用户名: 密码: 验证码:
泡沫铝复合材料吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子科学技术的发展,电磁辐射等问题日益严重,研制轻质高效的吸波屏蔽材料是抑制电磁辐射与防止信息泄露的有效手段之一。本文以泡沫铝合金材料为研究对象,对泡沫铝材料的电磁波吸收特性进行了研究。为进一步改善材料的吸波性能,在泡沫铝合金表面涂覆了吸波涂料,活性炭复合形成结构型吸波材料以及对泡沫铝表面进行阳极氧化,研究泡沫铝复合材料的吸波性能。
     首先,本文总结分析了吸波涂料的种类和稀土氧化物的应用。在此基础上,本文研究了对稀土氧化物对Ni-Zn铁氧体/泡沫铝的吸波性能的影响。分析表明:在12.0~18.0GHz频段和26.5~40.0GHz频段内,随着微波频率的增加泡沫铝合金复合材料的吸波性能随之增加,但是掺杂稀土氧化物之后Ni-Zn铁氧体/泡沫铝复合材料的吸波性能较好;26.5~40.0GHz频段内,当La2O3含量达到2%时样品的吸波量可达-11.4dB,CFe'的最大吸收量达到了-15.45dB,超过-10dB的带宽为7GHz;说明了掺杂混合稀土氧化物更有利于提高泡沫铝复合材料的吸波性能;当La2O3质量含量为5%时,样品的吸波性能反而下降,说明了稀土氧化物的含量存在一个最佳值;在研究稀土氧化物对聚苯胺/泡沫铝复合材料的吸波性能影响中发现,添加CeO2的聚苯胺导电率增加,有利于提高聚苯胺复合吸波剂的吸波性能;在26.5~40.0GHz频段内,涂覆聚苯胺后吸波性能能超过-10dB的带宽为9GHz;添加稀土氧化物后其吸波性能全部能达到-10dB,带宽明显增加,吸波量最高能达到-27dB,而单一的聚苯胺仅能达到-15dB。与掺杂单一的氧化铈相比,掺杂混合稀土氧化物的吸波性能更好,带宽更大。
     为了提高材料的吸波性能,将活性炭和泡沫铝合金材料相结合形成了结构型吸波材料,研究了活性炭/泡沫铝复合材料的吸波性能。研究表明,在12~18GHz频段内,活性炭具有较高的介电常数,介电常数随频率的增加而下降,介电损耗正切角tanδ(?)却随频率的增加而逐渐增加;分析了活性炭的厚度对吸波性能影响,活性炭的厚度对材料的吸波性能影响不大。对比研究了活性炭/平板和活性炭/泡沫铝的吸波性能。活性炭/平板铝合金样品在12~18GHz频段内的微波反射率在-6dB左右;活性炭/泡沫铝合金样品,微波反射率达到了-11dB;因此活性炭/泡沫铝合金材料较平板铝合金样板的吸波性能优越,在26.5~40GHz频段内,平板铝合金样板整体吸波性能最高达到-25dB,泡沫铝合金样板的吸波性能有明显的提高,达到了-26dB。
     对泡沫铝阳极氧化机理、阳极氧化膜的动力学过程进行了分析,考察了工艺参数对孔径的影响;研究结构表明了孔径随着阳极氧化电压的上升而增大,并且外加电压对孔径的影响最大,而在研究范围内的温度和草酸浓度对氧化膜孔径的影响很小;采用两步氧化法在氧化膜上得到的微孔分布均匀,孔径大小基本相同有序性明显优于一步氧化法;比较了泡沫铝阳极氧化前后的吸波性能,泡沫铝合金(记作CB)和经过阳极氧化的泡沫铝合金(记作CA)均随着频率的增加而增加,说明泡沫铝经过阳极氧化后没有改变其吸波的特性,CA的吸波性能好于CB。CB的最大吸收量为-7dB,而CA的最大吸收量为-8.5dB,吸波性能有了一定的改善。
     最后,对泡沫铝复合材料的吸波性能进行了对比,虽然泡沫铝复合材料存在着不足,但是它具有质轻、吸收频带宽等特点,使之成为了一种新型有发展前途的吸波材料。
The development of electronic science and technology makes the electromagnetic radiation problems increasingly severe. Research and development of high-performance materials with light weight for absorbing and shielding electromagnetic wave is one of the effective methods to restrain electromagnetic radiation and prevent information leakage. In this study, the absorbing properties of porous metal foams are studied by using Al-alloy foams as samples. To further improve the absorbing properties of materials, the surfaces of Al-alloy foams are coated with absorbing paint, and compounded with activated carbon forming structural radar absorption materials, and anodized oxidation; the absorbability of Al-alloy foams compound materials is studied.
     Firstly, the research on the types of absorbing coating and the applications of rare earth oxide are overviewed in this thesis. Based on this, the effect of doping with the rare earth oxide on the microwave absorbing property of Ni-Zn ferrite/Al-alloy foams is studied. The analysis shows that in a frequency range of12-18GHz and26.5-40GHz, the absorbability of the samples increases with microwave frequency increasing, but doping with the rare earth oxide makes the microwave absorbing property of Ni-Zn ferrite/Al-alloy foams better. In a frequency range of26.5-40GHz, after doping2%(mass percent) La2O3in Ni-Zn ferrite the absorptive capacity of the sample reaches-11.4dB, the largest absorptive capacity of doping mixed rare earth oxide (denoted by CFe') reaches-15.54dB, and the band width with absorptive capacity lower than-10dB reaches7GHz. Therefore, doping with mixed rare earth oxide is more beneficial to improve absorbing properties of Al-alloy foams compound materials. When doping with5%(mass percent) La2O3, instead, the absorbing properties decreases, which shows that the content of rare earth oxide exists an optimum value. In the study on the effect of rare earth oxide on the microwave absorbing property of polyaniline/Al-alloy foams compound materials, it is found that the conductivity of the polyaniline doped with CeO2increases; thus it is beneficial to the increase of the absorbing property of polyaniline. In a frequency range of26.5-40GHz, the band width with absorptive capacity lower than -lOdB reaches9GHz after coating with polyaniline; the absorbing property all reaches-lOdB after doping with rare earth oxide, and the band width increases considerably; the largest absorptive capacity reaches-27dB, which only reaches-15dB after coating with polyaniline. Compared with doping only with CeO2, doping with mixed rare earth oxide makes the absorbing property better and the band width larger.
     To improve the absorbing property of materials, activated carbon and Al-alloy foams are combined to form structural radar absorption materials and the absorbing property of activated carbon/Al-alloy foams compound materials is studied. It is shown that in a frequency range of12-18GHz, activated carbon has higher dielectric constant, which decreases with increasing frequency, and dielectric loss tanδE increases with increasing frequency. The influence of the thickness of activated carbon on the absorbing property is analyzed, which is found to be unobvious. The absorbing properties of activated carbon/Al-alloy plate and activated carbon/Al-alloy foams are comparatively studied. The study on the absorbability of activated carbon/Al-alloy foams indicates that the absorbability of activated carbon/Al-alloy foams whose absorbing effectiveness is lower than-11dB is better than that of activated carbon/Al-alloy plate of which reflection loss reaches only-6dB in the12-18GHz band. In the26.5-40GHz range, the absorbability of activated carbon/Al-alloy plate reaches-25dB, and that of activated carbon/Al-alloy foams reaches-26dB.
     The mechanism of anodic oxidation of Al-alloy foams and the dynamic process of anodic oxide films are analyzed, and the impact of parameters on the aperture is investigated. It is pointed out that the aperture size of oxide film increases with the anodizing voltage increasing, and applied voltage has the largest influence on the aperture size, but the impact of temperature and acid concentration on the aperture size of oxide film is very small. The micro porosities on oxide film are homogenously distributed and the size of aperture is nearly the same. Porous aluminum anodizing film produced by two-step anodic oxidation is superior to that produced by one-step oxidation. The absorbing properties of the Al-alloy foams before and after anodizing are compared. The absorbing properties of Al-alloy foams (denoted by CB) and Al-alloy foams after anodizing (denoted by CA) both increase with microwave frequency increasing, which indicates that absorbing properties of Al-alloy foams after anodizing are not changed. The absorbability of CA whose absorbing effectiveness is lower than-8.5dB is better than that of CB of which reflection loss reaches only-7dB in the 26.5-40GHz band. And the absorbing property has been improved to some extent.
     Finally, to compare with Aluminum foams absorbing properties of compound materials; Though there exist disadvantages in Aluminum foams compound materials, the lighter in weight and broader in absorption band make Aluminum foams compound materials has a bright future for application.
引文
1.李艳,邹黎明,王依民.隐身材料的研究现状与发展趋势[J],合成纤维,2002,(5):16-18
    2.张卫东,冯小云,孟季兰.国外隐身材料研究进展[J],宇航材料工艺,2000,3:1-4
    3.周敏,杨觉明,周建军.吸波材料研究进展[J],西安工业学院学报,2000,20(4):296-302
    4.施冬梅,邓辉,杜仕国等.雷达隐身材料技术的发展[J],兵器材料科学与工程,2002,25(1):64-67
    5.何益艳,杜仕国.吸收雷达波包装材料的研究进展[J],包装工程,2002,2(3):92-93
    6.刘祥萱,王煊军.雷达波吸收剂的研究进展[J],电子对抗技术,2002,17(4):44-47
    7. Surig C, Hempel K A, Bonnenberg D. Format ion and Microwave Absorption of Barium and Strontium Ferrite Prepared by Sol-gel Technique [J], Appl.Phys.Lett, 1993,63(20):2836-2837
    8. Nedkov I, Petkov A. Microwave Absorption in Sc and CoTi Substituted Ba Hexaferrite Powders [J], IEEE Transaction on Magnetics,1990,26(5):1483-1484
    9.王萍萍,于英华.泡沫铝的性能研究及其在汽车制造业上的应用[J],煤矿机械,2003,(11):77-79
    10.何德坪,陈锋,张勇.发展中的新型多空泡沫金属[J],材料导报,1993,(4):11-15
    11.王录才,于利民,王芳等.多孔泡沫金属的研究及其前景展望[J],太原重型机械学院学报,2002,23(1):72-76
    12.于英华,梁冰,李智超.多孔泡沫金属研究现状及分析[J],青岛建筑工程学院学报,2003,24(1):54-56
    13.刘培生.多孔材料引论[M],北京:清华大学出版社.2004,1
    14.蒂吉斯切H P,克雷兹特B主编,左孝青,周芸译.多孔泡沫金属[M],北京:化学工业出版社,2005,1-4,5-8
    15.赵万祥,赵乃勤,郭新全.新型功能材料泡沫铝的研究进展[J],金属热处理,2004,29(6):7-11
    16. Duarte I, Mascarenhas J, Ferreira A, et al. The evolution of morphology and kinetics during the foaming process of aluminium foams[J], Key Eng Mater.2002,230(232): 96-101
    17. Kennedy A R. The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 performs[J], Scr. Mater,2002, (47):763-767
    18.李保山,牛玉舒,翟秀静等.发泡金属的开发、性质及应用(Ⅰ)发泡金属制备方法[J],中国有色金属学报,1998,8(增2):18-22
    19.王志华.泡沫铝合金动态力学性能及其吸能机理的研究[D],太原:太原理工大学,2006,1
    20.左孝青,孙加林.泡沫金属制备技术研究进展[J],材料科学与工程学报,2004,22(3):452-456
    21.刘菊芬,刘荣佩,史庆南,左孝青.新型泡沫铝制备工艺研究[J],材料导报,2002,(08):65-67
    22.许庆彦,陈玉勇,李庆春.多孔泡沫金属的研究现状[J],铸造设备研究,1997,(1):18-24
    23.王芳,王录才.泡沫金属的研究与发展[J],铸造设备研究,2000,(3):48-51
    24.陈雯,刘中华,朱诚意等.泡沫金属材料的特性、用途及制备方法[J],有色矿冶,1999,30(1):33-36
    25.吴春山.新型建材—泡沫铝[J],世界有色金属,1995,(8):30
    26.朱震刚.金属泡沫材料研究[J],物理,1999,28(2):84-88
    27. Duarte I, Mascarenhas J, Ferreira A, et al. The evolution of morphology and kinetics during the foaming process of aluminium foams [J], Key. Eng. Mater.,2002,24(8): 96-101
    28. Yang C C, Nakae H. The effects of viscosity and cooling conditions on the foamability of aluminum alloy[J], J. Mater. Pro. Technol.,2003,141(2):202-206
    29. Koerner C, Ties M, Singe R F. Modeling of metal foaming with lattice boltzmann automata[J], Adv. Eng. Mater,2002,4(10):765-769
    30. Kitazono K, Sato E, Kuribayashi K. Novel manufacturing process of closed-cell aluminium foam by accumulative roll-bonding[J], Scripta. Mater.,2004,50:495-498
    31. Ji Q, Le L H, Filipow L J, et al. Ultrasonic wave propagation in water-saturated aluminium foams[J], Ultrasonics,1998, (36):759-765
    32. Davies G J, Zhen S. Metallic foams:their production, properties and applications[J], J. Mater. Sci.,1983,18:1899-1911
    33. Banhart J. Manufacture, characterization and application of cellular metals and metal foams[J], Progress. Mater. Sci,2001,46:559-632
    34. Sosnick B. [P], US Patent 243477,1948
    35.林之恩,杨国昱.多孔材料化学:从无机微孔化合物到金属有机多孔骨架[M],结构化学,2004,23(12):1388-1398
    36.何德坪,陈锋,张勇.发展中的新型多空泡沫金属[J],材料导报,1993,(4):11-15
    37.朱新文,江东亮,谭寿洪.多孔陶瓷的制备、性能及应用:(Ⅱ)多孔陶瓷的结构、性能及应用[J],陶瓷学报,2003,24(2):85-91
    38.韩福生.一种新型的物理功能材料—泡沫铝[J],中外技术情报,1996,(6):3-6
    39.于英华,李智超等.多孔泡沫铝合金性能研究现状及应用前景展望[J],辽宁工程技术大学学报,2003,22(2):259-260
    40.徐光,霍格尔·米克.金属泡沫材料的性能[J],武汉冶金科技大学学报,1998,21(2):154-160
    41.左孝青,杨晓源等.多孔泡沫金属研究进展[J],昆明理工大学学报,1997,22(6):90-93
    42.赵万祥,赵乃勤等.新型功能材料泡沫铝的研究进展[J],金属热处理,2004,29(6):7-11.
    43. A.M. Harte, N.A. Fleck, M. F. Ashby. Fatigue failure of an open cell and a closed cell aluminum alloy foam[J], Acta. Mater.,1999,47 (8):2521-2524
    44.陈祥,李言祥.金属泡沫材料研究进展[J],材料导报,2005,17(5):5-11
    45.王祝堂.泡沫铝材:生产工艺、组织性能及应用市场(2)[J],轻合金加工技术,1999,27(1):1-6.
    46.张勇.充满生机的新型功能材料——泡沫金属[J],山东工程学院学报,1994,8(3):1-6
    47.许庆彦,陈玉勇等.多孔泡沫金属的研究现状[J],铸造设备研究,1997,(1):18-24
    48.薛涛.多孔金属材料泡沫铝的发展[J],机械工程材料,1992,16(1):4-5.
    49.陈文,刘中华等.泡沫金属材料的特性、用途及设备方法[J],有色矿冶,1999,(1):33-36
    50.李海娟,王录才,王芳.泡沫铝表面处理电解着金黄色试验研究[J],太原重型机械学院学报,2002,24(3):1-4
    51.杨振海,罗丽芬等.泡沫铝技术的国内外进展[J],轻金属,2004,(6):3-6
    52. MARINE E M A, ASHABY M F. Applying the investment methodology for materials (IMM) to aluminum foams [J], Mater. Des.,2002, (23):307-319
    53.于英华,杨春红.泡沫铝夹芯结构的研究现状及发展方向[J],机械工程师,2006,(3):43-45
    54.王志华.泡沫铝合金动态力学性能及其吸能机理的研究[D],太原:太原理工大学博士论文,2005,6
    55.赵典增,张勇,李杰.泡沫金属的研究及其应用进展[J],轻合金加工技术,1998,26(11):1-4,10
    56. J Baumeister, J Banhart, M Weber. Aluminium foams for transport industry[J], Mater. Des.,,1997,18(4/6):217-220
    57.曾顺民,王宏雁.泡沫铝材在汽车车门轻量化中的应用[J],上海汽车,2004,(11):35-36
    58.薛国宪,程和法,张立勇等.泡沫铝的制备及其力学行为研究[J],铸造技术,2004,25(7):520-522,526
    59.何德坪,何思渊,尚金堂.超轻多孔金属的进展与物理学[J],物理学进展,2006,26(3-4):346-350
    60. C S Marchi, J F Despois, A Mortensen. Uniaxial deformation of open-cell aluminiu foam:the role of internal damage [J], Acta Mater,2004,52:2895-2902
    61. Z H Wang, H W Ma, L M Zhao, et al. Studies on the dynamic compressive properties of open-cell aluminum alloy foams[J], Scripta Materialia,2006,54:83-87
    62. T Miyoshi, M Itoh, T Mukai, et al. Enhancement of energy absorption in a closed-cell aluminum by the modification of cellular structures [J], Scripta Mater, 1999,41(10):1055-1060
    63. J Banhart, J Baumeister, M Weber. Damping properties of aluminium foams[J], Mater. Sci. Eng.,1996, A205:221-228
    64. H Kavi, A Toksoy, KGuden M. Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimentally determined strengthening coefficient [J], Mater. Des.,2006,27:263-269
    65. J J Wu, C G Li, D B Wang, et al. Damping and sound absorption properties of particle reinforced Al matrix composite foams[J], Com. Sci. Technol.,2003,63: 569-574
    66.凤仪,郑海务,朱震刚等.闭孔泡沫铝的电磁屏蔽性能[J],中国有色金属学报,2004,14(1):33-35
    67.尉海军,姚广春,李兵等.Al-Si闭孔泡沫铝电磁屏蔽效能[J],功能材料,2004,37(8):1239-1241
    68. A Bhattacharya, V V Calmidi, R L Mahajan. Thermophysical properties of high porosity metal foams[J], International Journal of Heat and Mass Transfer,2002,45: 1017-1031
    69. J T Lu, C Chen. Thermal transport and fire retardance properties of cellular aluminium alloys[J], Acta Mater,199947(5):1469-1485
    70. C Y Zhao, T J Lu, H P Hodson. Thermal radiation in ultralight metal foams with open cells [J], Inter. J. Heat Mass Transfer,2004,47:2927-2939
    71. M F shby, A G Evans, N AFleck等著,刘培生,王习述,李言祥译.泡沫金属设计指南[M],北京:冶金工业出版社,2006,2-5
    72.尚金堂,何德坪.泡沫铝层和梁的三点弯曲变形[J],材料研究学报,2003,17(1):31-38
    73.于英华,杨春红.泡沫铝夹芯结构的研究现状及发展方向[J],机械工程师,2006,(3):43-45
    74.梁晓军,朱勇刚,陈峰等.泡沫铝芯三明治板的粉末冶金制备及其板/芯界面研究[J],材料科学与工程学报,2005,23(1):77-80
    75. Y Conde, A Pollien, A Morternsen. Functional grading of metal foam cores for yield-limited lightweight sandwich beams[J], Scripta Mater.,2006,54:539-543
    76. A M Harte, N A Fleck, M F Ashby. The fatigue strength of sandwich beams with an aluminium alloy foam core[J], Inter. J. Fatigue,2001,23:499-507
    77. D D Radford, N A Fleck, V S Deshpande. The response of clamped sandwich beams subjected to shock loading[J], Inter. J. Impact Eng.,2006,32:968-987
    78.朱勇刚,陈峰,梁晓军等.粉末冶金发泡时泡沫铝孔结构及泡壁的微观组织演变[J],中国有色金属学报,2004,14(7):1106-1111
    79.魏鹏,郑兆明,柳林.粉末冶金法制备泡沫A1的工艺研究[J],粉末冶金技术,2005,23(6):445-448
    80.张敏,祖国胤,姚广春.泡沫铝夹心板的制备及其界面结合机理的研究[J],功能材料,2006,37(2):281-283
    81.姜玉波.铝合金材料在汽车轻量化中的应用分析[J],试验技术与试验机,2004,44(3,4):31-33,5
    82.魏鹏,柳林.孔径可调的泡沫铝材料制备研究[J],材料工程,2005,(9):30-33
    83.左孝青,孙加林.泡沫金属的性能及应用研究进展[J],昆明理工大学学报(理工版),2005,30(1):13-17
    84.王二恒,李剑荣,虞吉林等.硅橡胶填充多孔金属材料静态压缩力学行为研究[J],中国科学技术大学学报,2004,34(5):575-580
    85.金明江,赵玉涛,戴起勋等.泡沫铝/树脂/铝合金叠层复合材料的制备与性能研 究[J],材料科学与工程学报,2005,23(4):585-588
    86.程和法,黄笑梅,李剑荣等.铝/硅橡胶复合材料动态压缩行为的研究[J],爆炸与冲击,2004,24(1):44-48
    87.程和法.泡沫铝合金阻尼性能的研究[J],材料科学与工程学报,2003,21(4):522-523
    88.田杰,胡时胜.填充硅橡胶的泡沫铝复合材料的力学性能[J],爆炸与冲击,2005,25(5):400-404
    89.李晓静.泡沫铝/纳米环氧树脂新型复合材料设计[J],机械工程师,2003,(10):55-57
    90.刘建英,徐平,于英华.泡沫铝复合材料的制备及其阻尼性能[J],煤矿机械,2004,(5):33-35
    91.杜楠,赵晴,林翠等.泡沫铝合金镀镍工艺研究[J],南昌航空工业学院学报,1999,13(4):32-35
    92.胡灵智,胡社军,李伟善等.吸波材料的吸波原理及其研究进展[J],现代防御技术,2007,35(1):27-31
    93. Y F Zheng, K C Ki. Two-layer wideband antireflection coatings with an absorbing layer[J], Applied Optics,1997,36(25):6335-6338
    94. H Komori, Y Konishi. Wide band electromagnetic wave absorber with thin magnetic layers[J], IEEE Trans. Broad.,1994,40(4):219-222
    95. H Hadder, P Joly. Effective boundary conditions for thin ferromagnetic layers:the one-dimensional model[J], Siam. J. Applied. Math.,2001,61(4):1386-1417
    96. Y X Gan, C Q Chen. Bifurcation analysis of absorption and reflection effects in electromagnetic wave absorbing composites with multi-layered structure[J], App. Com. Mater.,1994, (13):259-263
    97. Dyakonova 0 A, Kazantsev Yu N. Broadband radio absorbing structures with small reflection coefficient[J], Electromagnetics,1997, (17):89-103
    98. Curtis P T. Multifunctional polymer composites[J], Adv. Perform. Mater.,1996, 3(3-4):279-293
    99. Chambets B. Symmetrical radar absorbing structures [J], Ele. Lett.,1995,31(5): 404-405
    100.巩晓阳,董企铭.吸波材料的研究现状与进展[J],河南科技大学学报,2003,24(2):20-22
    101.刘顺华,刘军民,董星龙等.电磁波屏蔽及吸波材料[M],北京:化学工业出 版社,2007,207-210,212-217
    102.罗发,周万成,焦桓等.SiC(N)/LAS吸波材料吸波性能研究[J],无机材料学报,2003,18(3):580-584
    103. Mouchon E, Colomban P H. Micorwave absorbents:preparation, mechanical properties and r.f-microwave conductivity of SiC(and/or mullite)fibers reinforced Nasicon matrix composites [J], J. Mater. Sci.,1996,31(2):323-334
    104. Narisawa M, Itoi Y, Okamura K.Electrical resistivity of Si-Ti-C-O fibers after rapid heat treatment [J], J. Mater. Sci.,1995,30:3401-3406
    105. Yamamura T, Ishikawa T, Shibuya M, et al. Development of a new continuous Si-Ti-C-O fiber using an organometallic polymer precursor[J], J. Mater. Sci.,1988, 23:2589-2594
    106.王军,陈革,宋永才等.含镍碳化硅纤维的制备及其电磁性能Ⅰ.含镍碳化硅纤维的制备[J],功能材料,2001,32(1):34-36.
    107. Yamamura T, Ishikawa T, Shibuya M, et al. Development of a new continuous Si-Ti-C-O fiber using an organometallic polymer precursor [J], J. Mater. Sci.,1988, 23:2589-2594
    108. Ishikawa T, Kohtoku Y, Kuagawa K. Production mechanism of polyzirconcarbosilane using zirconium (Ⅳ) acetylacetonate and its conversion of the polymer into inorganic materials[J], J. Mater. Sci.,1998,33:161-166
    109.邵蔚,赵乃勤,师春生等.吸波材料用吸收剂的研究及应用现状[J],兵器材料科学与工程,2003,26(4):66-68
    110.熊国宣,邓敏,徐玲玲等.隐身材料和隐身混凝土的研究现状与趋势[J],功能材料与器件学报,2003,9(4):486-492
    111.张永祥,李苏琦,李韬等.六角型铁氧体吸波材料的研究[J],硅酸盐学报,1998,26(3):275-280
    112.张晏清.纳米钡铁氧体的柠檬酸盐法制备与吸波性能[J],同济大学学报,2004,32(4):208-212
    113. Amin M B, James J R. Techniques for utilization of hexagonal ferrites in radar absorbers[J], Rad. Elec. Eng.,1981, (5):209-214
    114.阎新,胡小玲,岳红等.雷达波吸收剂的研究进展[J],材料导报,2001,15(1):62-64
    115. Meshrama M R, Agrawala N K, Sinha B, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber [J], J. Magne.Magn. Mater., 2004,271:207-214
    116. Giannakopoulou T, Kompotiatis L, Kontogeorgakos A, et al. Microwave behavior of ferrites prepared via sol-gel method [J], J. Magne. Magn. Mater.,2002,246: 360-365
    117.娄明连,阚涛.铁氧体多层结构电波吸收体的研究[J],安徽大学学报,1999,23(2):34-38
    118.阮圣平,王兢,刘永刚等.BaFel2O19(?)纳米复合材料微波吸收性能的研究[J],吉林大学学报,2003,41(1):70-72
    119. Zhang H J, Liu Z H, Ma C L, et al. Preparation and microwave properties of Co-and Ti-doped barium ferrite by citrate sol-gel process[J], Mater. Chem. Phy.,2003, (80): 129-134
    120. Pinho M S, Gregori M L, Nunes R C R, et al. Performance of radar absorbing materials by waveguide measurements for X-and Ku-band frequencies [J], Euro. Poly. J.,2002, (38):2321-2327
    121.阎鑫,胡小玲,岳红等.纳米微孔NixZn(1-x)Fe204的水热合成研究[J],无机化学学报,2002,18(7):693-696
    122.王海.雷达吸波材料的研究现状和发展方向[J],上海航天,1999,(1):55-59
    123.邵蔚,赵乃勤,师春生等.吸波材料用吸收剂的研究及应用现状[J],兵器材料科学与工程,2003,26(4):65-68
    124.阳开新.铁氧体吸波材料及应用[J],磁性材料及器件,1996,27(3):19-23
    125.熊国宣.水泥基吸波复合材料[D],南京工业大学,2005,1
    126. L Olmedo, G Chateau, C Deleuze, et al. Microwave characterization and modelization of magnetic grannlar materials[J], J. Appl. Phys.,1993,73(10): 6992-6994
    127. D Maynard, D San, P S Leonard, et al. Antiradar means and techniques[P], US Patent 4173018,1979
    128. G Viau, F Ravel, O Acher, et al. Preparation and microwave characterization of spherical and monodisperse CO20Ni80 Particles[J], J. Appl. Phys.,1994,76(10): 6570-6572
    129.陈利民,元家钟,朱雪琴等.纳米γ-(Fe, Ni)合金粉开发与应用研究[J],材料开发与应用,1998,12(4):1-4
    130.邢丽英.隐身材料[J],北京:化学工业出版社,2004,89-146
    131.哈恩华,黄大庆,丁鹤燕.新型轻质雷达吸波材料的应用研究及进展[J],材料工 程,2006,(3):56-59
    132.曾爱香,熊维浩.纳米复合铁氧体微波吸收剂的研究进展[J],长沙电力学院学报,2003,18(4):72-76
    133.焦桓,罗发,周万成.纳米吸波材料研究与发展趋势[J],宇航材料与工艺,2001,31(5):9-11
    134. G Vlau, F Ravel, F Vincent. Preparation and microwave characterization of spherical and monodisperse Co-Ni particles[J], J. Magne. Magn. Mater.,1995, (2): 140-144
    135. M Itoh, J R Liu, T Horikawa, et al. Electromagnetic wave absorption properties of nanocomposite powders derived from intermetallic compounds and amorphous carbon[J], J. Al. Com.,2006,408(412):1400-1403
    136. S K Dhawana, N Singh, D Rodrigues. Electromagnetic shielding behaviour of conducting polyaniline composites [J], Sci. Techn. Adv.Mater.,2003, (4):105-113
    137.毛倩瑾,周美龄,陆山等.导电高聚物吸波材料的研究进展[J],北京工业大学学报,2004,30(4):488-493
    138. K T Song, J K Kim, C J Lee, et al. PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding[J], Synthetic Metals,2002,126:233-239
    139. Sonar Prashant, L Sharma Amit, Chandra Amita, et al. Synthesis and study of conductivity behaviour of blended conducting polymer lms irradiated with swift heavy ions of silicon [J], Cur. App. Phy.,2003, (3):247-250
    140.王科伟,许波.新型雷达波吸收材料导电聚合物的研究[J],光电技术应用,2006,21(1):24-27
    141. R N Das, A Pathak, P Pramanik. Low-temperature preparation of nanocrystalline lead zirconate titanate and lead lan-thanum zirconate titanate powders using triethanolamine[J], J. Am. Ceram.Soc.,1998,81(12):3357-3360
    142. J J Thomson. Chemical preparation of PLZT powders from aqueous nitrate solutions[J], Am. Ceram. Soc. Bull.,1974,53 (5):421-427
    143. N S Gajbhiye, A Y Sanjay, P S Venkataramani. Fabrication of PZT materials from nanostructured powders [J], Pro. Cry. Gro. Char. Mater.,2002,44(3):127-131
    144. D Liu, H Zhang, W Cai, et al. Synthesis of PZT nanocrystalline powder by a modified sol-gel process using zirconium oxynitrate as zirconium source[J], Mater. Chem. Phys.,1997,51(2):187-189
    145.李士根.电磁波吸收材料[J],电子材料(机电部),1998,9(8):13-19.
    146. P Reagan. A New Process for the Low-cost Production of Ceramic, Metal and Carbon Matrix Composition [J], Mater. Techn.,1994, (3):32-38
    147.方亮,龚荣洲,官建国.雷达吸波材料的现状与展望[J],武汉工业大学学报,1999,21(6):21-24.
    148.徐坚,熊惟皓,曾爱香等.稀土元素在磁性吸波材料中的应用研究进展[J],稀土,2004,25(6):68-70
    149.胡国光,尹萍,吕庆荣.LaxSr1-xXMnO3微波吸收特性的研究[J],磁性材料及器件,2000,31(6):14-17
    150. J J Sun, J B Li, C L Sun. Effects of La2O3 and Cd2O3on some properties of Ni-Zn ferrite [J], J. Magne. Magn. Mater.,2002,250:20-24
    151. Praveen Singh, V K Babbar, Archana Razdan, etal. Microwave absorption of Ca-NiTi hexaferrite composites in X-band.[J], Mater. Sci. Eng.,2000, B78:70-74
    152. Praveen Singh, V K Babbar, Archana Razdan, et al. Complex permeability and permittivity and microwave absorption studies of Ca(CoTi)xFe12-2xO19 hexaferrite composites in X-band microwave frequencies [J], Mater. Sci. Eng.,1999, B67: 132-138
    153.I Nedkov, A Petkov. Microwave absorption in Sc and CoTi-substituted Ba hex ferrite powders[J], IEEE Tran. Magne.,1990,26 (5):1483-1484
    154.解家英,李国栋,邰显康,等.含稀土纳米材料微波吸收特性的研究[J],内蒙古大学学报(自然科学版),2001,32(6):625-627
    155. S Sugimoto, T Maeda, D Book,etal. GHz microwave absorption of a fine α-Fe structure produced by the disproportionnation of Sm2Fe17 in hydrogen [J], J. Al. Comp.,2002,330(332):301-306.
    156.解家英,李国栋,邰显康,等.Dy2O3掺杂对纳米锂铁氧体微波吸收特性的影响[J],内蒙古大学学报(自然科学版),2002,33:407-410
    157.阚涛,娄明连.添加稀土对吸波材料性能的影响[J],磁性材料及器件,2001,32(6):18-21
    158.云月厚,邰显康,李国栋,等.富含稀土白云选铁尾矿制备的微波吸收材料特性研究[J],稀土,2003,24(2):68-70
    159. N Vukadinovic, J B Youssef, H L Gall. Influence of magnetic parameters on microwave absorption of domain mode ferromagnetic resonance [J], J. Magne. Magn. Mater.,1995,150:213-222
    160. V M Petrov, V V Gagulin. Microwave absorbing materials [J], Inor. Mater.,2001, 37(2):93-98.
    161. J L Wallace. Broadband magnetic microwave absorbers:fundamental limitations[J], IEEE Trans. Magn.,1993,29(6):61-65
    162. H T Zhang, J S Zhang, H Y Zhang. Computation of radar absorbing silicon carbide foams and their silica matrix composites [J], Comp. Mater. Sci.,2007,38:857-864
    163.朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的微波吸收特性[J],无机材料学报,2002,17(6):1152-1156
    164.Lorrain P,Corson D R著,陈成钧译.电磁场与电磁波[M],北京:人民教育出版社,1980,320-385
    165.刘欣.泡沫铝基材料吸波性能研究[D].沈阳:东北大学,2007:73-75
    166.徐安士,周乐柱.工程电磁场[M],北京:电子工业出版社,2004,259-268
    167.时振栋,黎安尧,王光.电磁波的应用[M],北京:高等教育出版社,1990
    168. P F Hsu, J R Howell. Measurements of thermal conductivity and osptical properties of porous partially stabilized zirconia [J], Exp. Heat. Trans.,1992, (5):293-313
    169. Ptikethly M J. Radar absorbing materials and their potential use in aircraft structures [J], Low Profile Absorbers and Scatters, IEE Colloquium on. UK: London.1992:7/1-7/3
    170.科夫涅里斯特等著,蔡德录等译.微波吸收材料[M],北京:科学出版社,1985:1-6
    171.阮颖铮.雷达截面与隐身技术[M],北京:国防工业出版社,1998,269-271
    172. Musal H M Jr, Hahn H T. Thin-layer electromagnetic absorber design[J], IEEE Trans. Magne.,1989,25(5):3851-3853
    173.周馨我,张公正,范广裕.功能材料学[M],北京:北京理工大学出版社,2002.
    174. L Olmedol, G Chateau, C Deleuzec, et al. Microwave characterization and modelization of magnetic granular materials[J], J. Appl. Phys.1993,73(10): 6992-6994
    175. J Y Shin, J H Oh. The microwave absorbing phenomenon of ferrite microwave absorbers[J], IEEE Trans. Magne.,1993,29(6):3437-3439
    176.薛向欣,刘欣,张瑜.泡沫铝基多孔金属复合材料吸波性能[J],中国有色金属学报,2007,17(11):1755-1760
    177.刘欣,薛向欣,段培宁.多孔结构对材料吸波性能的影响[J].材料与冶金学报,2007,6(4):306-310
    178.武利民.涂料技术基础[M],北京:化学工业出版社,1999,1-5
    179.叶杨祥,潘肇基主编.涂装技术实用手册(第2版)[M],北京:机械工业出版社,2003,240
    180.魏竹波,周继维,姚瑶.金属清洗技术[M],北京:化学工业出版社,2003,119
    181.李桂林.环氧树脂及环氧涂料[M],北京:化学工业出版社,2003,323-327
    182. A B Kaiser, C K Subramaniam, P W Gilberd, et al. Electronic transport properties of conducting polymers and polymer blends[J], Syn. Met.,1995,69 (1-3):197-200
    183.周志飚,郭志猛,毛卫民,等.复合型雷达吸波材料[J].北京科技大学学报,2006,28(8):766-76
    184.刘建华,周新楣,李松梅.羰基铁/导电聚苯胺微管复合材料的电磁性能[J].复合材料学报,2005,22(3):11-14
    185.孙文兵.聚苯胺导电材料的制备及表征[J],化工新型材料,2007,35(4):69-71
    186.孟琰琰,张雄.铁氧体吸波环境材料的应用技术研究[J],材料导报,2006,20(2):145-150
    187.李伟平.导电聚苯胺的制备及其电磁性能的研究[D],大连:大连理工,2007,4-10
    188.王利祥,王佛松.导电聚合物—聚苯胺的研究进展Ⅱ.电子现象、导电机理、性质和应用[J],应用化学,1990,7(6):1-8
    189. W P Su, J R Schrieffer, A J Heeger. Solitons in polyacetylene [J], Phy. Let.,1979, 42:251-698.
    190.王佛松,王利祥,景遐斌.聚苯胺的掺杂反应[J],武汉大学学报,1993,(6):65-73
    191.万梅香.导电高聚物的微波吸收机理的研究[J],理学报,1992,41(6):917-923
    192.华宝家,肖高智,杨建生.炭纤维在结构隐身材料中的应用[J],宇航材料工艺,1994,24(3):31-34
    193.曹辉.结构吸波材料及其应用前景[J].宇航材料工艺,1993,23(4):34-37.
    194.张常泉.国外结构吸波材料在巡航导弹上的应用[J],宇航材料工艺,1987,(3):6-9
    195. X F Zhang, X L Dong, H Huang, et al. Synthesis, structure and magnetic properties of SiO2-coated Fe nanocapsules [J], Mater. Sci. Eng.,2007,454-455:211-215
    196. S Shukla, S Seal, J Akesson, et al. Study of mechanism of electro less copper coating of fly-ash cenosphere particles[J], Appl Surface Sci,2001,181:35-50
    197. A X Zeng, W H Xiong, J Xu. Electroless Ni-Co-P coating of cenospheres using [Ag(NH3)2]+activator [J], Mater. Lett.,2005,59:524-528
    198. S Sung, S T Kim, J M Ahn, et al. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density [J], J. Magne. Magn. Mater.,2004,271:39-45
    199. W Y Fu, S K Liu, W H Fan. Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property [J], J. Magne.Magn. Mater.,2007,316:54-58
    200. Z Y Jia, Q Wan, M L Zhou, et al. Microwave absorbing properties of Ni-Co coating of fly-ash hollow microspheres[J], J. Founct. Mater.,2006,31(1):143-145,149
    201. A X Zeng, W H Xiong, J Xu. Electroless Ni-Co-P coating of cenospheres using [Ag(NH3)2]+activator[J], Mater. Lett.,2005,59:524-528
    202. S Sung, S T Kim, J M Ahn, et al. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density[J], J. Magne.Magn. Mate.,2004,271:39-45
    203. W Y Fu, S K Liu, W HFan. Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property[J], J. Magne.Magn. Mate.,2007,316:54-58
    204. M Suzukim. Synthesis of silicon carbon silicon nitride composite ultrafine particles using a CO2 laser [J], Am. Ceram. Soc.,1993,76(5):195-199
    205. Shukla S, Seal S, Rahaman Z, et al. Electroless copper coating of cenospheres using silver nitrate activator[J], Mater. Lett.,2002,57:151-156.
    206.毛倩瑾,于彩霞,葛凯勇等.粉煤灰空心微珠的改性及其吸波特性[J],清华大学学报(自然科学版),2004,5(12):1672-1675
    207.唐耿平,程海峰,赵建峰等.空心微珠表面改性及其吸波特性[J],材料工程,2005,6(35):11-12,
    208.吕仁清,蒋全兴.电磁兼容性结构设计[M],南京:东南大学出版社,1990
    209. Z G Fang, X M Cao, C Li, et al. Investigation of Carbon Foams as Microwave Absorber:Numerical Prediction and Experimental Validation[J]. Carbon,2006, 44(15):3368-3370
    210.李炳炎.炭黑生产与应用手册[M].北京:化学工业出版社2000,345-347
    211.孙晓刚,余扬帆,等.稀土改性碳纳米管宽带吸波材料[J],机械工程材料,2006,30(1):66-70
    212. W.Schwarzacher, O.I.Kasyutich, P.R.Evans,et al. Metal nanostructures prepared by template electrodeposition[J], J. Magne. Magne.Mater.,1999,198(199):185-190
    213. G.S.Cheng, L.D.Zhang, X.G.Zhu, et al. Synthesis of orderly nanostructure of crystalling GaN nanoparticles on anodic porous alumina membrane [J], Nano. Stru. Mater.,1999,11 (3):421-426.
    214.吴俊辉,邹建平,朱青等.硅衬底阳极氧化铝膜的荧光发射研究[J].发光学报, 2000,21(1):53-56
    215.吴俊辉,邹建平,朱青等.硅基氧化铝纳米有序孔列阵制备[J],半导体学报,1999,20(4):314-317
    216.朱祖芳,铝合金阳极氧化与表面处理技术[M].北京:化学工业出版社,2007:106
    217. Y Du, W L Cai, C M Mo et al.Preparation and photoluminescence of alumina membranes with ordered pore arrays[J], Appl. Phys. Lett.,1999,74:2951-2953
    218. Y Yang, H L Chen,Y F Mei et al.Anodic alumina template on Si substrate and preparation of CdS nanowires[J], Sol. Sta. Com.,2002,123:279-281
    219. L Pu, B X Mao, J P Zhou et al. Individual alumi nanano tubes[J], Chem.Int.Ed, 2001,40:190-194.
    220. Y Yamamoto, N Baba, S Tajima. Coloured materials and photolum inescence centres in anodic films on aluminum [J], Nature,1981,289:572-576
    221. J H Pu, P Lin, J P Zou et al. Preparation of Si nanocrystals using anodic porous alumina template formed on silicon substrate[J], Chin.Phys.Lett.,2000,17:451-455.
    222.邹建平.硅基多孔氧化铝及其在硅基纳米光电子集成中的应用[D],南京大学,2002.
    223.张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002.
    224.魏剑,李克智,李贺军等.多孔阳极氧化铝薄膜的制备[J],材料工程,2005,23(5):56-59.
    225.徐源,Thompson G E, Wood G C多孔型铝阳极氧化膜孔洞形成过程的研究[J],中国腐蚀与防护学报,1989,9(1):1-10
    226. O Jessensky, F Miller. Self-organized formation of hexagonal pore arrays in anodic alumina [J], Appl Phys Lett,1998,72(10):1173-1175.
    227. P.E.Lippens, A.V.Chadwick, A.Weibel et al. Structure and Chemical Bonding in Zr-Doped Anatase TiO2 Nanocrystals[J], J.Phys.Chem.C,2008,112(1):43-44
    228.姚素薇,孔亚西,张璐.高度有序多孔阳极氧化铝膜形成机理的探讨[J],功能材料,2006,37(11):13-116.
    229. Y G Guo, L J Wan, C F Zhu. Ordered Ni-Cu nanowire array with enhanced coercivity [J], Chem. Mater.,2003,15:664-667.
    230. Y K Zhou, J Huang, C M Shen. Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties [J], Mater.Sci. Eng.,2002, 335:260-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700