用户名: 密码: 验证码:
耦合生态技术深度处理农村分散式生活污水效能与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以设计一种可推广的分散式生活污水深度生态处理技术为目标,以耦合Sequencing Batch Biofilm Reactor (SBBR)及Vertical Flow Constructed Wetlands (VFCW)技术为基础设计了SBBR-VFCW装置。在SBBR-VFCW基础上,以恢复和维持农村塘、池水体生态健康为目标,设计了促生态恢复型集成式生态浮床(Restoration-Promoting Integrated Floating Bed, RPIFB)。实验以SBBR-VFCW为核心处理技术,以RPIFB为农村水体生态系统的保育技术,为农村分散式生活污水深度处理及水体生态环境健康维护提供了一套新的技术方案。具体内容包括:
     (1)研究通过设计有效容积为18L、工作容积为12.5L的SBBR反应器,处理了TN、TP、NH4+-N、CODCr浓度范围分别为87.0-100.0mg/L、6.0-8.0mg/L、75.0-85.0mg/L、490.0-510.0mg/L的高浓度和64.0-75.0mg/L、4.0-6.0mg/L、55.0-64.0mg/L、360.0-380.0mg/L的中浓度模拟农村分散式生活污水(文中简称污水)。以12h为一个周期分两阶段共进行了20周期的污水处理实验。其中,前10周期进水负荷为7L,考察了SBBR系统对两种浓度污水的处理能力;后10周期,进水由7L/cycle,以0.5L/cycle的增长速率渐增至12.5L/cycle,考察了SBBR的耐负荷增长能力。结果显示:SBBR处理高浓度污水时出水中的TN、TP、 NH4+-N、CODcr达到《城镇污水处理厂污染物排放标准》(GB18918-2002,下称标准)I级A标准的频率分别为100%、0%、60%、20%,处理中浓度污水的出水达I级A标准的频率分别为100%、0%、100%、100%;II级标准限值下,SBBR处理高浓度污水进水负荷可增大至初负荷的,1.3-1.6倍,处理中浓度污水时可至1.7-1.8倍。因而,SBBR能较好的处理污水并耐污染负荷增长,随进水浓度降低其处理及耐负荷能力增强;但SBBR对污染物处理能力不均衡,TP处理能力较弱;出水虽能满足农田灌溉等再生利用标准,但仍具较强致富营养化性。SBBR宜作为耦合工艺的第一环节技术,采取有效技术补充深化污染物的处理。
     (2)研究通过设计体积80L、有效容积为25.2L的VFCW系统,以美人蕉为功能植物,布置卵石、天然沸石、土壤基质,处理了TN、TP、NH4--N、CODcr浓度范围分别为59.0-62.0mg/L、4.2-5.0mg/L、45.0-50.0mg/L、290.0-310.0mg/L的中浓度和32.0-35.0mg/L、1.4-1.7mg/L、28.0-30.0mg/L、61.0-65.0mg/L的低浓度模拟污水,两种浓度下以0.10m3/m2·d和0.17m3/m2·d两种负荷测试了VFCW对污染物的处理率及沸石基质孔隙率的变化。VFCW系统在中浓度污水0.10m3/m2·d负荷入水情况下,出水各指标均未达GB18918-2002I级A标准,相同负荷条件下处理低浓度污水时各出水指标均达I级A标准;两浓度污水负荷由0.10m3/m2·d增至0.17m3/m2·d时,出水水质均下降明显;由VFCW系统沸石基质孔隙率、出水可再生利用性、富营养胁迫性的变化,发现高浓度、高水力负荷条件下VFCW孔隙率降低速率更快,出水可再生利用范围更窄,对受纳水体富营养化胁迫更强。因而,VFCW系统对进水水质要求较高,宜在通过前处理初步消减污染物,使入水污染物浓度有所降低的基础上发挥深度处理作用。
     (3)研究通过设计的耦合SBBR及VFCW两种工艺的一体化SBBR-VFCW装置,以3个SBBR-VFCW装置在不同DO、曝停比、干湿比、进水量条件下处理了高、中、低3个浓度(以TN、TP、NH4+-N、CODCR为指标)水平的模拟污水。取连续20d的出水水质数据作为BPN人工神经网络模型训练的样本,应用MATLAB软件,设置隐含层为7,学习速率为0.14,动量因子为0.6,学习时间为8000h对实验进行模拟。结果显示,3组SBBR-VFCW出水NH4+-N、TN、CODCr全部可以达到I级A标准,出水TP介于I级B标准与II级标准问;低浓度进水时TN、TP、NH4+-N、CODCr的去除率分别可达91.5%、88.5%、98.5%、97%。以随机抽取的6组测试样本对BPN模型的模拟能力检验,TN、TP、NH4+-N、CODcr的MAER值分别为6.6%、5.9%、7.2%、6.4%均低于13.5%,测试样本均方根误差(RMSE)均小于0.078,相关系数均大于0.99,证明BPN模型泛化能力和过程模拟能力良好。通过模型权重分析,可知SBBR-VFCW出水TN、TP、NH4+-N、 CODcr受进水NH4+-N、曝停比、DO影响明显。实验显示SBBR-VFCW对模拟农村生活污水处理能力好,出水可再生利用性强,对农村水环境富营养化胁迫小,BPN模型能较好的模拟SBBR-VFCW这一非线性多变量的耦合污水处理过程,为预测系统水质变化、在线监测、工艺自动控制提供了基础。
     (4)研究通过设计的促生态恢复型人工浮床(restoration-promoting integrated floating bed, RPIFB)为SBBR-VFCW系统的处理生活污水的出水的环境转归做了进一步深度净化补充技术的探索。RPIFB中,浮水床、沉水床以天然沸石为基质,为挺水植物(美人蕉,Canna indica Linn.)和沉水植物(菹草,Potamogeton crispus Linn.)着生提供了条件,RPIFB以网裹覆,内部放养铜锈环棱(Bellamya aeruginosa)、泥鳅(Misgurnus anguillicaudatus),所有组分为系统内部构成完整的生物链提供了基础。实验以富含蓝绿藻类和原生动物的富营养化池塘水为基础,添加KH2PO4、(NH2)2CO和NH4NO3营造重富营养化水体。实验1以CODCr、 NO3--N、NH4+-N、TN、TP、Chl.a、浊度等指标(其中TN、TP、NH4+-N、CODcr浓度值均大于SBBR-VFCW出水浓度)的变化对比了FB、GSB及RPIFB对水体的净化能力,研究了光照作用于GSB进而影响RPIFB净化功能的特点;实验2探究了RPIFB中美人蕉、菹草、泥鳅、铜锈环棱螺对沉水床光照和深度变化的生理响应,分析了RPIFB的生态保育能力。结果显示,PRIFB作用下TN、TP、NH4+-N、和CODcr的去除率分别可达74.5%±1.4%、98.3%±4.3%、74.7%±0.5%、88.8%±1.3%和71.4%±2.5%,Chl.a和水体浊度可降至初始浓度水平的10%,FB、GSB及RPIFB净水能力顺序为RPIFB>FB>GSB。RPIFB不但能对SBBR-VFCW的出水实施深度净化,预防并治理富营养化水体,还可促进沉水植物恢复至水体下垫面,促进水体生态系统发生藻型相态向草型相态的转变,为农村塘、池等水体环境的生态健康提供了思路。
A coupling device SBBR-VFCW was constructed to remediate domestic wastewater with the characteristics of easier construction, lower operating cost, easy management, stable and reusable effluent, etc. In order to restore and maintain a healthy aquatic ecological environment, a Restoration-Promoting Integrated Floating Bed (RPIFB) system was designed. The SBBR-VFCW was used as the key feature in the sewage disposal systems. The RPIFB was utilized as supplement to the conservation of the rural aquatic environment. The coupled systems provide a new technical for the advanced treatment of the decentralized rural domestic wastewater and preservation of a healthy aquatic environment. Specific content includes:
     (1) A SBBR reactor was designed to purify the synthetic domestic wastewater (hereinafter referred to as wastewater) with high concentration (TN,87.0-100.0mg/L; TP,6.0-8.0mg/L; NH4+-N,75.0-85.0mg/L; CODCr490.0-510.0mg/L) and moderate concentration (TN,64.0-75.0mg/L; TP,4.0-6.0mg/L; NH4+-N,55.0-64.0mg/L; CODcr,360.0-380.0mg/L). The effective volume, working volume and the work cycle of the reactor were18L,12.5L and12h, respectively. To test the purification performance of SBBR, the inlet wastewater load of the first10cycles was set to7L. To test load resistant ability of SBBR, the inlet was added from7L/cycle to12.5L/cycle at the growth rate of0.5L/cycle in the posterior10cycles. Results showed that SBBR could effectively cope with high concentration wastewater. Effluent concentration achieves the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002)(level I class A; hereinafter referred to as the standard). The qualification rates of TN, TP, NH4+-N and CODcr were100%,0%,60%and20%respectively in high concentration experimental group,100%,0%,100%and100%in moderate concentration experimental group. To keep the effluent within level II of the standard, the influent wastewater load of the SBBR could be increased to1.3-1.6times of the initial when deal with the high concentration wastewater, and increased to1.7-1.8times when deal with the moderate concentration wastewater. Therefore, SBBR can deal with wastewater efficiently, and can anti to the growing pollution load. Its treatment and resistance capacity to load enhanced with the decrease of influent concentration. But the performance of SBBR on the pollutant is unbalanced, such as that TP removal efficiency is weak. Though the effluent of SBBR can meet Chinese standards for farmland irrigation and some other standards, it can still not avoid threating rural water environment to become eutrophication. SBBR can be taken as the first round of the coupling process, and effective technical supplement should be taken to improve the treatment.
     (2) A VFCW system (with volume of80.0L, effective volume of25.2L) was designed to deal with both moderate concentration wastewater (TN,59.0-62.0mg/L TP,4.2-5.0mg/L; NH4+-N,45.0-50.0mg/L; CODCr290.0-310.0mg/L) and low concentration wastewater (TN,32.0-35.0mg/L; TP,1.4-1.7mg/L, NH4+-N,28.0-30.0mg/L; CODcr,61.0-65.0mg/L). Canna indica Linn. was taken as the functional plant. Besides, pebbles, natural zeolite and soil were applied as the matrix bed. Changes in the purification rate and zeolite porosity were observed under two concentrations and two hydraulic loadings (0.1m3/m2·d and0.17m3/m2·d). Results showed that the effluent couldn't meet the level I class A of the standard when purifying the moderate concentration inflow at the hydraulic loading0.1m3/m2·d. The effluent water quality decreased significantly when the hydraulic loading increased from0.10m3/m2·d to0.17m3/m2-d. According to the variation of zeolite matrix porosity, renewability of effluent and eutrophication stress over watery environment, the performance of VFCW decreased faster under high concentration and high hydraulic load. The effluent will also be reused in a narrower field, and the receiving water body eutrophication stress became stronger when VFCW work under extreme concentration and hydraulic load. Thus, VFCW requires high quality influent. It can play a role as advanced treatment after the pollutant concentration decreased in the first round.
     (3) A coupling device SBBR-VFCW was designed. Three SBBR-VFCW systems were applied to deal with wastewater at three different levels of concentrations and at different DO, exposure time, wet/dry ratio and the amount of influent conditions.20days data of the effluent were collected as the training samples of BPN model. The optimum operating parameters of this network were as follows:the hidden layer (n)=7, learning rate (LR)=0.14, momentum constant (MC)=0.6, learning time (LT)=8000. Results showed that all NH4+-N, TN and CODCr values of effluent of three SBBR-VFCW systems could reach the level I class A of the standard, except that the TP concentration could some time reach beyond level I class A of the standard. When concentrations of influent were low, the TN, TP, NH4+-N and CODCr removal rates reached up to91.5%,88.5%,98.5%and97.0%, respectively.6groups of test samples were chosen at random to test the simulation performance of BPN models. MAER values of TN, TP, NH4+-N and CODCr were6.6%,5.9%,7.2%and6.4%, respectively, all lower than13.5%. The root mean squared errors (RMSE) were lower than0.078, and the correlation coefficients (R2) all higher than0.99, which proved that BPN can efficiently reflect the nonlinear function. And ANN is suitable for the dynamic monitor of the performance of SBBR-VFCW in various conditions. Through the weights analysis, TN, TP, NH4+-N and CODCr of effluent in SBBR-VFCW were affected significantly by NH4;+-N, aeration/non-aeration ratio and DO of influent. Thus, SBBR-VFCW can be applied in the advanced wastewater treatment. BPN model can effectively simulate the process of SBBR-VFCW, which also lays the foundation to the water quality forecasting system, online monitoring and automatic control technology.
     (4) A restoration-promoting integrated floating bed (RPIFB) was designed. Natural zeolite was used as a matrix to provide attachment condition for the emergent aquatic plant(Canna indica Linn.) and submerged plant(Potamogeton crispus Linn.) in the floating bed and sinking bed. The RPIFB was coated with an oxidation-resistant PVC net. All composition constituted a complete food chain system. The experiment water was collected from a pond reach of blue green algae and protozoans, and to creat serious eutrophication water KH2PO4,(NH2)2CO and NH4NO3was added. Trial1was conducted to compare the eutrophication purification performance among floating bed (FB), gradual-submerging bed (GSB) and RPIFB. The purification capacity of FB, GSB and RPIFB was compared through the removal efficiencies of CODcr, NO3-N, NH4+-N, TN, TP, Chl.a and water turbidity. The lighting effect to the GSB and RPIFB was also studied. In Trial2, influences of depth of GSB and photic area in RPIFB on biotas were investigated. Ecological conservation capacity of RPIFB was analyzed by observing physiological response of Canna indica Linn., Potamogeton L., Misgurnus anguillicaudatus and Bellamya aeruginosa. Results showed that the removal efficiencies of TN, TP, NH4+-N and CODCr via RPIFB were74.6%±1.4%,98.3%±4.3%,74.7%±0.5%,88.8%±1.3%and71.4%±2.5%, respectively. Chl-a and water turbidity can both reach to10%of the initial concentration. The order of purification capacities of FB, GSB and RPIFB was: RPIFB>FB>GSB. Therefore, RPIFB cannot only purify eutrophication water, but also can promote the submerged plant be restored to the water bottom. The regime shift from phytoplankton-dominated to macrophyte-dominated could be promoted. It also provides a novel idea to the ecological development of rural waters.
引文
[1]侯怀恩,赵风兰,孟庆法.城镇生活污水分散式处理的发展前景.地域研究与开发.2009,28(5):77-79
    [2]Mahmoud N, van Lier J B. Enhancement of a Uasb-Septic Tank Performance for Decentralised Treatment of Strong Domestic Sewage. Water Science And Technology.2011,64 (4):923-929
    [3]White P A, Rasmussen J B. The Genotoxic Hazards of Domestic Wastes in Surface Waters. Mutation Research/Reviews in Mutation Research.1998,410 (3):223-236
    [4]Weissberger E J, Coiro L L, Davey E W. Effects of Hypoxia on Animal Burrow Construction and Consequent Effects on Sediment Redox Profiles. Journal of Experimental Marine Biology and Ecology.2009,371 (1):60-67
    [5]Pan Y, Subba Rao D V. Impacts of Domestic Sewage Effluent on Phytoplankton from Bedford Basin, Eastern Canada. Marine Pollution Bulletin.1997,34 (12): 1001-1005
    [6]Jarvie H P, Neal C, Withers P J A. Sewage-Effluent Phosphorus:A Greater Risk to River Eutrophication Than Agricultural Phosphorus? Science Of the Total Environment.2006,360 (1-3):246-253
    [7]Bartolini F, Cimo F, Fusi M, et al. The Effect of Sewage Discharge on the Ecosystem Engineering Activities of Two East African Fiddler Crab Species: Consequences for Mangrove Ecosystem Functioning. Marine Environmental Research.2011,71 (1):53-61
    [8]Nyenje P M, Foppen J W, Uhlenbrook S, et al. Eutrophication and Nutrient Release in Urban Areas of Sub-Saharan Africa-a Review. Science Of the Total Environment.2010,408 (3):447-455
    [9]刘启平,刘启春.2000-2004年内江市东兴区农村地下水水质分析.环境与健康杂志.2002,22(6):485
    [10]仲为耘,张晓华,柳培文.农村浅层地下水污染及防治对策.南京林业大学学报.2000,24(增刊):37-38
    [11]谷敬花.新农村污水处理设施建设、运营管理模式研究[硕士学位论文]:西安建筑科技大学.2011
    [12]中华人民共和国环境保护部.中国环境质量公报.2007-2012
    [13]Campos H M, von Sperling M. Estimation of Domestic Wastewater Characteristics in a Developing Country Based on Socio-Economic Variables. Water Science And Technology.1996,34 (3-4):71-77
    [14]吴德勇.农村水污染问题及其防治对策.安徽农业科学.2012,40(11):6738-6739,6817
    [15]李娜,于晓晶.农村污水生态处理工艺浅析.能源与环境.2008,(1):95-96
    [16]孙瑞敏.湖北省农村生活污水水量水质调查与分析.[硕士学位论文]:武汉理工大学.2010
    [17]Abdel-Jawad M, Ebrahim S, Al-Tabtabaei M, et al. Advanced Technologies for Municipal Wastewater Purification:Technical and Economic Assessment. Desalination.1999,124 (1-3):251-261
    [18]Yang H Z, Wei Y. The Design of Domestic Sewage Reuse System in Urban Residence and Analysis Its Energy Conservation Utility. Sustainable Development Of Urban Environment And Building Material, Pts 1-4.2012, 374-377:717-720
    [19]杨俊,龚琴红.人工湿地在我国农村生活污水治理中的应用.农业环境与发展.2007,24(2):71-74
    [20]A. W P. Sequencing Batch Biofilm Reactor Technology. Presented at the A Harnessing Biotechnology for the 21st Century, Washington, DC:American, 1992:475-479
    [21]张可方,凌忠勇,张立秋,等.温度对SBBR亚硝酸型同步硝化反硝化的影响.中国给水排水.2009,25(13)
    [22]胡龙兴SBBR技术特性和动力学机制及其在废水处理中的应用.[博士学位论文]:上海大学.2003
    [23]Kumar B M, Chaudhari S. Evaluation of Sequencing Batch Reactor (Sbr) and Sequencing Batch Biofilm Reactor (Sbbr) for Biological Nutrient Removal from Simulated Wastewater Containing Glucose as Carbon Source. Water Science And Technology.2003,48 (3):73-79
    [24]徐峥勇,杨朝晖,曾光明,等.序批式生物膜反应器(SBBR)处理高氨氮渗滤液的脱氮机理研究.环境科学学报.2006(01):55-60
    [25]Wilderer P A. Technology of Membrane Biofilm Reactors Operated under Periodically Changing Process Conditions. Water Science And Technology.1995, 31 (1):173-183
    [26]杨朝晖,李晨,曾光明,等.前置MAP-SBBR工艺处理早期及晚期垃圾渗滤液试验.环境工程.2006(01):14-17+12
    [27]方茜,陈凤冈,刘宏远,等.两种序批式生物系统处理屠宰废水的对比试验. 中国给水排水.2000(07):57-58
    [28]Ding D H, Feng C P, Jin Y X, et al. Domestic Sewage Treatment in a Sequencing Batch Biofilm Reactor (Sbbr) with an Intelligent Controlling System. Desalination.2011,276 (1-3):260-265
    [29]Sirianuntapiboon S, Jeeyachok N, Larplai R. Sequencing Batch Reactor Biofilm System for Treatment of Milk Industry Wastewater. Journal Of Environmental Management.2005,76 (2):177-183
    [30]do Canto C S A, Rodrigues J A D, Ratusznei S M, et al. Feasibility of Nitrification/Denitrification in a Sequencing Batch Biofilm Reactor with Liquid Circulation Applied to Post-Treatment. Bioresource Technology.2008,99 (3): 644-654
    [31]李军,杨秀山,聂梅生,等.序批式生物膜法的脱氮特性及机理研究.环境科学学报.2002,22(3):320-323
    [32]万金保,邓香平,吴永明.SBBR工艺研究进展.工业水处理.2008(09):5-9
    [33]Service U S F A W. Classification of Wetlands and Deepwater Habitats of the United States. Washington, D.C.:U.S. Dept. of the Interior Publication,1979
    [34]M S, S V. Constructed Wetlands for Wastewater Treatment. Critical Reviews in Environmental Science and Technology.2001,31:351-409
    [35]Keegan M, Clinton F. Constructed Wetlands for Wastewater Treatment in Rural Communities. Nutrient Management in Agricultural Watersheds:A Wetlands Solution.2005:255-259
    [36]Vymazal J. Constructed Wetlands for Wastewater Treatment:Five Decades of Experience. Environmental Science & Technology.2011,45 (1):61-69
    [37]夏汉平.人工湿地处理污水的机理与效率.生态学杂志.2002(04):52-59
    [38]Verhoeven J T A, Meuleman A F M. Wetlands for Wastewater Treatment: Opportunities and Limitations. Ecological Engineering.1999,12 (1-2):5-12
    [39]王平,周少奇.人工湿地研究进展及应用.生态科学.2005,24(3):278-281
    [40]李杰,钟成华,邓春光.人工湿地研究进展.安徽农业科学.2007,35(6):1778-1780
    [41]Yin S B, Lu X G. Theory and Method for Wetland Boundary Delineation. Chinese Geographical Science.2006,16 (1):56-62
    [42]Zhang T, Xu D, He F, et al. Application of Constructed Wetland for Water Pollution Control in China During 1990-2010. Ecological Engineering.2012,47: 189-197
    [43]李子富,吴丰富,姜楠,等.人工湿地技术研究进展.中国科技成果.2011, 12(8):44-46
    [44]Sun L, Liu Y, Jin H. Nitrogen Removal from Polluted River by Enhanced Floating Bed Grown Canna. Ecological Engineering.2009,35 (1):135-140
    [45]由文辉,刘淑媛,钱晓燕.水生经济植物净化受污染水体研究.华东师范大学学报(自然科学版).2000(1):99-102
    [46]曹文平,王冰冰.生态浮床的应用及进展.工业水处理.2013,33(2):5-8
    [47]李伟,李先宁,曹大伟,等.组合生态浮床技术对富营养化水源水质的改善效果.中国给水排水.2008,24(3):34-38
    [48]李先宁,宋海亮,朱光灿,等.组合型浮床生态系统的构建及其改善湖泊水源地水质的效果.湖泊科学.2007,19(4):367-372
    [49]徐功娣,张增胜,韩丽媛,等.强化生态浮床与普通浮床对污染物净化效果对比研究.水处理技术.2010,36(4):93-96
    [50]Sun L P, Liu Y, Jin H. Nitrogen Removal from Polluted River by Enhanced Floating Bed Grown Canna. Ecological Engineering.2009,35 (1):135-140
    [51]严清,孙连鹏.固定化菌藻系统及对污水中氮磷营养盐的净化效果.生态环境学报.2009,18(6):2086-2090
    [52]李海英,杨海华,柯凡,等.微曝气生态浮床的净化效果与生物膜特性研究.中国给水排水.2009,25(7):35-40
    [53]黄鉴晖.居住小区生活污水处理与回用应用研究.[硕士学位论文]:华中科技大学.2008
    [54]李仰斌,张国华,谢崇宝.我国农村饮用水源现状及相关保护对策建议中国农村水利水电.2007,11:1-4,7
    [55]孔海南,郑向勇,严立,等.湖泊流域引进生活污水源头分离处理技术控治富营养化的探讨.Presented at the2008年中国水环境污染控制与生态修复技术学术研讨会论文集,广州,2008:1-6
    [56]王霞,吕宪国,白淑英,等.松花湖富营养化发生的阈值判定和概率分析.生态学报.2006(12):3989-3997
    [57]杨龙,王晓燕,王子健,等.富营养化水体磷阈值的动态AGP模拟研究.生态环境学报.2009,18(5):1625-1630
    [58]杨龙,王晓燕,王子健,等.基于磷阈值的富营养化风险评价体系.中国环境科学.2010,30(z1):29-34
    [59]刘金武.论污水回用处理技术的进展.石油化工应用.2010,29(1):4-7
    [60]田秀芳.城镇生活污水深度处理研究.[硕士学位论文]:中国石油大学(华东).2011
    [61]Asano T, Maeda M, Takaki M. Wastewater Reclamation and Reuse in Japan: Overview and Implementation Examples. Water Science And Technology.1996, 34 (11):219-226
    [62]陈亚萍,康永祥,韩东锋,等.西北地区废水资源化探讨.水资源与水工程学报.2004(02):66-68+73
    [63]Elmitwalli T A, Oahn K L T, Zeeman G, et al. Treatment of Domestic Sewage in a Two-Step Anaerobic Filter/Anaerobic Hybrid System at Low Temperature. Water Research.2002,36 (9):2225-2232
    [64]Davies-Colley R J, Craggs R J, Nagels J W. Disinfection in a Pilot-Scale "Advanced" Pond System (APS) for Domestic Sewage Treatment in New Zealand. Water Science And Technology.2003,48 (2):81-87
    [65]潘丹.基于神经网络的MBR污水处理工艺参数预测和控制研究[硕士学位论文]:北京工业大学.2010
    [66]吉祝美,吕锡武,李先宁.低温下跌水曝气接触氧化处理乡村生活污水.水处理技术.2007(02):77-79
    [67]唐晶,吕锡武,吴琦平,等.生物、生态组合技术处理农村生活污水研究.中国给水排水.2008(17):1-4
    [68]冉全.生物生态组合技术处理乡村生活污水研究应用.[硕士学位论文]:东南大学.2008
    [69]李旭东,周琪,黄翔峰,等.高效藻类塘系统处理太湖地区农村生活污水.水处理技术.2006(06):61-64
    [70]张建,黄霞,刘超翔,等.地下渗滤处理村镇生活污水的中试.环境科学.2002(06):57-61
    [71]贾晓竞,毕东苏,周雪飞,等.农村生活污水生态处理技术研究与应用进展.安徽农业科学.2011(31):19307-19309
    [72]Baptista D, Abreu S, Freitas F, et al. A Survey of Software and Hardware Use in Artificial Neural Networks. Neural Computing & Applications.2013,23 (3-4): 591-599
    [73]Vemuri V. Artificial Neural Networks.1988
    [74]Ding S F, Li H, Su C Y, et al. Evolutionary Artificial Neural Networks:A Review. Artificial Intelligence Review.2013,39 (3):251-260
    [75]Bezdek J C, Electrical I o, Engineers E, et al. Special Issue on Fuzzy Logic and Neural Networks. IEEE,1992
    [76]崔玉理.基于神经网络的污水处理过程建模及仿真的研究.[硕士学位论文]:山东科技大学.2006
    [77]唐辉,李迪,万金泉,等.基于人工神经网络的造纸废水处理动态仿真.中 国环境科学.2006,26(1):48-51
    [78]张文艺,钟梅英,戴波.活性污泥法人工神经网络建模.安徽工业大学学报(自然科学版).2001,18(3):229-231
    [79]郭晓磊,杨静.人工神经网络在污水处理中的应用.广东化工.2008,35(8):85-87
    [80]唐光临,徐楚韶,董凌燕.基于递归神经网络的焦化废水水质预报.系统仿真学报.2003(01):81-83
    [81]任南琪,章育铭,施悦.基于BP神经网络的UASBAF系统运行调控策略.哈尔滨工业大学学报.2007(10):1564-1568
    [82]Choi D J, Park H. A Hybrid Artificial Neural Network as a Software Sensor for Optimal Control of a Wastewater Treatment Process. Water Research.2001,35 (16):3959-3967
    [83]楼文高。活性污泥工艺神经网络模拟与控制研究[博士学位论文]:同济大学。2005
    [84]白桦,李圭白.混凝投药智能控制系统实现方法的探讨.给水排水.2003,29(8):81-83
    [85]黄明智,马邕文,万金泉,等.污水处理中人工神经网络应用研究的探讨.环境科学与技术。2008(03):131-135
    [86]Jin Y, Ding D, Feng C, et al. Performance of Sequencing Batch Biofilm Reactors with Different Control Systems in Treating Synthetic Municipal Wastewater. Bioresource Technology.2012,104 (0):12-18
    [87]Steyer J-P, Rolland D, Bouvier J-C, et al. Hybrid Fuzzy Neural Network for Diagnosis-Application to the Anaerobic Treatment of Wine Distillery Wastewater in a Fluidized Bed Reactor. Water Science And Technology.1997,36 (6-7):209-217
    [88]Irvine R L, Wilderer P A, Flemming H-C. Controlled Unsteady State Processes and Technologies-an Overview. Water Science And Technology.1997,35 (1): 1-10
    [89]宋晶,孙德栋,王一娜,等.SBBR法处理高盐废水.大连工业大学学报.2010(04):281-284
    [90]张莉珍.SBBR工艺去除焦化废水COD试验研究.[硕士学位论文]:太原理工大学.2008
    [91]郝火凡,胡晓明.高氮垃圾渗滤液SBBR生物脱氮工艺特性研究.水处理技术.2009,35(9):48-51,55
    [92]陈垚.基于磷酸盐还原的超高盐高磷废水除磷研究.[博士学位论文]:重庆大 学.2010
    [93]陈凤祥,曹长兰,宋丽.复合流人工湿地对生活污水深度处理的应用研究.广东科技.2007(8):115-116
    [94]郭飞宏,汪龙眠,张继彪,等.蚯蚓生态滤池对农村生活污水的深度净化效果.环境工程学报.2012,06(3):714-718
    [95]项学敏,杨洪涛,周集体,等.人工湿地对城市生活污水的深度净化效果研究:冬季和夏季对比.环境科学.2009,30(3):713-719
    [96]Stambuk-Giljanovic N. The Pollution Load by Nitrogen and Phosphorus in the Cetina River. Water Air And Soil Pollution.2010,211 (1-4):49-60
    [97]Carpenter S R, Lathrop R C. Probabilistic Estimate of a Threshold for Eutrophication. Ecosystems.2008,11 (4):601-613
    [98]张家瑞,曾勇,赵彦伟.白洋淀湿地水华暴发阈值分析.生态学杂志.2011(08):1744-1750
    [99]RJ. Z, JC v d H, A C. Ph Influence on Acidogenic Dissimilation of Glucose in Anaerobic Digester. Water Research.1982,16 (03):303-311
    [100]董国日,柳建设,周洪波,等.连续两个周期的有机物负荷冲击对SBR工艺系统的影响.甘肃科技.2009,25(2):54-56,116
    [101]J Z R. Influence of Temperature on the Anaerobic Acidification of Glucose in Amixed Culture Forming Part of a Two-Stage Digestion Process. Water Research.1982,16:313-321
    [102]Kulikowska D, Klimiuk E, Drzewicki A. Bod5 and Cod Removal and Sludge Production in Sbr Working with or without Anoxic Phase. Bioresource Technology.2007,98 (7):1426-1432
    [103]黎永坚,胡晓东,熊紫娟,等.高浓度氨氮对SBR工艺处理制药废水的影响.中国给水排水.2009,25(13):92-94
    [104]ARNOLD E, ISAACS S. Effect of Nitrite on Anoxic Phosphate Uptake in Biological Phosphorus Removal Activated Sludge. Water Research.1999,33 (8):1871-1883
    [105]杨麒,李小明,曾光明,等.同步硝化反硝化的形成机理及影响因素.环境科学与技术.2004,27(3):102-104
    [106]蒋山泉,翟俊,肖海文,等.序批式生物膜(SBBR)工艺同步脱氮除磷研究.四川大学学报(工程科学版).2008,40(1):64-68
    [107]熊佐芳,周云新,冼萍,等.水力负荷对垂直流人工湿地堵塞影响研究.水处理技术.2011,37(7):34-36,44
    [108]吴建强.潜流、垂直流人工湿地污染物净化效果及耐污染负荷冲击能力研究. 环境污染与防治.2010,32(7):39-43
    [109]Riis T, Olesen B, Clayton J S,等. Growth and Morphology in Relation to Temperature and Light Availability During the Establishment of Three Invasive Aquatic Plant Species. Aquatic Botany.2012,102 (0):56-64
    [110]Grubecki I, Wojcik M. Analytical Determination of the Optimal Temperature Profiles for the Reactions Occurring in the Presence of Microorganism Cells. Biochemical Engineering Journal.2008,39 (2):362-368
    [111]梁威,吴振斌,周巧红,等.构建湿地基质微生物与净化效果及相关分析.中国环境科学.2002,22(3):282-285
    [112]Harper S C, Manoharan R, Mavinic D S, et al. Chromium and Nickel Toxicity During the Biotreatment of High Ammonia Landfill Leachate. Water Environment Research.1996,68 (1):19-24
    [113]Lantzke I R, Heritage A D, Pistillo G, et al. Phosphorus Removal Rates in Bucket Size Planted Wetlands with a Vertical Hydraulic Flow. Water Research. 1998,32(4):1280-1286
    [114]D.A.H,夏汉平.人工湿地处理污水的机理与效率.生态学杂志.2002,21(04):51-59
    [115]吴振斌,任明迅,付贵萍,等.垂直流人工湿地水力学特点对污水净化效果的影响.环境科学.2001,22(5):45-49
    [116]Pastorelli G, Canziani R, Pedrazzi L, et al. Phosphorus and Nitrogen Removal in Moving-Bed Sequencing Batch Biofilm Reactors. Water Science And Technology.1999,40 (4-5):169-176
    [117]Chang C N, Chen H R, Huang C H, et al. Using Sequencing Batch Biofilm Reactor (Sbbr) to Treat Abs Wastewater. Water Science And Technology.2000, 41 (4-5):433-440
    [118]White D M, Schnabel W. Treatment of Cyanide Waste in a Sequencing Batch Biofilm Reactor. Water Research.1998,32 (1):254-257
    [119]Kolb F R, Wilderer P A. Activated Carbon Sequencing Batch Biofilm Reactor to Treat Industrial Wastewater. Water Science And Technology.1997,35 (1): 169-176
    [120]Wobus A, Roske I. Reactors with Membrane-Grown Biofilms:Their Capacity to Cope with Fluctuating Inflow Conditions and with Shock Loads of Xenobiotics. Water Research.2000,34 (1):279-287
    [121]梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析.生态学杂志.2003,22(2):49-55
    [122]朱宝玉,雷志洪,彭立新,等.高效垂直流人工湿地对污水的深度处理.湖北农业科学.2012,51(10):1994-1996
    [123]孙文杰,佘宗莲,关艳艳,等.垂直流人工湿地净化污水的研究进展.安全与环境工程.2011,18(1):25-28,44
    [124]Weedon C M. Compact Vertical Flow Constructed Wetland Systems-First Two Years'Performance. Water Science And Technology.2003,48 (5):15-23
    [125]Laber J, Perfler R, Haberl R. Two Strategies for Advanced Nitrogen Elimination in Vertical Flow Constructed Wetlands. Water Science And Technology.1997, 35 (5):71-77
    [126]Sun G, Gray K R, Biddlestone A J, et al. Effect of Effluent Recirculation on the Performance of a Reed Bed System Treating Agricultural Wastewater. Process Biochemistry.2003,39 (3):351-357
    [127]Panuvatvanich A, Koottatep T, Kone D. Hydraulic Behaviour of Vertical-Flow Constructed Wetland under Different Operating Conditions. Environmental Technology.2009,30 (10):1031-1040
    [128]刘家宝,莫凤鸾,雷志洪,等.垂直流人工湿地系统保护饮用水源的实例.给水排水.2005,31(4):10-13
    [129]邓辅唐,徐颂军,徐祥浩,等.滇池治理人工湿地植物的筛选与应用研究.中山大学学报(自然科学版).2005,44(z1):299-303
    [130]朱夕珍,崔理华,刘雯,等.垂直流美人蕉模拟人工湿地对化粪池出水的净化效果.农业环境科学学报.2004,23(4):761-765
    [131]何连生,朱迎波,席北斗,等.循环强化垂直流人工湿地处理猪场污水.中国给水排水.2004,20(12):5-8
    [132]汪俊三,覃环.高水力负荷人工湿地处理富营养化湖水.中国给水排水.2005,24(1):1-4
    [133]张清.人工湿地的构建与应用.湿地科学.2011,09(4):373-379
    [134]Patel S U, Kumar B J, Badhe Y P, et al. Estimation of Gross Calorific Value of Coals Using Artificial Neural Networks. Fuel.2007,86 (3):334-344
    [135]Mjalli F S, Al-Asheh S, Alfadala H E. Use of Artificial Neural Network Black-Box Modeling for the Prediction of Wastewater Treatment Plants Performance. Journal Of Environmental Management.2007,83 (3):329-338
    [136]Chen H M, Lo S L. Neural Network-Based Multi-Back-Propagation Prediction Model of a Domestic Wastewater Treatment Plant for an under-Construction Sewer System. Journal Of the Chinese Institute Of Engineers.2012,35 (7): 815-826
    [137]Hamed M M, Khalafallah M G, Hassanien E A. Prediction of Waste water Treatment Plant Performance Using Artificial Neural Networks. Environmental Modelling & Software.2004,19 (10):919-928
    [138]Punal A, Rodigruez J, Franco A, et al. Advanced Monitoring and Control of Anaerobic Wastewater Treatment Plants:Diagnosis and Supervision by a Fuzzy-Based Expert System. Water Science And Technology.2001,43 (7): 191-198
    [139]Naz M, Uyanik S, Yesilnacar M I, et al. Side-by-Side Comparison of Horizontal Subsurface Flow and Free Water Surface Flow Constructed Wetlands and Artificial Neural Network (Ann) Modelling Approach. Ecological Engineering. 2009,35 (8):1255-1263
    [140]郭劲松,王春燕,芳方,等.湿干比对人工快渗系统除污性能的影响.中国给水排水。2006,22(17):9-12,17
    [141]Delnavaz M, Ayati B, Ganjidoust H. Prediction of Moving Bed Biofilm Reactor (MBBR) Performance for the Treatment of Aniline Using Artificial Neural Networks (Ann). Journal Of Hazardous Materials.2010,179 (1-3):769-775
    [142]Raduly B, Gernaey K V, Capodaglio A G, et al. Artificial Neural Networks for Rapid Wwtp Performance Evaluation:Methodology and Case Study. Environmental Modelling & Software.2007,22 (8):1208-1216
    [143]Lee T L. Back-Propagation Neural Network for Long-Term Tidal Predictions. Ocean Engineering.2004,31 (2):225-238
    [144]Zeng J, Guo H F, Hu Y M. Artificial Neural Network Model for Identifying Taxi Gross Emitter from Remote Sensing Data of Vehicle Emission. Journal Of Environmental Sciences-China.2007,19 (4):427-431
    [145]Olden J D, Joy M K, Death R G. An Accurate Comparison of Methods for Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data. Ecological Modelling.2004,178 (3-4):389-397
    [146]卢文健,李军,韦甦,等.强化序批式生物膜反应器脱氮与人工湿地除磷联合工艺初探.环境污染与防治.2010,32(9):64-67
    [147]Chiou R H, Yang Y R. An Evaluation of the Phosphorus Storage Capacity of an Anaerobic/Aerobic Sequential Batch Biofilm Reactor. Bioresource Technology. 2008,99 (10):4408-4413
    [148]Chang J J, Wu S Q, Dai Y R, et al. Treatment Performance of Integrated Vertical-Flow Constructed Wetland Plots for Domestic Wastewater. Ecological Engineering.2012,44:152-159
    [149]Dzikus A, Singh K, Shrestha R R. Constructed Wetlands Manual. Kathmandu: UN-HABITAT Water for Asian Cities Programme Nepal,2008
    [150]Gikas G D, Tsihrintzis V A. A Small-Size Vertical Flow Constructed Wetland for on-Site Treatment of Household Wastewater. Ecological Engineering.2012, 44:337-343
    [151]Xu Z, Yang Z H, Zeng G M, et al. Control of Shortcut Nitrification in Sbbr with Adequate Oxygen Supply. Huan jing ke xue= Huanjing kexue/[bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.].2008,29 (7):1860-1866
    [152]A. C. Anthonisen R C L, T. B. S. Prakasam and E. G. Srinath. Inhibition of Nitrification by Ammonia and Nitrous Acid. Water Pollution Control Federation. 1976,48 (5):835-852
    [153]于德爽,彭永臻,宋学起,等.含海水污水的短程硝化反硝化.环境科学.2003,24(3):50-55
    [154]孙红松,杨朝晖,曾光明,等.基于ANN的SBBR-CRI处理模拟生活污水及其仿真研究.中国环境科学.2010,30(11):1453-1458
    [155]Edwards K R, Cizkova H, Zemanova K, et al. Plant Growth and Microbial Processes in a Constructed Wetland Planted with Phalaris Arundinacea. Ecological Engineering.2006,27 (2):153-165
    [156]Jorgensen W J M a S E. Ecological Engineering and Ecosystem Restoration. New York:John Wiley and Sons,2004
    [157]Gurkan Z, Zhang J J, Jorgensen S E. Development of a Structurally Dynamic Model for Forecasting the Effects of Restoration of Lake Fure, Denmark. Ecological Modelling.2006,197(1-2):89-102
    [158]Geurts J J M, Sarneel J M, Willers B J C, et al. Interacting Effects of Sulphate Pollution, Sulphide Toxicity and Eutrophication on Vegetation Development in Fens:A Mesocosm Experiment. Environmental Pollution.2009,157 (7): 2072-2081
    [159]Estrada V, Di Maggio J, Diaz M S. Water Sustainability:A Systems Engineering Approach to Restoration of Eutrophic Lakes. Computers & Chemical Engineering.2011,35 (8):1598-1613
    [160]Benndorf J. Possibilities and Limits for Controlling Eutrophication by Biomanipulation. Internationale Revue der gesamten Hydrobiologie und Hydrographie.1995,80 (4):519-534
    [161]Deppe T, Ockenfeld K, Meybohm A, et al. Reduction of Microcystis Blooms in a Hypertrophic Reservoir by a Combined Ecotechnological Strategy. Hydrobiologia.1999,408:31-38
    [162]Wang J, Zhang L Y, Lu S Y, et al. Contaminant Removal from Low-Concentration Polluted River Water by the Bio-Rack Wetlands. Journal Of Environmental Sciences-China.2012,24 (6):1006-1013
    [163]Chen C J, Zhang R, Wang L, et al. Removal of Nitrogen from Wastewater with Perennial Ryegrass/Artificial Aquatic Mats Biofilm Combined System. Journal Of Environmental Sciences-China.2013,25 (4):670-676
    [164]Keskinkan O, Goksu M Z L, Basibuyuk M, et al. Heavy Metal Adsorption Properties of a Submerged Aquatic Plant (Ceratophyllum Demersum). Bioresource Technology.2004,92 (2):197-200
    [165]Lesley B, Daniel H, Paul Y. Iron and Manganese Removal in Wetland Treatment Systems:Rates, Processes and Implications for Management. Science Of the Total Environment.2008,394 (1):1-8
    [166]Bal K, Struyf E, Vereecken H, et al. How Do Macrophyte Distribution Patterns Affect Hydraulic Resistances? Ecological Engineering.2011,37 (3):529-533
    [167]Shan M, Wang Y, Xue S. Study on Bioremediation of Eutrophic Lake. Journal of Environmental Sciences.2009,21, Supplement 1 (0):S16-S18
    [168]Scheffer M, Hosper S H, Meijer M L, et al. Alternative Equilibria in Shallow Lakes. Trends in Ecology & Evolution.1993,8 (8):275-279
    [169]van Donk E, van de Bund W J. Impact of Submerged Macrophytes Including Charophytes on Phyto-and Zooplankton Communities:Allelopathy Versus Other Mechanisms. Aquatic Botany.2002,72 (3-4):261-274
    [170]Li E H, Li W, Liu G H, et al. The Effect of Different Submerged Macrophyte Species and Biomass on Sediment Resuspension in a Shallow Freshwater Lake. Aquatic Botany.2008,88 (2):121-126
    [171]Taguchi K, Nakata K. Evaluation of Biological Water Purification Functions of Inland Lakes Using an Aquatic Ecosystem Model. Ecological Modelling.2009, 220 (18):2255-2271
    [172]Qin B Q. Lake Eutrophication:Control Countermeasures and Recycling Exploitation. Ecological Engineering.2009,35 (11):1569-1573
    [173]Lloret J, Marin A. The Role of Benthic Macrophytes and Their Associated Macroinvertebrate Community in Coastal Lagoon Resistance to Eutrophication. Marine Pollution Bulletin.2009,58 (12):1827-1834
    [174]Wu Y H, Hu Z Y, Yang L Z. Hierarchical Eco-Restoration:A Systematical Approach to Removal of Cod and Dissolved Nutrients from an Intensive Agricultural Area. Environmental Pollution.2010,158 (10):3123-3129
    [175]Wu Y H, Zhang S Q, Zhao H J, et al. Environmentally Benign Periphyton Bioreactors for Controlling Cyanobacterial Growth. Bioresource Technology. 2010,101 (24):9681-9687
    [176]国家环保局.水和废水监测分析方法.北京:中国环境科学出版社,2003
    [177]Chuai X M, Ding W, Chen X F, et al. Phosphorus Release from Cyanobacterial Blooms in Meiliang Bay of Lake Taihu, China. Ecological Engineering.2011, 37(6):842-849
    [178]Bums R G, Dick, R.P.,. Enzymes in the Environment:Ecology, Activity and Applications. NewYork:Marcel Dekker, Inc.,2001
    [179]Bernard O, Remond B. Validation of a Simple Model Accounting for Light and Temperature Effect on Microalgal Growth. Bioresource Technology.2012,123: 520-527
    [180]Wu S Q, Chang J J, Dai Y, et al. Treatment Performance and Microorganism Community Structure of Integrated Vertical-Flow Constructed Wetland Plots for Domestic Wastewater. Environmental Science And Pollution Research.2013,20 (6):3789-3798
    [181]Picard C R, Fraser L H, Steer D. The Interacting Effects of Temperature and Plant Community Type on Nutrient Removal in Wetland Microcosms. Bioresource Technology.2005,96 (9):1039-1047
    [182]Zhang Z H, Rengel Z, Meney K. Kinetics of Ammonium, Nitrate and Phosphorus Uptake by Canna Indica and Schoenoplectus Validus. Aquatic Botany.2009,91 (2):71-74
    [183]Association I W. Constructed Wetlands for Pollution Control, Processes, Design, and Operation. London:IWA Publishing,2000
    [184]Saeed T, Sun G Z. A Review on Nitrogen and Organics Removal Mechanisms in Subsurface Flow Constructed Wetlands:Dependency on Environmental Parameters, Operating Conditions and Supporting Media. Journal Of Environmental Management.2012,112:429-448
    [185]Zheng H, Han L, Ma H, et al. Adsorption Characteristics of Ammonium Ion by Zeolite 13x. Journal Of Hazardous Materials.2008,158 (2-3):577-584
    [186]Mulderij G, Van Nes E H, Van Donk E. Macrophyte-Phytoplankton Interactions: The Relative Importance of Allelopathy Versus Other Factors. Ecological Modelling.2007,204 (1-2):85-92
    [187]Carter V, Rybicki N B, Turtora M. Effect of Increasing Photon Irradiance on the Growth of Vallisneria Americana in the Tidal Potomac River. Aquatic Botany. 1996,54(4):337-345
    [188]Han S Q, Yan S H, Chen K N, et al. N-15 Isotope Fractionation in an Aquatic Food Chain:Bellamya Aeruginosa (Reeve) as an Algal Control Agent. Journal Of Environmental Sciences-China.2010,22 (2):242-247
    [189]Scheffer M, Carpenter S, Foley J A, et al. Catastrophic Shifts in Ecosystems. Nature.2001,413 (6856):591-596

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700