
    [46]张晓鹏,陆世维.一种由苯胺合成硫代氨基甲酸酯的方法.中国:1847224A[P],2006-10-18.
    [47]刘广义,钟宏,戴塔根.乙氧羰基硫代氨基甲酸酯弱碱性条件下优先选铜[J].中国有色金属学报,2006,16(6):1108-1114.
    [48]高起鹏,孟宪瑜,宿静,等.在硫化铜矿的选矿中使用甲基硫氨酯[J].铜 业工程,2003(3):18-20.
    [49]曾湘晖,曹文仲,占昌朝.烷基硫氨酯系列捕收剂的合成及性能研究[J].化工时刊,2006,20(3):19-21.
    [50]Sheridan M S, Nagaraj D R, Fornasiero D, et al. The use of a factorial experimental design to study collector properties of N-allyl-O-alkyl thionocarbamate collector in the flotation of a copper ore[J]. Minerals Engineering,2002,15(5):333-340.
    [51]D·福内西罗,吴熙群,肖力子.用于硫化铜矿分离的选择性捕收剂[J].国外金属矿选矿,2000(12):14,22-24.
    [52]尹汉东,马春林,张如芬.三丁基锡二硫代氨基甲酸酯的合成及表征[J].合成化学,1999,7(3):288-291.
    [53]Abulnaja K O, Harwood J L. Thiocarbamate herbicides inhibit fatty acid elongation in a variety of monocotyledons [J]. Phytochemistry,1991,30(5): 1445-1447.
    [54]尹汉东,王勇,张如芬,等.三苯基锗二硫代氨基甲酸酯的合成及表征[J].高等学校化学学报,2000,21(8):1231-1233.
    [55]Zhu B, Marinelli B A, Abbanat D, et al. Synthesis and antibacterial activity of 3-keto-6-O-carbamoyl-11,12-cyclic thiocarbamate erythromycin A derivatives [J]. Bioorganic & Medicinal Chemistry Letters,2007,17(14): 3900-3904.
    [56]Ohta K, Ogawa T, Suzuki T, et al. Novel estrogen receptor (ER) modulators: Carbamate and thiocarbamate derivatives with m-carborane bisphenol structure[J]. Bioorganic & Medicinal Chemistry,2009,17(23):7958-7963.
    [57]Liu G Y, Zhong H, Xia L Y, et al. Improving copper flotation recovery from a refractory copper porphyry ore by using ethoxycarbonyl thiourea as a collector[J]. Minerals Engineering,2011,24(8):817-824.
    [58]刘广义,钟宏,戴塔根,等.中碱度条件下乙氧羰基硫脲浮选分离铜硫[J].中国有色金属学报,2009,19(2):389-396.
    [59]Fairthorne G, Fornasiero D, Ralston J. Interaction of thionocarbamate and thiourea collectors with sulphide minerals:a flotation and adsorption study [J]. International Journal of Mineral Processing,1997,50(4):227-242.
    [60]Shen W Z, Fornasiero D, Ralston J. Effect of collectors, conditioning pH and gases in the separation of sphalerite from pyrite[J]. Minerals Engineering, 1998,11(2):145-158.
    [61]Birinci E, Gulfen M, Aydin A O. Separation and recovery of palladium(II) from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin[J]. Hydrometallurgy,2009,95(1-2):15-21.
    [62]Yang X, Moats M S, Miller J D, et al. Thiourea-thiocyanate leaching system for gold[J]. Hydrometallurgy,2011,106(1-2):58-63.
    [63]张雷,赵春霞,马东兰,等.新硫脲试剂PMPT和OPT的合成及其与Cu(Ⅱ)显色反应的研究和应用[J].理化检验(化学分册),1999,35(2):51-54.
    [64]李英,荆瑞俊,马东兰,等.树脂分离、用硫脲试剂连续测定金(Ⅲ)、钯(Ⅱ)的研究[J].河南职业技术师范学院学报,2003,31(3):61-62.
    [65]马万山,钟黎,刘清莹.N-烯丙基-N'-(对苯磺酸钠)硫脲的合成及分析应用进展[J].信阳师范学院学报(自然科学版),2003,16(4):477-480.
    [66]Dohrmann R. Cation exchange capacity methodology Ⅲ:Correct exchangeable calcium determination of calcareous clays using a new silver-thiourea method[J]. Applied Clay Science,2006,34(1-4):47-57.
    [67]Klaus R K. New chemistry with old ligands:N-alkyl- and N,N-dialkyl-N'-acyl(aroyl)thioureas in co-ordination, analytical and process chemistry of the platinum group metals[J]. Coordination Chemistry Reviews, 2001,216-217:473-488.
    [68]Madrakian T, Afkhami A, Esmaeili A. Spectrophotometric determination of bismuth in water samples after preconcentration of its thiourea-bromide ternary complex on activated carbon[J]. Talanta,2003,60(4):831-838.
    [69]Shyla B, Mahadevaiah, Nagendrappa G. A simple spectrophotometric method for the determination of phosphate in soil, detergents, water, bone and food samples through the formation of phosphomolybdate complex followed by its reduction with thiourea[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2011,78(1):497-502.
    [70]薛思佳,王洁平.2-氟-6-氯苯甲酰基嘧啶基硫脲的合成及生物活性研究[J].有机化学,2003,23(10):1162-1164.
    [71]许东芳,李景智,郭彦玲,等.N’-(取代嘧啶-2-基)-N-菊酰硫脲的合成与生物活性研究[J].有机化学,2005,25(9):1053-1056.
    [72]薛思佳,卞王东,柴安,等.N-取代芳酰氨基-5-氟代苯基-2-呋喃甲酰硫脲的合成与生物活性测定[J].有机化学,2008,28(5):865-869.
    [73]刘志昌,刘晓霞,王应红,等.N-(香豆素-3-甲酰基)-N’-取代硫脲衍生物的合成及生物活性[J].有机化学,2011,31(1):136-140.
    [74]李景智,薛思佳,郭彦玲.N'-(4,6-二取代嘧啶-2-基)氧化烟酰硫脲的合成与生物活性测定[J].有机化学,2007,27(10):1278-1281.
    [75]陈治明,吴坤.吡咯硫脲类衍生物的合成与生物活性研究[J].安徽农业科学,2011,39(3):1401-1402.
    [76]宋媛.噻唑类硫脲衍生物的合成、热力学性质、生物活性及晶体结构研究[D].西安:西北大学,2009.
    [77]王小明,朱涛,郑良玉,等.p-D-葡萄糖基硫脲合成及生物活性研究[J].有机化学,2006,26(5):660-666.
    [78]Saeed S, Rashid N, Jones P G, et al. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents[J]. European Journal of Medicinal Chemistry,2010,45(4):1323-1331.
    [79]Saeed A, Shaheen U, Hameed A, et al. Synthesis, characterization and antimicrobial activity of some new 1-(fluorobenzoyl)-3-(fluorophenyl) thioureas[J]. Journal of Fluorine Chemistry,2009,130(11):1028-1034.
    [80]Krajacic M B, Novak P, Dumic M, et al. Novel ureas and thioureas of 15-membered azalides with antibacterial activity against key respiratory pathogens[J]. European Journal of Medicinal Chemistry,2009,44(9): 3459-3470.
    [81]Santos L D, Lima L A, Cechinel-Filho V, et al. Synthesis of new 1-phenyl-3-{4-[(2E)-3-phenylprop-2-enoyl]phenyl}-thiourea and urea derivatives with anti-nociceptive activity[J]. Bioorganic & Medicinal Chemistry,2008,16(18):8526-8534.
    [82]Karakus S, Kucukguzel S G, Kucukguzel I, et al. Synthesis, antiviral and anticancer activity of some novel thioureas derivedfrom N-(4-nitro-2-phenoxyphenyl)-methanesulfonamide[J]. European Journal of Medicinal Chemistry,2009,44(9):3591-3595.
    [83]Li H, Yan T, Yang Y, et al. Synthesis and structure-activity relationships of N-benzyl-N-(X-2-hydroxybenzyl)-N'-phenylureas and thioureas as antitumor agents[J]. Bioorganic & Medicinal Chemistry,2010,18(1): 305-313.
    [84]Mahajan A, Yeh S, Nell M, et al. Synthesis of new 7-chloroquinolinyl thioureas and their biological investigation as potential antimalarial and anticancer agents[J]. Bioorganic & Medicinal Chemistry Letters,2007, 17(20):5683-5685.
    [85]Maruyama T, Seki N, Onda K, et al. Discovery of novel thiourea derivatives as potent and selective β3-adrenergic receptor agonists[J]. Bioorganic & Medicinal Chemistry,2009,17(15):5510-5519.
    [86]Thammakan N, Somsook E. Synthesis and thermal decomposition of cadmium dithiocarbamate complexes[J]. Materials Letters,2006,60(9-10): 1161-1165.
    [87]Zhang J B, Lin X, Ren J L, et al. Synthesis and biodistribution of a novel 99mTc nitrido dithiocarbamate complex containing aromatic group for cerebral imaging[J]. Applied Radiation and Isotopes,2010,68(1):101-104.
    [88]Tiwari S, Bajpai A. Metal ion extraction by dithiocarbamate function supported on polyacrylamide[J]. Reactive and Functional Polymers,2005, 64(1):47-54.
    [89]Praveen R S, Naidu G R K, Prasada Rao T. Dithiocarbamate functionalized or surface sorbed Merrifield resin beads as column materials for on line flow injection-flame atomic absorption spectrometry determination of lead[J]. Analytica Chimica Acta,2007,600(1-2):205-213.
    [90]Hemantha H P, Sureshbabu V V. A simple approach for the synthesis of new classes of dithiocarbamate-linked peptidomimetics[J]. Tetrahedron Letters, 2009,50(50):7062-7066.
    [91]Bai L, Hu H P, Fu W, et al. Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions[J]. Journal of Hazardous Materials,2011,195:261-275.
    [92]Arain M A, Wattoo F H, Sarwar Wattoo M H, et al. Simultaneous determination of metal ions as complexes of pentamethylene dithiocarbamate in Indus river water, Pakistan[J]. Arabian Journal of Chemistry,2009,2(1): 25-29.
    [93]Jing X S, Liu F Q, Yang X, et al. Adsorption performances and mechanisms of the newly synthesized N, N'-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media[J]. Journal of Hazardous Materials,2009,167(1-3):589-596.
    [94]施先义,冯忠伟,韦文业.乙硫氮合成工艺的改进[J].化工技术与开发,2004,33(4):43-44.
    [95]宁小兵,罗琳,薛伟,等.用乙硫氮提高青海某氧化铜矿铜精矿指标的研 究[J].有色金属(选矿部分),2009(4):44-47.
    [96]佟士俄,逢本春.捕收起泡剂硫氮腈酯在我厂应用效果好[J].有色金属(冶炼部分),1978(12):58.
    [97]张会文.乙硫氮浮选铅及铅锌分离的研究[J].广东有色金属学报,1996,6(2):89-93.
    [98]Nicuolo F D, Serini S, Boninsegna A, et al. Redox regulation of cell proliferation by pyrrolidine dithiocarbamate in murine thymoma cells transplanted in vivo[J]. Free Radical Biology and Medicine,2001,31(11): 1424-1431.
    [99]Yoshikawa Y, Adachi Y, Sakurai H. A new type of orally active anti-diabetic Zn(II)-dithiocarbamate complex[J]. Life Sciences,2007,80(8):759-766.
    [100]Crnogorac G, Schwack W. Residue analysis of dithiocarbamate fungicides[J]. Trends in Analytical Chemistry,2009,28(1):40-50.
    [101]van Faassen E E, Koeners M P, Joles J A, et al. Detection of basal NO production in rat tissues using iron-dithiocarbamate complexes[J]. Nitric Oxide,2008,18(4):279-286.
    [102]钟宏,刘广义,王晖,等.一种N-烃氧基羰基异硫氰酸酯及其衍生物的制备方法.中国:1548418A[P],2004-11-24.
    [103]Lewellyn M E, Wang S S, Strydom P J. Novel process of alkoxy and aryloxy isothiocyanate preparation. United States:4778921[P],1988-10-18.
    [104]Fu Y L, Strydom P J. Process for the production of isothiocyanate derivatives. United States:4659853 [P],1987-04-21.
    [105]Wang S S, Magliocco L G. Process of alkoxy and aryloxy isothiocyanate preparation. United States:5194673[P],1993-03-16.
    [106]陈继畴,魏太保.固—液相转移催化法合成苯甲酰基异硫氰酸酯[J].化学世界,1994(11):583-585.
    [107]陈继畴,魏太保.液—液相转移催化法合成苯甲酰基异硫氰酸酯[J].农药,1995,34(2):12-14.
    [108]Kulkarni S V, Desai V C. Process for manufacture of N-alkoxy(or aryloxy)carbonyl isothiocyanate derivatives in the presence of N, N-dialkylarylamine catalyst and aqueous solvent. United States:6184412 [P], 2001-02-06.
    [109]乐长高.异硫氰酸苯酯的合成[J].化工时刊,1999(10):34-36.
    [110]杜晓华,许响生,傅幼锋,等.非硫光气法合成一些难合成的芳基异硫氰 酸酯[J].农药,2004,43(2):78-79.
    [111]谢兵,周光明.异硫氰酸酯的制备及应用[J].化工时刊,2006,20(3):71-75.
    [112]Dickore K, Kiihle E. Sulfonyl isothiocyanates and a process for their production. United States:3346590[P],1967-10-10.
    [113]Goddard S J. Novel 2-aryl-2,3,5,6,7,8-hexahydro-3-thioxoimidazo-[1,5-a-] pyridin-1(bah)-ones as herbicides. United States:4138242[P],1979-02-06.
    [114]Chen C Y, Lin H C, Huang Y Y, et al.'One-flask' transformation of isocyanates and isothiocyanates to guanidines hydrochloride by using sodium bis(trimethylsilyl)amide[J]. Tetrahedron,2010,66(10):1892-1897.
    [115]林奇,张有明,魏太保,等.2,5-二乙氧甲酰氨基-1,3,4-噻二唑超分子化合物的合成和晶体结构[J].有机化学,2005,25(3):290-294.
    [116]Yuan P, Chen B A, Liu D L. Anticancer Mechanisms and Researches of Isothiocyanates[J]. Chinese Journal of Natural Medicines,2008,6(5): 325-332.
    [117]Noshita T, Kidachi Y, Funayama H, et al. Anti-nitric oxide production activity of isothiocyanates correlates with their polar surface area rather than their lipophilicity[J]. European Journal of Medicinal Chemistry,2009,44(12): 4931-4936.
    [118]Psurski M, Blazewska K, Gajda A, et al. Synthesis and antiproliferative activity of novel α-and β-dialkoxyphosphoryl isothiocyanates [J]. Bioorganic & Medicinal Chemistry Letters,2011,21(15):4572-4576.
    [119]Troncoso R, Espinoza C, Sanchez-Estrada A, et al. Analysis of the isothiocyanates present in cabbage leaves extract and their potential application to control Alternaria rot in bell peppers[J]. Food Research International,2005,38(6):701-708.
    [120]江镇海.异硫氰酸酯在农药上的应用[J].农药市场信息,2010(23):32.
    [121]杨菁,孙黎光,白秀珍,等.异硫氰酸苯酯柱前衍生化反相高效液相色谱法同时测定18种氨基酸[J].色谱,2002,20(4):369-371.
    [122]Aghazadeh-Habashi A, Sattari S, Pasutto F, et al. High performance liquid chromatographic determination of glucosamine in rat plasma[J]. Journal of Pharmacy and Pharmaceutical Sciences,2002,5(2):176-180.
    [123]Fuerstenau D W, Herrera-Urbina R, McGlashan D W. Studies on the applicability of chelating agents as universal collectors for copper minerals[J]. International Journal of Mineral Processing,2000,58(1-4):15-33.
    [124]Hope G A, Woods R, Boyd S E, et al. A SERS spectroelectrochemical investigation of the interaction of butylethoxycarbonylthiourea with copper surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,232(2-3):129-137.
    [125]Nagaraj D R, Brinen J S. SIMS study of adsorption of collectors on pyrite[J]. International Journal of Mineral Processing,2001,63(1):45-57.
    [126]Fairthorne G, Fornasiero D, Ralston J. Interaction of thionocarbamate and thiourea collectors with sulphide minerals:a flotation and adsorption study[J]. International Journal of Mineral Processing,1997,50(4):227-242.
    [127]Fairthorne G, Fornasiero D, Ralston J. Solution properties of thionocarbamate collectors[J]. International Journal of Mineral Processing, 1996,46(1-2):137-153.
    [128]Mielczarski J A, Yoon R H. Spectroscopic studies of the structure of the adsorption layer of thionocarbamate.2. On cuprous sulfide[J]. Langmuir, 1991,7(1):101-108.
    [129]Fairthorne G, Fornasiero D, Ralston J. Formation of a copper-butyl ethoxycarbonyl thiourea complex[J]. Analytica Chimica Acta,1997,346(2): 237-248.
    [130]Esmail R, Kurzer F. The chemistry of ethoxycarbonyl isothiocyanate and related compounds[J]. Synthesis,1975,5:301-314.
    [131]George B, Papadopoulos E P. Recent advances in the chemistry of ethoxycarbonyl isothiocyanate and related compounds[J]. Journal of Heterocyclic Chemistry,1983,20:1127-1142.
    [132]梁学平.异硫氰酸酯的合成研究进展[J].江西植保,2011,34(3):129-134.
    [133]王帅.聚酯基硫脲树脂的合成及其对贵金属离子的吸附分离性能[D].长沙:中南大学,2008.
    [134]Kulkarni Shekhar V., Desai Vijay C在二烷基芳胺存在下制备羰基异硫氰酸酯及其衍生物的方法.中国:12777190[P],2000-12-20.
    [135]钟宏,刘广义,王晖,等.一种N-烃氧基羰基异硫氰酸酯及其衍生物的制备方法.中国:1548418A[P],2004-11-24.
    [136]黄明深Eutrema Wasabi中异硫氰酸酯提取、含量测定及其影响因素[J].生物技术,2005,15(3):49-51.
    [137]余润兰,邱冠周,胡岳华,等.乙硫氮在铁闪锌矿表面吸附的电化学行为 及机理[J].中国有色金属学报,2005,15(9):1452-1457.
    [138]邓芹英,刘岚,邓慧敏.波谱分析教程[M].北京:科学出版社,2007:26.
    [139]刘广义.硫化铜矿石的综合利用及新型捕收剂研究[D].长沙:中南大学,2004.
    [140]Hallale O, Bourneb S A, Koch R K. Metallamacrocyclic complexes of Ni(Ⅱ) with 3,3,3',3'-tetraalkyl-1,1'-aroylbis(thioureas):crystal and molecular structures of a 2:2 metallamacrocycle and a pyridine adduct of the analogous 3:3complex[J]. CrystEngComm,2005,7(25):161-166.
    [141]Westra A N, Bourneb S A, Koch R K. First metallamacrocyclic complexes of Pt(IV) with 3,3,3',3'-tetraalkyl-1,1'-phenylenedicarbonylbis(thioureas): synthesis by direct or electrolytic oxidative addition of I2, Br2 and Cl2[J]. Journal of the Chemical Society,2005(17):2916-2924.
    [142]He Y, Zhong C F, He A H, et al. Synthesis and luminescent properties of novel bisfunctional polymeric complexes based on carbazole and 8-hydroxyquinoline groups[J]. Materials Chemistry and Physics,2009, 114(1):261-266.
    [143]Phillip W H, John B H. Collectors. United States:20100000913A1[P], 2010-01-07.
    [144]Klaus-Ulrich P, Tobias R, Michael P. Flotation reagent for minerals containing silicate. United States:20090152174A1[P],2009-06-18.
    [145]Kumar R, Saini R, Ansari M N. Complex formation of some 3d metal ions with potassium propylene dixanthates[J]. Journal of the Institution of Chemists,2003,75(6):192-193.
    [146]Rodopoulos T, Silvester E J. Selective recovery of minerals by flotation. United States:7150357[P],2006-12-19.
    [147]栾和林,姚文,武荣成.一种硫代胺基甲酸酯类化合物的制备方法.中国:1153774A[P],1997-07-09.
    [148]May J P, Ting R, Lermer L, et al. Covalent Schiff Base Catalysis and Turnover by a DNAzyme:A M2+-Independent AP-Endonuclease Mimic[J]. Journal of the American Chemical Society,2004,126(13):4145-4156.
    [149]Handa S, Gnanadesikan V, Matsunaga S, et al.syn-Selective Catalytic Asymmetric Nitro-Mannich Reactions Using a Heterobimetallic Cu-Sm-Schiff Base Complex[J]. Journal of the American Chemical Society, 2007,129(16):4900-4901.
    [150]O'Donnell M J. The Enantioselective Synthesis of a-Amino Acids by Phase-Transfer Catalysis with Achiral Schiff Base Esters[J]. Accounts of Chemical Research,2004,37(8):506-517.
    [151]Sheridan M S, Nagaraj D R, Fornasiero D, et al. The use of a factorial experimental design to study collector properties of N-allyl-O-alkyl thionocarbamate collector in the flotation of a copper ore[J]. Minerals Engineering,2002,15(5):333-340.
    [152]蒋玉仁.黄金浮选剂设计与合成及结构性能关系研究[D].中南工业大学,1994.
    [153]王淀佐.浮选药剂作用原理与应用[M].北京:冶金工业出版社,1984:138-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700