用户名: 密码: 验证码:
棉蚜对吡虫啉抗性机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉蚜Aphis gossypii (Glover)是一种世界性棉花害虫,由于其世代历期短,繁殖力强,加之田间不合理的用药习惯,导致我国田间棉蚜抗药性迅速发展且抗性背景相当复杂,这为该虫的化学防治造成了严重的困难。吡虫啉作为第一个商品化的新烟碱类杀虫剂,自上世纪90年代初开始推广使用,早已成为田间防治棉蚜的骨干药剂。为了延缓棉蚜对吡虫啉的抗性发展,延长其田间使用寿命,本研究通过室内抗性筛选、生物适合度以及交互抗性研究,系统分析了棉蚜对毗虫啉产生高水平抗性的风险;同时以室内筛选的抗性品系和敏感品系棉蚜为研究材料,利用现代分子生物技术,研究分析了棉蚜对吡虫啉产生抗性的生化和分子机制,旨在为该类药剂的科学使用提供指导。研究结果如下:
     1、抗吡虫啉棉蚜品系的室内筛选及抗性风险评估
     以杀死棉蚜群体60%-70%的剂量对敏感品系棉蚜持续筛选60代后,该品系棉蚜对吡虫啉的抗性达72.8倍,已经产生了高水平的吡虫啉抗性。该棉蚜品系从F0代筛选至F54代,抗性发展趋势较为平稳,抗性增加至47.0倍,达中等抗性水平;但由F54代筛选至F57代,抗性迅速由47.0倍增长至69.5倍,出现抗性突增期;由F57至F60抗性仍有小幅升高,但其发展又趋于缓慢,证明棉蚜对吡虫啉抗性发展趋势呈偏“S”型曲线。该抗性品系对烯啶虫胺(16.0倍)、啶虫脒(12.9倍)、噻虫嗪(11.6倍)、噻虫胺(9.84倍)、呋虫胺(9.50倍)、丁硫克百威(8.38倍)、高效氯氟氰菊酯(6.17倍)、氧乐果(6.13倍)和毒死蜱(5.10倍)均产生了明显的的交互抗性,但对哒螨灵和吡蚜酮的交互抗性水平较低(分别为2.28倍和4.52倍)。吡虫啉抗性和敏感品系生物学特性研究发现,RF60的蜜露分泌量、体重、若蚜存活率、内禀增长率和周限增长率均有所下降,特别是净生殖率,仅为敏感品系的47.7%,且世代周期延长了1.4天左右,相对适合度下降为0.71。
     尽管吡虫啉使用中前期棉蚜对其抗性发展比较缓慢,但连续大量使用仍会导致抗性突增,因此尚存在产生高水平抗性的风险。交互抗性问题能够显著影响吡虫啉和大部分常规药剂特别是新烟碱类药剂的防效,在抗性治理中,仅有少数杀虫剂能够作为替代药剂使用。吡虫啉在棉蚜种群上会产生抗性代价,令其生长、发育和繁殖方面均受到一定程度的影响,从而使抗性品系群体增长受到抑制。
     2、棉蚜对吡虫啉抗性的生化机理研究
     以室内选育的吡虫啉抗性品系(抗性达72.8倍)和敏感品系棉蚜为材料,分别测定了四种解毒酶抑制剂对毗虫啉的增效作用,并且比较了两个品系棉蚜的解毒酶活性。其中SV1、DEM在棉蚜抗吡虫啉品系和敏感品系中均没有表现出明显的增效作用;而TPP和PBO则对吡虫啉起到了明显的增效作用,且在抗性品系中的增效作用显著高于在敏感品系中的增效作用;其中PBO的增效作用最为明显,在抗性品系中的增效比达到了2.97。酶活性测定结果表明,抗吡虫啉棉蚜品系的羧酸酯酶和乙酰胆碱酯酶比活力均高于敏感品系,尤其以羧酸酯酶比活力的提高最明显,而谷胱甘肽-S-转移酶的变化却并不显著。这些结果表明:多功能氧化酶和羧酸酯酶在棉蚜对吡虫啉产生抗性的过程中起到了重要的作用,而乙酰胆碱酯酶也起到了一定的辅助作用。
     3、棉蚜对吡虫啉抗性的分子机理研究
     以吡虫啉抗性品系和敏感品系棉蚜为材料,分别克隆了一个羧酸酯酶基因,两个P450单加氧酶六家族基因,五个乙酰胆碱受体α亚基和一个β亚基的cDNA序列,所有基因序列经同源序列比对后证实分别为棉蚜各功能基因。抗性和敏感品系棉蚜的羧酸酯酶及P450单加氧酶基因序列比对后并未发现抗性相关突变,但进一步的荧光定量分析发现,CYP6CY3-1基因在抗性品系棉蚜体内过量表达了5.66倍,羧酸酯酶基因过量表达了1.24倍,仅CYP6CY3-2基因的表达量未出现明显变化(1.03倍)。本研究得到的Agα2与Aga4亚基基因序列与NCBI上已登录的棉蚜乙酰胆碱受体α2和β4亚基cDNA序列相比更加完整,包含了翻译氨基酸序列所需的完整开放阅读框。比对各亚基氨基酸序列后发现,在抗性品系棉蚜Agβ1亚基上存在单一的位点突变R81T。
     羧酸酯酶与P450单加氧酶基因的过量表达进一步证实了这两个解毒酶系在棉蚜对吡虫啉的抗性产生中起到了重要的作用。而本研究在抗吡虫啉棉蚜中首次发现的R81T氨基酸取代已被证实能够显著降低乙酰胆碱受体与吡虫啉的亲和力,因此,R81T突变直接导致了棉蚜对吡虫啉高水平抗性的产生。
     综上所述,本研究通过室内选育明确了棉蚜对吡虫啉的高水平抗性风险,并通过抗性机理分析确定了靶标位点突变是棉蚜对吡虫啉产生高水平抗性的主要原因,同时P450单加氧酶和酯酶活力的升高也是棉蚜对吡虫啉产生抗性的机理之一。显然,本研究结果对建立田间抗性分子监测手段,制定合理的抗性治理策略,延缓田间棉蚜抗药性的发展具有重要指导意义。
The cotton aphid, Aphis gossypii (Glover), is one of the worldwide pests on cotton. Because of the short generation time and the high fecundity of cotton aphid, coupled with the irrational use of pesticides in field, resistance of cotton aphid is complex. So far, serious resistance of A. gossypii to conventional insecticides has resulted in many problems in controlling of this pest in China. Since the early1990s, as the first commercialization product of neonicotinoid insecticides, imidacloprid was extensively used and had become the dominated pesticide to control cotton aphid. To delay the resistance to imidacloprid and prolong its service life in the field, the risk of high level resistance to imidacloprid was studied systematically with the laboratory selected strain. With selected resistant strain and susceptible strain, the biochemical and molecular mechanisms for the resistance were also analyzed. The results are as follows:
     1. The selection of imidacloprid-resistant strain of A. gossypii and the research of cross-resistance
     The resistance level of A. gossypii to imidacloprid reached to72.8-fold after selection of60generations with the pressure to kill60%to70%individuals of the population. From Fo to F54, the resistance of A. gossypii to imidacloprid developed slowly in the initial and middle stage of resistance selection. However, there was a sudden increase in F57, and the resistance ratio suddenly increased from47.0-fold to69.5-fold. By F57to F60, the resistance was elevated slightly. It proved that the development of resistance to imidacloprid of cotton aphid also showed "S" shaped curve similarly. The cross-resistance phenomena of RF60to nitenpyram (16.0-fold), acetamiprid (12.9-fold), buprofezin (11.6-fold), clothianidin (9.84-fold), dinotefuran (9.50-fold), carbosulfan (8.38-fold), lambda-cyhalothrin (6.17-fold), omethoate (6.13-fold), and chlorpyrifos (5.10-fold) were obviously, while the cross-resistance to pymetrozine and pyridaben at a low level (2.28-and4.52-fold, respectively). Biological research of imidacloprid between resistant and susceptible strains found that the honeydew excretion, boby weight, nymphal survival rate, net reproductive rate and intrinsic rate of natural had declined. In particular, the net reproductive rate of RF60was only47.7%compared with the susceptible strain. At the same time, the mean generation time extended about1.4days and the relative fitness decreased to0.71.
     The results of this study showed that the development of resistance to imidacloprid was relatively slow in the early stage, but the resistance of A. gossypii could increase suddenly after persistent imidacloprid selection, so the risk of high-level resistance still existed. Cross-resistance could significantly affect the effect of imidacloprid and most conventional insecticides, and only a small number of novel insecticides could use to be alternative pesticides. Imidacloprid conferred the fitness cost in A. gossypii, affecting its growth, development and reproduction, so the population growth of resistant strain could be inhibited.
     2. Studies of biochemical mechanisms of imidacloprid resistance in A. gossypii
     The biochemical mechanisms of imdacloprid resistance in A. gossypii were studied by testing the synergism of four enzyme inhibitors and the activity of related enzyme in resistant and susceptible strain of A. gossypii. The results showed that the synergism of PBO and TPP was singnificantly higher in the resistant strain than in the susceptible strain, especially when the synergism ratio of PBO was2.97. The synergism of SV1was relatively low, but DEM did not show any synergism on imidacloprid in both strains. Detoxifieation enzyme activity test in two strains showed that the activity of carboxylesterase (CarE) in resistant strain is much higher than the susceptible strain. However the activity of glutathione-S-transferase (GST) was similar in both strains. Furthermore, the activity of acetylcholinesterase (AChE) in resistant strain was a little higher than the susceptible strain. Thus, it was concluded that the enhanced carboxylesterase and cytochrome P450-monooxygenases detoxifieation might contribute to the high-level of imidacloprid resistance in A.gossypii. Acetylcholinesterase had also played a supporting role in the resistance.
     3. Studies of molecular mechanisms of imidacloprid resistance in A. gossypii
     We successfully cloned one carboxylesterase gene, two P450monooxygenase genes, five acetylcholine receptor a subunit and one β subunit from both resistant and susceptible strains. All genes we got were confirmed to belong to cotton aphid after homologous sequence alignment respectively. No mutation was found in the carboxylesterase and P450monooxygenase genes in the resistant strain, but the fluorescent quantitative analysis of three genes found that CYP6CY3-1and carboxylesterase gene overexpressed5.66-fold and 1.24-fold in resistant strain compared with the susceptible strain. Nevertheless, expression of CYP6CY3-2gene did not change obviously (only1.03-fold). The Aga2and Aga4subunit gene cDNA sequence we cloned in this study which contained the complete open reading frame were more complete than the A. gossypii nAChR a2and a4subunits cDNA sequences logged on NCBI previously. Comparison of the amino acid sequence of every subunit between the resistant and susceptible strains, a single mutation (R81T) in Agβ1subunit was observed from the resistant strain.
     Our results indicated that resistance to imidacloprid in the cotton aphid might be associated with an increase in cytochrome P450monooxygenase and carboxylesterase. The amino acid substitution (R81T) was the first time found in imidacloprid-resistant cotton aphids in this study, and the R81T was proven to significantly reduce the affinity between acetylcholine receptors and imidacloprid. Therefore, the R81T mutation led to the generation of high-level resistance in cotton aphid to imidacloprid directly.
     In summary, the risk of high-level imidacloprid-resistance in cotton aphid was determined in this study through laboratory selection. Studies of the resistance mechanisms confirmed that the mutation of target sites was the main reason for the high-level resistance. In addition, the increase of P450monooxygenase and carboxylesterase activity also played a role in the resistance to imidacloprid. Obviously these research results are significant for resistance management.
引文
艾颖,邱星辉,何风琴.棉蚜抗药性机理研究进展[J].昆虫知识,2003,40(5):385-391
    陈安良,冯俊涛,张兴.陕西棉蚜抗药性发展动态研究[J].西北农业大学学报,2000,28(1):48-51
    陈亮.桃蚜对吡虫啉抗性的生化机理及其适合度研究[D].2005.5.硕士学位论文
    程桂林,刘润玺.新疆,山东棉蚜抗药性对比[J].农药,1997,36(11):6-9
    程家安,祝增荣.2005年长江流域稻区褐飞虱暴发成灾原因分析[J].植物保护,2006,32(4):1-4
    冯国蕾,赵章武,李梅,等.不同寄主植物与棉蚜酯酶活性的关系[J].昆虫学报,2001,304-310
    冯俊涛,王兴林,杨崇珍,等.陕西棉花苗蚜对几种杀虫剂的抗药性测定[J].西北农业大学学报,1996,24(3):63-67
    封云涛,徐宝云,吴青君,等.杀虫剂分子靶标烟碱型乙酰胆碱受体研究进展[J].农药学学报,2009,11(2):149-158
    龚坤元.棉蚜对1059的抗性测定[J].昆虫知识,1964,13(1):1-9
    高占林,李耀发,党志红,等.河北省不同地区棉蚜对吡虫啉等杀虫剂抗药性发展动态研究[J].河北农业大学学报,2008,31(3):81-84
    高希武,郑炳宗,梁同庭,等.杀虫剂混用或加增效剂对瓜—棉蚜增效作用及机制的研究[J].植物保护学报,1989,16(4):273-278
    高希武.寄主植物对棉蚜羧酸酯酶活性的影响[J].昆虫学报,1992,35(3):267-272
    龚瑞中,陈锐,陈良燕.吡虫啉对环境生物的毒性与安全性评价[J].农药科学与管理,1999,20(3):12-16
    韩召军,王荫长,尤子平.棉蚜对拟除虫菊酯类杀虫剂的抗性机理[J].南京农大学学报,1995,18(3):54-59
    华丘林,郑金土,姚国华,等,吡虫啉防治水稻白背飞虱效果及对水稻、天敌的安全性试验[J].农药,1997,36(11):33-34
    蒋金炜,何万泽,马继盛,丁矛.不同杀虫剂对烟田节肢动物群落的影响[J].中国烟草学报,2001,2:40-43
    姜卫华,韩召军.二化螟对氟虫腈抗性初探[J].中国水稻科学,2005,19(6):577-579
    姜兴印,王开运,仪美芹,等.增效吡虫啉对4种蚜虫的毒力和对天敌的选择性[J].农药,2000,39(9):26-27
    李朝阳,吴坤君.菊小长管蚜的实验种群生命表[J].昆虫知识,1997,34(6):333-335
    李显春,王荫长,韩召军.昆虫细胞色素P450基因的克隆及其策略[J].华东昆虫学报,1999,8(2):103-111
    李飞,韩召军,唐波.抗性品系棉蚜乙酰胆碱酯酶和羧酸酯酶的变异[J].昆虫学报,2003,46(5):578-583
    李飞,韩召军.棉蚜钠离子通道基因cDNA和基因组DNA片段的克隆和序列分析[J].武夷科学,2002,18:86-92
    李飞,韩召军.取食不同寄主棉蚜的羧酸酯酶和乙酰胆碱酯酶特性比较[J].南京农业大学学报,2002,25(2):57-60
    李菁,韩召军.棉蚜对吡虫啉抗性的初步研究[J].农药学学报,2007,9(3):257-262
    李士根,刘永春.蚊虫抗药性机制研究进展[J].中国媒介生物学及控制杂志,2001,12(1):76-78
    梁军,沈建华,林国芳,等.淡色库蚊中抗性相关羧酸酯酶的纯化及其性质[J].昆虫学报,2001,44(2):161-168
    刘爱芝,李世功,郝素华.毗虫啉和抗蚜威对麦蚜的防效及对天敌的影响[J].河南农业科学,1999(4):25-27
    刘爱芝,李素娟,李世功,武予清.三种杀虫剂对麦田蚜虫和天敌的影响[J].昆虫知识,2001,38(2):125-127
    刘德明,杨秀芬,王树礼,等.辽宁棉区棉蚜抗药性监测与治理抗性研究[J].昆虫知识,1994,31(2):81-86
    雷虹,张战利.棉蚜对啶虫脒的抗性汰选与风险评估[J].西北农业学报,2007,16(6):238-241
    罗万春,凌冰,岳留强,等.新疆棉蚜抗药性研究[J].植物保护学报,1990,17(3):283-288
    刘润玺.关于棉蚜对拟除虫菊酯的抗性报道[J].昆虫知识,1987,24(1):62-64
    刘润玺,程桂林.棉虫对药剂的交互抗性及治理[J].农药,1991,30(3):1-4
    刘树生.介绍一种饲养蚜虫的方法—新的叶子圆片法[J].昆虫知识,1987,24(2):113-116
    刘泽文,韩召军,王荫长,等.褐飞虱抗有机磷品系的交互抗性及适合度研究[J].南京农业大学学报,2001,24(4):37-40
    刘泽文,刘成君,张洪伟,等.褐飞虱抗吡虫啉品系生物适合度研究[J].昆虫知识,2003,40(5):419-422
    刘泽文,张玲春.褐飞虱对吡虫啉抗性监测方法的研究[J].昆虫知识,2002,39(6):424-427
    刘泽文,张懿熙,姚香梅,等.褐飞虱对吡虫啉的抗性机理和靶标分子毒理学[J].昆虫学报,2010,53:683-688
    马艳,吕政一,潘登明,等.几种杀虫剂对异色瓢虫(Leis axyridis Pallas)不同虫态的毒力测定[J].中国棉花,2001,28(7):19-20
    马志卿,江志利,陈安良,张兴.新疆北疆棉蚜抗药性测定及发展动态分析[J].西北农林科技大学学报,2001,29(2):80-82
    慕立义,王开运.我国棉花蚜虫对菊酯类农药及呋喃丹抗药性调查研究[J].农药,1986,2:1-6
    慕立义,王开运.几类增效剂在抗药性棉蚜中对杀虫剂增效作用研究[J].农药,1989,38(6):1-4
    慕立义主编.植物化学保护研究方法[M].北京:中国农业出版社.1994,pp:210-220
    穆兰芳,刘于成,朱福官,等.2005年吴江市褐飞虱后期特大发生原因及其防治对策[J].昆虫知识,2006,43(5):706-708
    潘文亮,党志红,高占林.几种蚜虫对吡虫啉抗药性研究[J].农药学学报,2000,2(4):85-87
    潘文亮,党志红,高占林.棉蚜抗吡虫啉品系和敏感品系主要解毒酶活性比较[J].昆虫学报,2003,46(6):793-796
    彭丽年,何树林.四川地区棉铃虫和棉蚜抗药性检测及分析[J].棉花学报,2002,14(1):62-64
    彭军,马艳.烯啶虫胺对抗性棉蚜的防效[J].中国棉花,2008,35(5):13-14
    任晓霞.棉铃虫对有机磷杀虫剂靶标抗性机制的研究[D].南京农业大学博士论文,2002
    石键,崔光先,郑洪庆.河北棉区棉蚜对内吸磷抗药性的调查[J].昆虫知识,1965,6:329-330
    沈晋良,韩召军,尤子平.南方棉蚜的抗药性监测[J].昆虫知识,1987,24(2):93-96
    史成华,徐红彪.吡虫啉的合成方法[J].农药,1997,37(10):11-14
    孙耘芹,冯国蕾,袁家圭,等.棉蚜对有机磷杀虫剂抗性的生化机理[J].昆虫学报,1987,30(1):13-19
    孙鲁娟,高希武,郑炳宗.氰戊菊酯抗性和敏感品系棉蚜部分钠离子通道基因的克隆[J].中国农业科学,2003,36(11):1301-1305
    孙建中,方雄朝,杜正文.吡虫啉——一种超高效多用途的内吸性杀虫剂[J].植物保护, 1995,21(2):44-45
    孙磊,谢慧琴,许慧敏,杨德松.新疆玛纳斯河流域棉蚜抗药性测定[J].中国农学通报,2011,27(27):299-302
    史晓斌,石绪根,王红艳,等.抗吡虫啉棉蚜对其他新烟碱类药剂的交互抗性及相关酶的活性变化[J].昆虫学报,2011,54:1027-1033
    谭佳,张敦阳,李希平.江苏泗阳县棉蚜抗药性监测[J].昆虫知识,1987,24(2):93-96
    唐建军,陈欣,张传进,等.超高效杀虫剂吡虫啉的特性及其应用[J].中国农学通报,1999,15(1):38-40
    唐振华.昆虫抗药性及其治理[M].农业出版社,1993,158-163
    唐振华,吴士雄编著.昆虫抗药性的遗传与进化[M].上海:上海科学技术文献出版社,1999,99-217
    王健,吴振廷,李学德.寄主植物对瓜蚜酯酶活性及其耐药性的影响[J].昆虫知识,1996,33(1):20-22
    王开运.棉苗的水培和棉蚜的繁育[J].农药,1983,23:46
    王开运,慕立义.棉蚜抗药性快速测定方法[J].农药,1988,27(6):7-8
    王开运,仪美芹,姜兴印,等.吡虫啉对6种蚜虫的毒力和温度效应[J].农药,1999,38(7):13-14
    王开运,姜兴印,仪美芹,等.山东省主要菜区瓜(棉)蚜(Aphis gossypii)抗药性及机理研究[J].农药学学报,2000,2(3):19-24
    王开运,姜兴印,仪美芹,等.取食不同寄主植物对棉蚜后代抗药性的影响[J].昆虫学报,2001,44(4):469-475
    王兴林,冯俊涛,杨崇珍,等.陕西棉蚜抗药性监测[J].西北农业学报,1997,6(3):57-60
    王玉波,何晓庆,郑书宏,等.不同农药对丽蚜小蜂的安全性评价[J].中国蔬菜,2006(8):21-22
    王荫长,韩召军.我国农业害虫抗药性发生概况[J].昆虫知识,1991,28(2):120-121
    王圣印,刘永杰,周仙红,等.西花蓟马对吡虫啉抗性机制的研究[J].应用昆虫学报,2011,48:559-565
    吴孔明.河南省棉区棉蚜对三种农药抗性测定[J].中国棉花,1989,3:40-42
    吴孔明,郭予元.棉铃虫种群适合度研究[J].昆虫学报,1997,41(增刊):7-12
    吴孔明,刘芹轩.棉蚜对杀虫剂抗性的稳定性[J].昆虫学报,1995,38(2):253-255
    吴千红,邵则信,苏德明,等.昆虫生态学实验[M].上海:复旦大学出版社.1991:131-141
    谢佳燕,何凤琴,李梅,等.杀虫剂及不同地区寄主植物对棉蚜酯酶的影响[J].昆虫知识,2001,38(6):429-435
    谢佳燕,冯国蕾,李梅,等.不同寄主植物棉蚜酯酶对杀虫剂不敏感性的频率分布[J].植物保护学报,2002,29(2):163-167
    谢心宏.新型杀虫剂吡虫啉[J].农药,1998,37(6):40-42
    徐志英,刘芳,张军,王奎萍.扑虱灵和吡虫啉对稻虱缨小蜂寄生率的影响.昆虫知识,2006,43(6):789-793
    姚洪渭.白背飞虱抗药性机理的研究—药剂敏感性变化的生物学与生理生化基础[D].博士学位论文,浙江大学.2004,pp:116
    尹设飞,叶磊,钱春生,等.吡虫啉防治水稻二化螟[J].农药,1997,36(7):38-39
    尹可锁,吴文伟,何成兴,罗雁婕.5种杀虫剂对甘蓝蚜的毒杀作用及对蚜茧蜂的影响.植物保护,2005,31(6):84-85
    尤启东.药物化学[M].北京:化学工业出版社,2004:204-205
    于彩虹,林荣华,王开运,等.棉蚜对吡虫啉等杀虫剂抗药性品系的室内选育及抗药性风险评价[J].植物保护学报,2004,31(4):401-405
    于金凤,慕立义,王开运.4种棉蚜抗药性种群的生命力和繁殖力[J].植物保护学报,1996,23(1):73-78
    杨焕青,王开运,王红艳,等.抗吡虫啉棉蚜种群对吡蚜酮等药剂的交互抗性及施药对其生物学特性的影响[J].昆虫学报,2009,52(2):175-182
    杨焕青,王开运,史晓斌,等.哒螨灵对抗吡虫啉棉蚜种群的负交互抗性及对其生物学特性的影响[J].植物保护学报,2010,37(1):55-61
    郑炳宗,高希武.北京及河北省北部瓜-棉蚜对拟除虫菊酯抗药性的研究初报[J].植物保护学报,1988,15(1):55-60
    张霁.镶嵌施药法治理迁飞性害虫抗药性[J].农药,2001,40(6):33
    张均邦.神经生物学教程[M].北京:科学出版社,2005:70-71
    张桂芬,竹内博昭.三种杀虫剂对稻螟赤眼蜂种群增长的影响[J].植物保护学报,1997,(2):164-168
    张炬红,郭建英,万方浩,等.Bt基因抗虫棉对棉蚜的杀虫剂敏感性及解毒酶系的影响[J].昆虫学报,2006,49(6):938-943
    张传根,董思能.安徽省径县2005年褐飞虱大发生特点、成因及对策[J].安徽农业科学,2006,34(21):5599-5618
    张咏梅,李今越.吡虫啉的应用及其安全性研究进展[J].医学动物防治,2004,12:728-730
    朱九生,屈会选,樊建斌,等.山西省棉蚜对常用五种农药抗药性普查与监测研究[J].山西农业科学,1996,24(2):18-32
    庄占兴,韩书霞.抗灭多威棉蚜种群对其它常用药剂的交互抗性研究[J].农药,1997,36(10):16-17
    邹圣龙,刘天龙.褐飞虱对吡虫啉抗性测定[J].安徽农学通报,2007,13(5):139-140
    赵建周.Bisbop A B, Edward J G.马铃薯甲虫对吡虫啉抗性的测定、遗传方式和机理研究[M]//植物保护21世纪展望,北京:中国科学技术出版社,1998:715-718
    Aandrew K J, Marta G, David B S. The nicotic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae [J]. Genomics,2005,85:176-187
    Ahmad M, Arif M I. High resistance of field populations of cotton aphid Aphis gossypii (Glover) (Homoptera:Aphididae) to pyrethroid insecticides in Pakistan [J]. J Econ Entomol.,2003,96(3):875-878
    Argentine J A, Clark J M, Lin H. Genetics and biochemical mechanism of abamectin resistance in two isogenic strains of Colorado potato beetle [J]. Pestci. Biochem. Physiol.,1992,44: 192-207
    Badio B, Daly J W. Epibatidine, a potent analgesic and nicotinic agonist [J]. Mol. Pharmacol., 1994,45:563-569
    Bai D, Lummis S C R, Leicht W, et al. Actions of imidacloprid and a related nitromethylene on cholinergic receptors and identified insect motor neurone [J]. Pestic. Sci.,1991,33(2): 197-204
    Bass C, Lansdell S J, Millar N S, et al. Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera:Pulicidae) [J]. Insect Biochem. Mol. Biol.,2006,36:86-96
    Bass C, Carvalho R A, Oliphant L, et al. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens [J]. Insect Mol. Biol.,2011a,20(6):763-773
    Bass C, Puinean A M, Andrews M C, et al. Mutation of a nicotinic acetylcholine receptor (3 subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae [J]. BMC Neurosci,2011b,12:51
    Beckstein O, Biggin P C, Sansom M S P. A hydrophobic gating mechanism for nanopores [J]. J Phys. Chem. B,2001,105:12902-12905
    Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analyt. Biochem.,1976,72: 248-254
    Brown AWA. The spread of insecticide resistance in pest species [J]. Advances in pest control research,1958
    Byrne F J, Castle S, Prabhaker N, et al. Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala [J]. Pest Manag. Sci.,2003,59(3):347-352
    Cao C W, Zhang J, Gao X W, Liang P, Guo H L. Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistancein cotton aphids, Aphis gossypii (Glover) [J]. Pestic. Biochem. Physiol.2008a,90:175-180
    Cao C W, Zhang J, Gao X W, Liang P, Guo H L, Differential mRNA expression levels and gene sequences of carboxylesterase in both deltamethrin resistant and susceptible strains of the cotton aphid, Aphis gossypii [J]. Insect Sci. 2008b,15:209-216
    Caine H L, Ottawa, Ontario, et al. Intensity control device for electrical musical instrument, 1957, Serial No.484,777
    Cahill M, Corman K, Day S, et al. Baseline determination and detection of resistance to imidacloprid in Besisia tabaci (Homoptera:Aleyrodidae) [J]. Bull Entomol Res,1996,86: 343-349
    Chao S L, Dennehy T J, Casida J E. Whitefly (Hemiotera:Aleyrodidae) binding site for imidacloprid and related insecticides:a putative nicotinic acetylcholine receptor [J]. J. Econ. Entomol,1997,90:879-882
    Choi B R, Lee S W, Yoo J K. Resistance mechanisms of green peach aphid Myzus persicae (Homoptera:Aphididae) to imidacloprid [J]. Kor.J.Appl.Entomol.,2001,40:265-271
    Chadwick L E. Physiological aspects of insect resistance to insecticides [J]. Academic Press, 1955
    Cordero-Erausquin M, Marubio L M, Klink R, et al. Nicotinic receptor function:new perspectives from knock-out mice [J]. Trends Pharmacol Sci.,2000,21:211-217
    Corringer J P, Le Novere N, Changeux J P. Nicotinic receptors at the amino acid level [J]. Annu Rev Pharmacol Toxicol,2000,40:431-458.
    Cox D, Devonshire A, Denholm I, Foster S. Monitoring of insecticide resistance in Myzus persicae from Greece [A]. Proceedings 6th International Synposium on Aphids in New Millenium [C]. Rennes, France,2001
    Cox L, Koskinen W C, Celis R, et al. Sorption of imidacloprid on soil clay mineral and organic components [J]. Soil Sci.Soc.Am.J.,1998,62:911-915
    Cuany A, Handani J, Berge J, et al. Action of esterase B1 on chlorpyrifos in organophosphate resistance culex mosquitoes [J]. Pestic.Biochem.Physiol.,1993,45:1-6
    Delorme R, Auge D, Bethenod M T, et al. Insecticide resistance in a strain of Aphis gossypii from southern France [J]. Pestic.Sci.,1997,49:90-96
    Denholm, Devine G, Foster S, et al. Incidence and management of insecticide resistance to neonicotinoids. In proceedings brighton crop protection conference [J]. Pests and Diseases.,2002, pp:161-168
    Denholm I, Rowland M W. Tactics for managing pesticide resistance in arthropods:theory and practice [J]. Ann.Rev.Entomol.,1992,37:91-112
    Devonshire A L, Moore G D. A carboxylesterase with broad substrate specificity organophosphorus, carbamate and pyrethrinoid resistance in peach potato aphids(Myzus persicae) [J]. Pestic. Biochem. Physiol,1982,18:235-246
    Elgoyhen A B, Vetter D E, Katze, et al. a 10:A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensorv hair cells [J]. Proc Natl Acad Sci. USA,2001,98:3501-3506.
    Forgash A J, Cook B J, Riley R C. Mechanisms of Resistance in Diazinon-Selected Multi-Resistant Musca domestica [J]. J. Econ. Entomol.,1962,55:545
    Furk C, Powel D F, Heyd S. Pirimicarb resistance in the meion and cotton aphid Aphis gossypii Glover [J]. Plant Pathol,1980,29:191-196
    Foster S P, Denholm I, Thompson R. Variation in response to neonicotinoid insecticides in peach-potato aphids, Myzus persicae (Hemiptera:Aphididae) [J]. Pest Manag. Sci.,2003, 59:166-173
    Feng Y T, Wu Q J, Wang S L, et al. Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Pest Manag. Sci.2010,66:313-318
    Feng S, Kong Z, Wang X, et al. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell [J]. Chemo-sphere.2004 Aug; 56(5):457-463
    Fuog D, Fergusson S J, Fluckiger C. In:Insecticides with novel modes of Action [M]. Ishaaya I and Degheele D, Eds., Springer:Berlin,1997, pp:40-49
    Gorman K, Wren J, Devine G, et al. Characterisation of neonicotinoid resistance in Bemisia tabaci from Spain [C]. The BCPC international congress of the crop science & technology, 2003:783-788
    Gorman K, Devine G, Bennison J, et al. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera:Aleyrodidae) [J]. Pest Manag. Sci.,2007,63(6):555-558
    Gregor J D, Zoe K H, Andrew W S, et al. Lethal and sublethal effects of imidacloprid to nicotine-tolerant Myzus nicotianae and Myzus Persicae [J]. Pestic. Sci.,1999,48(1): 57-62
    Grutter T, Changeux JP. Nicotinic receptors in wonderland [J]. Trends Biochem. Sci.2001, 26:459-463
    Gubran E.M.E., Delorme R, et al. Insecticide resistance in cotton aphid, Aphis gossypii (Glover) in the Sudan Gezira [J]. Pestic.Sci.,1992,35:101-107
    Grauso M, Reenan R A, Culetto E, Sattelle D B. Novel Putative nicotinic acetylcholine receptor subunit genes, dalpha5, dalpha6 and dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-I Pre-mRNA editing [J]. Geneties,2002,160:1519-1533
    Hibig W H, Pabst M J, Jakoby W B. Glutathione-S-transferase AA from rat liver [J]. Arch Biochem Biophys,1976,175(2):710-716
    Hollingworth R M, Mota-Sancher D, Whalon M E, et al. Comparative pharmokinetics of im idacloprid in susceptible and resistant Colorado potato beetles [A]. Proceedings 10 th IU PAC International Congress on the Chemistry of Crop Production [C]. Basel,2002,1:312
    Horowitz A R, Kontsedalov S, Ishaaya I. Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Journal of Economic Entomology,2004,97(6):2051-2056
    Hopfield J F, Tank D W, Greengard P. Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation [J]. Nature,1988,336:677-680
    Heidari R, Devonshire A L, Campbell B E, et al. Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina [J]. Insect Biochem. Mol. Biol,2004,34(4):353-363
    Herron G A, Wilson L J, Neonicotinoid resistance in Aphis gossypii Glover (Aphididae: Hemiptera) from Australian cotton [J]. Australian J. Entomol.2011,50:93-98
    Ihara M, Matsuda K, Otake M, et al. Diverse actions of neonicotinoids on chicken al, α4β2 and drosophila chicken SADB2 and ALSB2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis Oocytes [J]. Neuropharmacology,2003,45:133-144
    Ihara M, Matsuda K, Shimomura M, et al. Super agonist actions of clothianidin and related comunds on the SADB2 nicotinic acetylcholine receptor expressed in Xenopus laevis Oocytes [J]. Biosci Biotechnol Biochem,2004,68(3):761-763
    Ishaaya I, Kontsedaloy S, Horowitz A R. Biorational insecticide mechanism and cross-resistance [J]. Arch Insect Biochem Physiol,2005,58(4):192-199
    Jayawardena K G. Determination of the role of elevated B2 esterase in insecticide resistance Culex quinquefasciatus (Diptera:Culicidae) from studies on the purified enzyme [J]. Bull. Entomol. Res.,1994,84:39-44
    Jones A K, Grauso M, Sattelle D B. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae [J]. Genomics,2005,85:176-187
    Jones A K, Raymond-Delpech V, Thany S H., et al. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera [J]. Genome Res.,2006,16:1422-1430
    Jones C M, Daniels M, Andrews M, et al. Williamson M.S., Denholm I., Age-specific expression of a P450 monooxygenase (CYP6CM1) correlates with neonicotinoid resistance in Bemisia tabaci [J]. Pestic. Biochem. Physiol.,2011,101:53-58
    Jouβen N, Heckel DG, Haas M, et al. Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance [J]. Pest Manag. Sci.,2008,64:65-73
    Kayser H, Lee C, Decock A, et al. Comparative analysis of neonicotinoid binding to insect membranes:I. A structure-activity study of the mode of [H] imidacloprid displacement in Myzus persicae and Aphis craccivora [J]. Pest Manag. Sci.,2004,60(10):945-958
    Karlin A. Emerging Structure of the Nicotinic Acetylcholine Receptors [J]. Nat Rev Neurosci, 2002,3:102-114
    Karunker I, Benting J, Lueke B, et al. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Insect Biochem. Mol. Biol.,2008,38,634-644
    Karunkera I, Moroub E, Nikoub Dimitra, et al. Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance [J]. Insect Biochem. Mol. Biol,2009,10(39): 697-706
    Kazuhiko M., Masaru S, Ihara M, et al. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets:electrophysiology, molecular biology, and receptor modeling studies [J]. Biosci. Biotechnol. Biochem.,2005,69(8):1442-1452
    Knipling E f.A report on the insecticide resistance problem [J]. Agri. chem.,1954,9(6): 46-47
    Konus M, Ugurlu S, Iscan M. Roles of detoxification enzymes in pyrethroid resistance of Helicoverpa armigera from Turkey [J]. Toxicology Letters,2008,180 (1):168-169
    Livaka K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method [J], Methods,2001,4 (25):402-408
    Liu M Y, Lanford J, Casida J E, et al. Relevance of [3H] imidacloprid binding site in house fly head acetylcholine receptor to insecticidal activity of 2-nitromethylene and 2-nitroimino-imidazolidines [J]. Pestic.Biochem. Physiol.,1993,46 (3):200-206
    Liu Z, Williamson M S, Lansdell S J, et al. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides [J]. J Neurochem.,2006,99 (4):1273-1281
    Liu Z, Williamson M S, Han Z J, et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper) [J]. Proc Natl Acad Sci USA.,2005,102 (24):8420-8425
    Li F, Han Z J. Alternative splicing, multiple transcription initiation sites of nicotinic acetylcholine receptor subunits from the cotton aphid Aphis gossypii [J]. Acta Zoologica Sinica.,2005,51:867-878
    Li J, Shao Y, Ding Z, et al. Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid [J]. Insect Biochem. Mol. Biol.,2010,40:17-22
    Li J, Wang Q, Zhang L, et al. Characterisation of imidacloprid resistance in the housefly Musca domestica (Diptera:Muscidae) [J]. Pestic. Biochem. Physiol.,2012,102:109-114
    Lloyd G K, Williams M. Neuronal nicotinic acetylcholine receptors as novel drug targets [J]. J Pharmacol Exp Ther,2000,292:461-467
    Lansdell S J, Millar N S. Cloning and heterolognus expression of Dalpha4, a Drosophila neuronal nicotinic acetylcholine receptor subunit:identification of an alternative exon influencing the efficiency of subunit assembly [J]. Neuro Pharmacology,2000,39: 2604-2614
    Lawrence R, Lustig. Nicotinic acetylcholine receptor structure and function in the efferent auditory system [J].Anat Rec Part,2006,288A:424-434
    Littleton J T, Ganetzky B. Ion channels and synaptic organization:analysis of the drosophila genome [J]. Neuron,2000,26:35-43
    Lind R J, Clough M S, Reynolds S E, Earley F G P. (3H) Imidacloprid labels highand low-affinity nicotinic acetylcholine receptor-like binding sites in the aphid Myzus persicae (Hemiptera:Aphididae) [J]. Pestic. Biochem. Physiol.,1998,62:3-14
    Mutero A, Pralavorio M, Bride J M, et al. Resistance-associated point mutations in insecticide insensitive acetylcholinesterase [J]. Proc. Natl. AcadSci. USA,1994,91:5922-5926
    Mongan N P, Jones A K, Smith G R, et al. Novel a7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans [J], Protein Science,2002,11: 1162-1171
    Moores G D, Gao X W, Denholm I. Characterization of insensitive acetylcholinesterase in the insecticide-resistant cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae) [J]. Pestic.Biochem. Physiol.,1996,56:102-110
    Moise L, Piserchio A, Basus V J, et al. NMR structural analysis of alpha 2-bungarotoxin and its complex with the principal alpha-neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor [J]. J Biol Chem,2002,277(14): 12406-12417
    Mullins J W. Imidacloprid:a new nitroguanidine insecticide.pp:183-198. In Pest Control with Enhanced Environmental Safety ACS Sym. Series524 (Eds.Duke SO, MenJJ, PlimmerJR) [J]. American Chemical Society, Washington D C.1993
    Matsuda K, Shimomura M, Komdo Y, et al. Role of loop D of the a7 nicotinic acetylcholine receptor in its interaction with insecticide imidacloprid and related neonicotinoids [J]. Br J Pharmacol,2002,137:162-169
    Matsuda K, Shimomura M, Ihara M, et al. Neonicotinoids show selective and diverse action on their nicotinic receptor targets:electrophysiology, eolecular biology, and receptor modeling studies [J]. Biosci Biotechnol Biochem,2005,69(8):1442-1452
    Matsumura M, Takeuchi H, Satoh M, et al. Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia [J]. Pest Manag. Sci.2008,64:1115-1121
    Markussen M D K, Kristensen M. Low expression of nicotinic acetylcholine receptor subunit Mda2 in neonicotinoid-resistant strains of Musca domestica L [J]. Pest Manag. Sci., 2010a,66:1257-1263
    Markussen M D K, Kristensen M. Cytochrome P450 monooxygenase-mediated neonicotinoid resistance in the house fly Musca domestica L [J]. Pestic. Biochem.Physiol,2010b,98: 50-58
    Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the ligand-binding domain of the acetylcholine receptor pore [J]. Nature,2003,423:949-955
    Nagata Keiichi, Aist rup Gary L, Song Jingho, et al. Subconductance-state currents generated by imidacloprid to the nicotinic acetylcholine receptor in PC 12 cells [J]. Neuroreport, 1996,7 (5):1025-1028
    Newcomb EW. Clonal evolution of N-methylnitrosourea induced C57BL/6J thymic lymphomas by analysis of multiple genetic alterations [J]. EW,1997,21(3):189-198
    Nauen, R. Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response [J]. Pestic. Sci.,1995,44: 145-153
    Nauen R, Elbert A. Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids [J]. Pest Mang Sci.,2000,56:60-64
    Nauen R, Bretschneider T. New modes of action of insecticides [J]. Pesticide outlook.,2002, 12:241-245
    Nauen R, Elbert A. European monitoring of resistance to insecticides in Myzus Persicae and Aphis gossypii (Hemiptera:Aphididae) with special reference to imidacloprid [J]. Bull Eniomol Res.,2003,93(1):47-54
    Nauen R, Denholm I. Resistance of insect pests to neonicotinoid insecticides:current status and future prospecis [J]. Arch Insect Biochem Physiol,2005,58:200-215
    Nauen R, Jeschke P, Copping L. In Focus:Neonicotinoid insecticides [J]. Pest Manag Sci., 2008,64:1081-1081
    O'Brien P J, Abdel-Aal Y A. Relationship of insecticide resistance to carboxylesterases in Aphis gossypii (Homoptera:Aaphididae) from midsouth cotton [J]. J. Econ. Entomol., 1992,85:651-657
    Owusu E O, Kim C S, Horiike M, et al. Some dichlorvos induced plant enzymes and their possible influence on field control of cotton aphid (Homoptera:Aphididae) [J]. Journal of Horticultural Science,1995,70:461-467
    Prapanthadara L, Hemingway J, Ketterman A J. DDT-resistance in Anopheles gambiae (Diptera:culicidae) from Zanzibar, Tanzania, based on inareased DDT-dehydrochlorinase activity of glutathione-S-transferases [J]. Bulletin of Entomological Research,1995,85(2): 267-274
    Paul A J, Hutchens D E, Firkins L D, et al. Dermal safety study with imidacloprid/moxidectin topical solution in the ivermectin-sensitive collie [J]. Vet Parasitol.2004,121(3-4): 285-291
    Pan Y, Guo H L, Gao X W. Carboxylesterase activity, cDNA sequence, and gene expression in malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii [J]. Comparative Biochemistry and Physiology, Part B,2009,152:266-270
    Patrick H, Celie N, Sarah E V, et al. Nicotine carbamylcholine binding to nicotinie acetylcholine receptors as studied in aehbp crystal Structures [J]. Neuron,2004,41: 907-914
    Perry T, Heckel D G, McKenzie J A, et al. Mutations in Dal or Dβ2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster [J]. Insect Biochem. Mol. Biol,2008,38:520-528
    Perry T, Chan J Q, Batterham P, et al. Effects of mutations in Drosophila nicotinic acetylcholine receptor subunits on sensitivity to insecticides targeting nicotinic acetylcholine receptors [J]. Pestic. Biochem. Physiol.,2012,102:56-60
    Prabhaker N, Castle S, Henneberrya T J, Toscanoa N C. Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Bull Entomol Re,2005,95(6):535-543
    Prabhaker N, Toscano N C, Castle S J, et al. Selection for imidacloprid resistance in silverleaf whiteflies from the imperial valley and development of a hydroponic bioassay for resistance monitoring [J]. Pestic Sci.,1997,51:419-428
    Puinean A M, Denholm I, Millar N S, et al. Characterisation of imidacloprid resistance mechanisms in the brown planthopper, Nilaparvata lugens Stal (Hemiptera:Delphacidae) [J]. Pesticide Biochemistry and Physiology,2010a,97:129-132
    Puinean A M, Foster S P, Oliphant L, et al. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the Aphid Myzus persicae [J]. PLoS Genet,2010b,6:1-11
    Ray J W. In Pest infestation research, pp.1965,59
    Ralf N. Behaviour modifying effects of low systemic concetrations of imidacloprid on Myzus persicae with special reference to an antifeeding response [J]. Pestic.Sci.,1995,14: 149-153
    Rauch N, Nauen R. Biochemical markers linked to neonicotinoid cross-resistance in Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Arch Insect Biochem Physiol,2003,54:165-176
    Rauch N, Nauen R. Identification of biochemical markers linked to neonicotinoid cross-resistance in Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Arch Insect Biochem Physiol.,2003,54(4):165-176
    Roditakis E, Grispou M, Morou E, et al. Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete [J]. Pest Manag Sci.,2009,65:313-22
    Roditakis E, Morou E, Tsagkarakou A, et al. Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-derived imidacloprid-resistant insects and cross-metabolism potential of the recombinant enzyme [J]. Insect Sci.,2011,18: 23-29
    Sanchez M D, Hollingworth R M, Grafius E J. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera:Chrysomelidae) [J]. Pest Manag Sci.,2006,62:30-37
    Satio T. Insecticide resistance of the cotton aphid, Aphis gossypii Glover (Homoptera: aphididae). VI. Qualitative variations of aliesterase activity [J]. Appl. Entomol. Zool.,1993, 28:263-265
    Sattelle D B, Jones A K, Sattelle B M, et al. Cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster [J]. Bioessays,2005,27:366-376
    Schmitt J D, Sharples C G V, Caldwell W S. Molecular recognition in nicotinic acetylcholine receptors:the importance of Ⅱ-Cation interactions [J]. J Med Chem,1999,42: 3066-3074
    Schroeder M E, Flattum R F. The mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides [J]. Pestic.Bio. Physiolo,1984,22:148-160
    Shao X S, Lu H Y, Bao H B, et al. The mode of action of a nitroconjugated neonicotinoid and the effects of target site mutation Y151S on its potency [J]. Insect Biochem. Mol. Biol., 2011,41:440-445
    Shimomura M, Okuda H, Matsuda K, et al. Effect of mutations of a glutamine residue in loop D of a7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands [J]. Br J Pharmacol,2002,137:162-169
    Shimomura M, Yokota M, Matsuda K, et al. Roles of loop C and the loop B-C interval of the nicotinic receptor a subunit in its selective interactions with imidacloprid in insects [J]. Neurosci Lett,2004,363:195-198
    Shimomura M, Yokota M, Ihara M, Akamatsu M, Sattelle DB, Matsuda K. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site [J]. Mol Pharmacol,2006,70:1255-1263
    Shi X B, Jiang L L, Wang H Y, et al. Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid Aphis gossypii [J]. Pest Manag. Sci.,2011,67:1528-1533
    Siqueira H A A, Guedes R N C, Fragoso D B, Magalhaes L C. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera:Gelechiidae) [J]. Intemational of Pest Manag.,2001,47(4):247-251
    Stetefeld J, Ruegg M A, Structural and functional diversity generated by alternative mRNA splicing. Trends Biochem. Sci.,2005,30:515-521
    Song F, You Z Q, Yao X M, et al. Specific loops D, E and F of nicotinic acetylcholine receptor β1 subunit may confer imidacloprid selectivity between Myzus persicae and its predatory enemy Pardosa pseudoannulata [J]. Insect Biochem. Mol. Biol.,2009,39: 833-841
    Suzuki K, Hama H, Konno Y. Carboxylesterase of the cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), responsible for fenitrothion resistance as a sequestering protein [J].Appl. Entomol.Zool.,1993,28 (4):439-450
    Sun L, Zhou X, Zhang J. Polymorphisms in a carboxylesterase gene between organophosphate-resistant and -susceptible Aphis gossypii (Homoptera:Aphididae) [J]. J Econ Entomol.,2005,98 (4):1325-1332
    Szendrei Z, Grafius E, Byrne A, et al. Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera:Chrysomelidae) [J]. Pest Manag Sci.,2012, doi:10.1002/ps.3258
    Tamamizu S, Lee Y H, Hung B, McNamee M G, et al. Alteration in ion channel function of mouse nicotinic acetylcholine receptor by mutations in the M4 transmembrane domain [J]. J Membr Biol.,1999,170:157-164
    Takada H, Murakami Y. Esterase variation and insecticide resistance in Japanese Aphis gossypii [J]. Eniomol EXP Et Appll.,1988,48:37-41
    Talley T T, Harel M, Hibbs R E, et al. Atomic interactions of neonicotinoid agonists with AChBP:Molecular recognition of the distinctive electronegative pharmacophore [J]. Proc Natl Acad Sci USA,2008,105:7606-7611
    Thany S H, Crozatierb M, Raymond-Delpecha V, et al. Apisa2, Apisa7-1 and Apisa7-2:three new neuronal nicotinic acetylcholine receptor a-subunits in the honeybee brain [J]. Gene, 2005,344:125-132
    Tomizawa M, Casida J E:Neonicotinoid insecticide toxicology:Mechanisms of selective action [J]. Annu Rev Pharmacol Toxicol,2005,45:247-268
    Tomizawa M, Yanamoto I. Binding of nicotinoides and the related compounds to the insect nicotinic acetylcholine receptor [J]. J.Pestic Sci.,1992,17 (4):231-236
    Tomizawa M, Casida J E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors [J]. Annu Rev Entomol,2003,48:339-364
    Uehara M, Shimizu T, Fujioka S, Kimura M, Tsubata K, Seo A. Abst r.9th Internat Congr [J]. Pestic. Chem., London,1998, Abstract 1D-015
    Van Asperen K. A study of housefly esterase by means of a sensitive colormetric method [J]. J. Insect Physiol.,1962,8:401-406
    Villatte F, Delorme R, Touton P, et al. Negative cross insensitivity in insecticide resistant cotton aphid Aphis gossypii Glover [J]. Pestic.Biochem. Physiol.,1999,65:55-61
    Vassiliou V, Emmanouilidou M, perrakis A, et al. Insecticide resistance in Bemisia tabaci from Cyprus [J]. Insect Sci.,2011,18:30-39
    Walsh S B, Dolden T A, Moores G D, et al. Identification and characterization of mutation in the housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance [J]. Biochem J,2001,359:175-181
    Wang K Y, Liu T X, Yu C H, et al. Resistance of Aphis gossypii (Homoptera:Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber [J]. J. Econ. Entomol.,2002,95 (2):407-413
    Wang K Y, Guo Q L, Xia X M, et al. Resistance of Aphis gossypii (Homoptera:Aphididae) to selected insecticides on cotton from five cotton production regions in Shandong, China [J]. J. Pestic. Sci.,2007,32 (4):372-378
    Weichel I, Nauen R. Monitoring of insecticide resistance in damsonhop aphids, Phorodom humuli Schrank (Hemiptera:Aphididae) from German hop gardens [J]. Pest Manag Sci., 2003,59:991-998
    Weill M, Lutfalla G, Mogensen K, et al. Comparative genomics:insecticide resistance in mosquito vectors [J]. Nature,2003,4223 (6936):136-137
    Wen Zhimou, Jeffrey G. Scott, Cross-Resistance to Imidacloprid in Strains of German Cockroach (Blattella germanica) and House Fly(Musca domestica) [J]. Pestic. Sci.,1997, 49 (4):367-371
    Winteringham F P W. Mechanisms of selective insecticidal action [J]. Ann. Rev. Entomol., 1969,14:409
    Yao X M, Song F, Zhang Y X, et al. Nicotinic acetylcholine receptor β1 subunit from the brown planthopper, Nilaparvata lugens:A-to-I RNA editing and its possible roles in neonicotinoid sensitivity [J]. Insect Biochem. Mol. Biol.,2009,39:348-354
    Zhao J Y, BishopB A, Graphius E J. Inheritance and synergism of resistance to imidacloprid in the colorado potato beetle (Coleoptera:Chrysomelidae) [J]. J Econ Entomol.,2000,93: 1508-1514
    Zhang N, Tomizawa M, Casida J E. Drosophila nicotinic receptors:evidence for imidacloprid insecticide and alpha-bungarotoxin binding to distinct sites [J]. Neurosci Lett.,2004,371 (1):56-59
    Zang Y, Zhong Y, Luo Y, et al. Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida [J]. Environ Pollut.2000, May; 108 (2):271-278
    Zacharias N, Dougherty D A. Cation-Ⅱ Interactions in ligand recognition and catalysis [J]. Trends Pharmacol Sci.,2002,23:281-287
    Zhu K Y, Lee S H, ClarK J M. A Point mutation of acetyleholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle [J]. Pestic. Biochem. Physiol.,1996,55:100-108
    Zhu Y C, Dowdy A K, Baker J E. Differential mRNA expression levels and gene sequences of a putative carboxylesterase-like enzyme from two strains of the para-sitoid Anisopteromalus calandrae (Hymenoptera:Pteromalidae) [J]. Insect Biochem Molec Biol., 1999,29:417-425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700