用户名: 密码: 验证码:
大豆食心虫Leguminivora glycinivorella性引诱剂的化学合成及田间应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆食心虫Leguminivora glycinivorella (Matsumura)是我国北方大豆产区的主要农业害虫,严重影响大豆的产量和品质。由于该虫种特殊的生物学习性和危害特点而致其虫情监测和防治难以进行。目前该虫的防治主要依赖于化学农药,而化学农药的使用存在着产生抗性、环境污染之虑,特别是农药残留和食品安全等问题尤为突出。应用昆虫性信息素为主要成分的性引诱剂诱集技术监测和防治害虫是20世纪60年代以来发展的一种害虫综合治理新策略,其专一性强、高效、环保、无污染、不伤害有益昆虫,基本上可以满足农业可持续发展的要求。该项技术在大豆食心虫防控中的应用无疑是绿色化学生态防治技术的最佳选择。
     为了寻找对大豆食心虫具有高效诱捕能力的组分及配方,为利用性引诱剂监测和防控大豆食心虫的广泛推广提供理论支持和物质基础,本论文通过两种方法合成出大豆食心虫性信息素主要组分反-8,反-10-十二碳二烯醇乙酸酯(E8,E10-12:Ac)及其类似物;通过大田试验系统研究了合成化合物单剂、二元及多元组分配方对大豆食心虫的诱蛾活性和信息素田间应用技术;考察了芳樟醇、反-2-己烯醛(E2-6:Ald)、苯甲醛、顺-3-己烯-1-醇(Z3-6:OH)、顺-3-己烯乙酸酯(Z3-6:Ac)、反-2-己烯乙酸酯(E2-6:Ac)、反-2-己烯醇(E2-6:OH)、香叶醇、苯乙醛等九种常见植物挥发物及2,6-二叔丁基对甲酚(BHT)、丁基羟基茴香醚(BHA)和叔丁基对苯二酚(TBHQ)三种抗氧化剂成分对大豆食心虫成虫引诱活性的影响。本项研究主要取得以下结论:
     1.采用廉价的山梨酸和1,6-己二醇,通过C6+C6偶联反应合成出大豆食心虫性信息素主要组分E8,E10-12:Ac。关键步骤为四氯合酮酸二锂(Li2CuCl4)催化的6-溴代-1-己醇四氢吡喃醚Grignard试剂与反2,反-4-己二烯醇乙酸酯(E2,E4-6:Ac)的Coupling反应,总收率约30%;同时应用1,8-辛二醇、反-2-己烯醇乙酸酯、反-2-丁烯醇乙酸酯、顺-3-辛烯醇乙酸酯、顺-3-己烯醇乙酸酯等通过C8+C4,C6+C8,C8+C6类似偶联方法合成了反-8-十二碳烯醇(E8-12:OH)、反-8-十二碳烯醇乙酸酯(E8-12:Ac)、反-10-十二碳烯醇(E10-12:OH)、反-10-十二碳烯醇乙酸酯(E10-12:Ac)、反-8,反-10-十二碳二烯醛(E8,E10-12:Ald)、反-8-十二碳烯醛(E8-12:Ald)、反-10-十二碳烯醛(E10-12:Ald)、顺-9-十四碳烯醇(Z9-14:OH)、顺-9-十四碳烯醇乙酸酯(Z9-14:Ac)、顺-11-十四碳烯醇(Z11-14:OH)、顺-11-十四碳烯醇乙酸酯(Z11-14:Ac)等一系列大豆食心虫性信息素类似物。所有产物的结构均经~1H NMR、~(13)C NMR和GC-MS确证。该合成方法原料廉价易得,反应条件温和、产物构型确定,无需进一步异构化,在昆虫性信息素合成研究中可供借鉴。
     2.通过四甲基二氨基磷酰氯((NMe_2)_2POCl)催化反-9-十二碳烯醇乙酸酯环氧化物形成共轭二烯烃的两步法以约56%的收率合成了大豆食心虫性信息素主要组分E8,E10-12:Ac及其异构体。此方法能以简短的路线同时得到共轭二烯的四种异构体,每种异构体均可以作为信息素的主要组分或次要组分应用于目标昆虫的防治,但异构体的完全分离尚未成功解决而值得进一步研究。
     3.合成化合物单剂中,E8,E10-12:Ac,E10-12:Ac,E8-12:OH,14:Ac和Z9-14:Ac对大豆食心虫雄虫具有一定的引诱活性,其中E8,E10-12:Ac(0.1mg),E10-12:Ac(0.1mg),E10-12:Ac(0.5mg),E8-12:OH(0.01mg),E8-12:OH(0.1mg),14:Ac(0.1mg),Z9-14:Ac(0.5mg)和Z9-14: Ac(0.1mg)等8种诱芯具有较高的引诱活性。
     4. E10-12:Ac、E8-12:OH以及十二碳烯醛(E8,E10-12:Ald、E8-12:Ald、E10-12:Ald)和十四碳酯(14:Ac、Z9-14:Ac)均可显著提高大豆食心虫性信息素E8,E10-12:Ac的引诱活性。一定配比的E8,E10-12:Ac与E10-12:Ald、Z9-14:Ac、14:Ac、E8-12:Ald、E8,E10-12:Ald、E8-12:OH、或E10-12:Ac的二元组分诱芯,其诱蛾活性较E8,E10-12:Ac单剂分别提高17.00、10.98、10.67、6.73、5.54、4.30和4.50倍;一定配比的E10-12:Ac、E8-12:OH、E8,E10-12:Ald、E8-12:Ald、E10-12:Ald、14:Ac、Z9-14:Ac与E8,E10-12:Ac组成的三元、四元和多元组分配方对大豆食心虫的诱蛾活性优于标准对照药剂。
     5.九种常见植物挥发物中,芳樟醇、Z3-6:Ac和香叶醇单剂对大豆食心虫有一定的引诱活性。其中芳樟醇(0.1mg),Z3-6:Ac(0.1mg)和香叶醇(0.1mg,1.0mg)对大豆食心虫有较好的引诱活性,但在一定剂量下与大豆食心虫性信息素混配后诱蛾活性不同程度降低;E2-6:Ald、苯甲醛和苯乙醛单剂对大豆食心虫无引诱活性,但在一定剂量下与大豆食心虫性信息素混配后不同程度显著提高了诱蛾活性;Z3-6:OH和E2-6:Ac单剂对大豆食心虫无引诱活性,在一定剂量下与大豆食心虫性信息素混配后不同程度抑制了诱蛾活性;BHT、BHA和TBHQ三种抗氧化剂成分均可以不同程度提高诱芯诱蛾数和持效期,其中以BHT效果最佳。
     6. E8,E10-12:Ac与E10-12:Ald或Z9-14:Ac组成的二元混配诱剂,以及E8,E10-12:Ac,E10-12:Ac,E8-12:OH和E8,E10-12:Ald组成的四元混配诱剂,其对大豆食心虫的引诱活性高于标准对照药剂,可以作为防控我国大豆食心虫的新型性引诱剂。田间应用技术研究结果表明,水盆式诱捕器及绿颜色诱芯在大豆食心虫的信息素实际应用中值得推广。
     本论文应用简便、经济、高效的方法合成出大豆食心虫性信息素主要组分及其类似物,为不饱和烯醇酯类昆虫性信息素的实验室合成及小批量生产提供了科学依据和基本技术;通过较为系统的大田试验得到了对大豆食心虫具有高效诱捕能力的组分及配方,基本上确定了其实际使用价值,并为大豆食心虫的化学生态技术防治奠定了理论基础。
Leguminivora glycinivorella (Matsumura), one of the most destructive soybean pestsin north China, which results in severe loss in soybean yield and quality. It is difficult formonitoring and controlling this target pest due to its special biology and damage. Insecticidespraying is currently the most effective method for controlling this insect. However,resistance, environmental pollution, especially pesticide residues and food safety havealways been troubled by insecticide.
     Utilizing pheromone-baited sex attractants to forecast and control of insect pests is anew strategy of integrated pest management development since the1960s, which is specific,efficient, environmentally-friendly, non-polluting, and do no harm to beneficial insects andcan basically meet the requirements of the sustainable development of agriculture.Application of this technology in the control of soybean pod borer is undoubtedly the bestchoice among biorational chemical ecological control.
     In order to develop efficient lures for soybean pod borer L. glycinivorella in China,(E,E)-8,10-dodecadienyl acetate (E8,E10-12:Ac), the main component of the pheromone ofL. glycinivorella, and its structure-related compounds were synthesized by two methods.The field attractiveness to L. glycinivorella males of unitary, binary and multi-componentformulations of synthetic compounds was systematically evaluated, coupling with thepheromone applied technology such as trap type and septum colour in the field.Additionally, the influences of nine plant volatiles linalool,(E)-2-hexenal (E2-6:Ald),benzaldehyde,(Z)-3-hexen-1-ol (Z3-6:OH),(Z)-3-hexenyl acetate (Z3-6:Ac),(E)-2-hexenylacetate (E2-6:Ac),(E)-2-hexen-1-ol (E2-6:OH), geraniol, phenylacetaldehyde (PAA) andthree antioxidants2,6-ditertbutyl-4-methylphenol (BHT), butylated hydroxylanisole (BHA)and tertbutylhydroquinone (TBHQ) on the attractiveness to L. glycinivorella males are alsoevaluated in the field. The main conclusions are listed below.
     1.(E,E)-8,10-Dodecadienyl acetate (E8,E10-12:Ac), the main component of the sexpheromone of L. glycinivorella, was synthesized via C6+C6coupling reactions startingfrom cheap sorbic acid and1,6-hexanediol in a approximate total yield of30%. The keystep was the coupling of2-((6-bromohexyl)oxy)tetrahydro-2H-pyran Grignard reagent and (E,E)-2,4-hexadienyl acetate catalysed by Li2CuCl4. Its analogues (E)-8-dodecenol(E8-12:OH),(E)-8-dodecenyl acetate (E8-12:Ac),(E)-10-dodecenol (E10-12:OH),(E)-10-dodecenyl acetate (E10-12:Ac),(E,E)-8,10-dodecadienal (E8,E10-12:Ald),(E)-8-dodecenal(E8-12:Ald),(E)-10-dodecenal (E10-12:Ald),(Z)-9-tetradecenol (Z9-14:OH),(Z)-9-tetradecenyl acetate (Z9-14:Ac),(Z)-11-tetradecenol (Z11-14:OH), and (Z)-11-tetradecenylacetate (Z11-14:Ac) were synthesized in the similar procedures of C8+C4,C6+C8,C8+C6coupling reactions with1,8-octanediol,(E)-2-hexenyl acetate,(E)-2-butenyl acetate,(Z)-3-octenyl acetate and (Z)-3-hexenyl acetate, respectively. The structures of the syntheticcompounds were confirmed by~~1H NMR,~(13)C NMR and GC-MS. This method could be usedin synthesis of insect sex pheromone due to starting from cheap raw materials with lessby-products and wild reaction conditions.
     2. The main component of the sex pheromone of L. glycinivorella E8,E10-12:Ac andits isomers was synthesized in two steps with a good yield of56%approximately via thereaction of tetramethyldiamidophosphoric acid chloride with epoxide of (E)-9-dodecenylacetate (E9-12:Ac). Four geometrical isomers of conjugated dienic can be obtained in shortroute, each of which could be applied in the control of target insect as the main or minorpheromone component. Nevertheless, this method needs to be further studied due tounsuccessful complete separation of four isomers mixture.
     3. E8,E10-12:Ac, E10-12:Ac, E8-12:OH,14:Ac and Z9-14:Ac alone displayeddifferent attractiveness to L. glycinivorella males. A total of8different lures which baitedwith E8,E10-12:Ac (0.1mg), E10-12:Ac (0.1mg), E10-12:Ac (0.5mg), E8-12:OH (0.01mg), E8-12:OH (0.1mg),14:Ac (0.1mg),Z9-14:Ac (0.5mg) or Z9-14: Ac (0.1mg) wasmore attractive to L. glycinivorella males.
     4. E8-12:OH, E10-12:Ac, E8,E10-12:Ald, E8-12:Ald, E10-12:Ald,14:Ac, andZ9-14:Ac all showed a synergistic effect to E8,E10-12:Ac at certain dosages. The binarymixtures of E8,E10-12:Ac and E10-12:Ald, Z9-14:Ac,14:Ac, E8-12:Ald, E8,E10-12:Ald,E8-12:OH, or E10-12:Ac in proper ratios respectively give17.00,10.98,10.67,6.73,5.54,4.30and4.50fold increases in trap catch over the standard pheromone lure. Theattractiveness of ternary, quaternary, and multi-component formulations of E8,E10-12:Acand E10-12:Ac, E8-12:OH, E8,E10-12:Ald, E8-12:Ald, E10-12:Ald,14:Ac, or Z9-14:Ac incertain ratios was superior to the standard pheromone lures.
     5. By themselves of the nine plant volatiles, linalool (0.1mg),(Z)-3-hexenyl acetate(0.1mg), and geraniol (0.1mg,1.0mg), were weakly attractive to L. glycinivorella malesbut significantly reduced mean catches when higher doses were combined with pheromones.Conversely,(E)-2-hexenal, benzaldehyde, and phenylacetaldehyde, were not attractive to L. glycinivorella males at any dose tested, but significantly increased mean catch when certaindoses were combined with the binary pheromone blend. Other plant volatiles, such as(Z)-3-hexen-1-ol,(Z)-3-hexenyl acetate, and (E)-2-hexenyl acetate, were unattractive ontheir own but significantly reduced mean catch of L. glycinivorella males when certaindoses were combined with the pheromones. Addition of the antioxidants BHT, BHA andTBHQ in the lure increased the mean catch and prolonged the duration, and BHT showedthe best result.
     6. The binary mixture of E8,E10-12:Ac with E10-12:Ald or Z9-14:Ac and thequaternary-component formulations of E8,E10-12:Ac, E10-12:Ac, E8-12:OH andE8,E10-12:Ald are more attractive to the standard pheromone lures, they as novelpheromone blends demonstrate potential uses in pheromone traps to monitor or control L.glycinivorella populations in China. The research on field applied technology showed thatwater-pot trap and green septum deserves promotion in the practical application ofpheromone control of soybean pod borer.
     The main component of the pheromone of L. glycinivorella, and its structure-relatedcompounds were synthesized with good overall yields, regiospecificities, andstereoselectivities in this thesis, which provides scientific basis and basic techniques forinsect sex pheromone laboratory synthesis and small batch production of unsaturated enoland esters. Components and formulations highly attractive to L. glycinivorella males havebeen obtained through large number of field trials, which basically determined its actualapplication value and laid a theoretical foundation for the chemical ecological control ofsoybean pod borer.
引文
陈汉杰,邱同铎,张金勇.1998.用性信息素加农药诱杀器防治梨小食心虫的田间试验.昆虫知识,35(5):280-282.
    陈展册,苏丽,戈峰,苏建伟.2010.绿盲蝽对性信息素类似物和植物挥发物的触角电位反应.昆虫学报,53(1):47-54.
    陈增良,张钟宁.2008.昆虫性信息素微胶囊的研究进展.昆虫知识,45(3):362-367.
    陈增良,方宇凌,张钟宁.2007.小菜蛾性信息素微胶囊的合成及其田间诱捕和迷向活性研究.科学通报,52(7):797-802.
    戴建青,韩诗畴,杜家纬.2010.植物挥发性信息化学物质在昆虫寄主选择行为中的作用.环境昆虫学报,32(3):407-414.
    董文霞,张峰,阚炜,张钟宁.2009.蚜虫雄蚜与雌性母对性信息素及植物挥发物的田间反应.生态学报,29(1):178-184.
    杜家纬.1988.昆虫性信息素及其应用.北京:中国林业出版社.
    杜俊岭,赵晓丽.1994.辐射处理大豆食心虫不育的研究.核农学报,8(4):201-208.
    杜俊岭,赵晓丽.1991a.大豆食心虫性诱剂应用研究初报.植物保护,17(6):15.
    杜俊岭,赵晓丽.1991b.大豆食心虫的性信息激素及其应用.黑龙江农业科学,4:38-40.
    冯明祥,姜瑞德,王佩圣,宫象晖.2002.用性外激素迷向法防治桃树梨小食心虫.落叶果树,5:9-10.
    顾成玉,梁艳春,张广芝,刘昌州.1991.大豆食心虫发生规律及预测技术的研究.中国植保导刊,1:9-10.
    阚炜,张钟宁,杨新玲,方宇凌,肖春.2005.棉铃虫性信息素与其单氟取代物分子叠合及生物活性研究.科学通报,50(20):2203-2207.
    胡代花,蔡崇林,张璟,冯俊涛,张兴.2012.大豆食心虫性信息素及其类似物的简易合成及田间引诱活性.农药学学报,14(2):125-130.
    胡亚军,赵滨徐,金彪,杨树龙.2007.东北地区大豆食心虫发生规律及防治措施.农业科技与信息,8:25-26.
    黄文芳,肖文静,王金红.1986. Study on wittig reaction Ⅳ. Stereoselective synthesis of the insect sexpheromone of Laspeyresia, E, E-8,10-dodecadienol-1.有机化学,6(5):377-378.
    黄新培.1991.昆虫化学生态学的研究进展(综述).北京农业大学学报,17(4):103-112.
    黄勇平,沈君辉,王淑芬,唐大武.1998.昆虫性信息素变异研究的进展.中南林学院学报,18:88-95.
    李典漠,伍一军,武春生,杨冠煌,张金桐.2004.当代昆虫学研究.北京:中国农业科学技术出版社,177-179.
    李洪波,周彦武.2007.大豆食心虫的发生特点及综合防治技术.农业与技术,27(5):122-123.
    李久明,雍建平,于观平,阿吉艾克拜尔.艾萨.2008.梨小食心虫性信息素的廉价合成.农药,47(7):500-501.
    李西安,王启标,何美玉,袁谷.2002.高立体选择性合成及鉴定(9E,11E)-十四碳二烯-1-乙酸酯(淡褐苹果蛾性信息素).化学通报,3:179-181.
    李正名,刘天麟,刘子平,郭虎森,幺恩云.1986.水稻二化螟拟信息素的合成.高等学校化学学报,7(3):228-232.
    刘健,马凤鸣,赵奎军.2009.大豆植株挥发物成份定性分析.大豆科学,28(4):719-722.
    刘孟英.1984.昆虫化学通讯与信息素.昆虫激素,1:61-80.
    刘孟英.1994.昆虫信息素研究及应用的新进展.昆虫知识,31:56-59.
    刘召,花保祯.2010.昆虫对气味信息素的感受机制.西北农林科技大学学报(自然科学版),38(11):186-192+200.
    陆鹏飞.2007.利用性信息素防治豆野螟的生物学基础及应用技术研究.[博士学位论文].武汉:华中农业大学.
    吕国忠,孙雨敏.2005.大豆病虫害诊断与防治.北京:金盾出版社.
    马丁.雅各布森著,南京林产工业学院林学系昆虫激素研究组译.1978.昆虫性外激素.北京:科学出版社.
    孟宪佐.1997.昆虫信息素的应用.生物学通报,32:46-47.
    孟宪佐.2000.我国昆虫信息素研究与应用的进展.昆虫知识,37:75-84.
    钦俊德.1987.昆虫与植物的关系一论昆虫与植物的相互作用及其演化.北京:科学出版社.
    沈幼莲,高扬,杜永均.2009.植物气味化合物与斜纹夜蛾性信息素的协同作用.昆虫学报,52(12):1290-1297.
    石奇光.1987.昆虫信息素防治害虫技术.上海:上海科学技术出版社.
    宋卫.2007.桃蛀螟性信息素的合成及活性研究.[硕士学位论文].杨凌:西北农林科技大学.
    唐进根.1998.缓释剂微胶囊防治林业害虫.江苏林业科技,25(4):582-562.
    王翠英,刘建,宋凤瑞,辛保民,周守桂,周正平,徐建华,王泽华.1992.大豆食心虫性信息素的化学结构触角电位及田间诱蛾效果.植物保护学报,19(4):331-335.
    王克勤.1994.利用赤眼蜂防治大豆食心虫蜂种筛选及应用技术研究.黑龙江农业科学,6:26-30.
    王克勤.1996.应用赤眼蜂防治大豆食心虫的研究.植物保护,1:8-10.
    王克勤,李新民,刘春来,刘兴龙,王爽,孙毅民,王春.2009.利用昆虫性诱剂防治大豆食心虫.中国农学通报,25(15):190-193.
    王连霞.2011.大豆食心虫发生规律及生物防治技术.黑龙江农业科学,2:59-60.
    王明林,乔鲁芹,张莉,吴烈钧,田洪孝.2006.固相微萃取-气相色谱/质谱测定植物叶片中的挥发性物质.色谱,24(6):343-346.
    王霞,徐静,沈幼莲,刘凤英,杜永均.2009.豆野螟成虫触角对植物挥发性和性信息素化合物的触角电位反应.应用生态学报,20(8):1973-1979.
    王香萍,方宇凌,张钟宁.2003.小菜蛾性信息素研究及应用进展.植物保护,29(5):5-9.
    王亚璐.2007.梨小食心虫性信息素的合成及活性研究.[硕士学位论文].杨凌:西北农林科技大学.
    王永模,戈峰,刘向辉,王利军,冯峰.2006.应用性信息素迷向法防治茶毛虫的田间试验.昆虫知识,43(1):60-63.
    王振华,赵晖,李金甫,曾宪东,陈建军,冯汉利,徐家文.2008.植物源挥发物对昆虫信息素的增效作用及其增效机制.应用生态学报,19(11):2533–2537.
    徐建伟,王泽华,孔繁蕾,钱玉民,王翠英,宋凤瑞,辛保民,刘健,郭守桂,周正平.1991.大豆食心虫性诱剂触角电位筛选及田间诱蛾试验初报.化学生态物质,2:102-104.
    徐妍,吴国林,吴学民,秦玉川.2009.梨小食心虫性信息素微囊化及释放特性.农药学学报,11(1):65-71.
    阎凤鸣.2002.化学生态学.北京:科学出版社.
    晏日安,何宗耀,苏镜娱,曾陇梅.2000. PCC在合成内酯醛及8-溴香叶醛中的应用.化学试剂,22(5):305-306.
    杨慧,严善春,彭璐.2008.鳞翅目昆虫化学感受器及其感受机理新进展.昆虫学报,51(2):204-215.
    杨荣军,谢春伟,段成华,周庆华.2004.螟黄赤眼蜂防治大豆食心虫技术.现代化农业,7:20.
    赵晓丽,杜俊岭,李尧.1992.大豆食心虫辐射不育防治试验.黑龙江农业科学,81(3):45-47.
    赵晓丽,杜俊岭.1993.利用性诱剂诱测大豆食心虫.植保技术与推广,2:30.
    赵晓丽.2004.防治大豆食心虫方法的研究.大豆科学,23(1):77-80.
    赵新成,阎云花,王琛柱.2003.实夜蛾属和铃夜蛾属昆虫性信息素通讯系统的研究进展.昆虫学报,46:96-100.
    郑可利,王贵杰.2003.昆虫性信息素共轭二烯的合成进展.广州化学,28(1):54-58.
    张满让,韩明玉,李丙智.2005.日本复合搅乱剂-A控制苹果害虫试验初报.中国农学通报,21(8):330-332.
    张涛,郝双红,田暄,张兴.2005.苹果蠹蛾性信息素E, E-8,10-十二碳二烯-1-醇的立体选择性合成.西北林学院学报,20(1):150-152.
    张涛.2011.绿盲蝽性信息素的提取鉴定及应用研究.[博士学位论文].北京:中国农业科学院.
    张兴.2007.无公害农药.农药无公害化.北京:化学工业出版社.
    周文,刘万学,万方浩,申建茹.2010.寄主植物信息化合物对苹果蠹蛾行为的影响及其在防控中的应用.应用生态学报,21(9):2434-2440.
    Akhaev N S, Zakladnoi G A, Mavrov M V, Moiseenkov A M, Nguyen C H, Serebryakov E P, Ceskis B.1988.(4R,8R)-and (4R,8S)-stereoisomers of4,8-dimethyldecanal and their closely related structuralanalogs with (4R,8RS)-configuration: the attractant activity towards the smaller flour beetleTribolium confusum Duv. Russ J Bioorg Chem,14(2):243-249.
    Ando T,Ohtani K,Yamamoto M,Miyamoto T,Qin X R, Witjaksono.1997. Sex pheromone of Japanesegiant looper, Ascotis selenaria cretacea: identification and field tests. J Chem Ecol,23:2413-2423.
    Antony C, Davis T L, Carlson D A,Pechine J M, Jallon J M.1985. Compared behavioral responses ofmale Drosophila melanogaster (Canton S) to natural and synthetic aphrodisiacs. J Chem Ecol,11(12):1817-1629.
    Ando T.2006. Internet database:http://www.tuat.ac.jp/~antetsu/LepiPheroList.htm
    Ando T, Inomata S, Yamamoto M.2004. Lepidopteran sex pheromones. In: Schulz, S.(Ed.), thechemistry of pheromones and other semiochemicals. I. Top Curr Chem,239:51-96.
    Ando T, Kawai T, Matsuoka K.2008. Epoxyalkenyl sex pheromones produced by female moths inhighly evolved groups: biosynthesis and its endocrine regulation. J Pestic Sci,33:17-20.
    Armarego W L F, Perrin D D.2002. Purification of laboratory chemicals.4th Edition.
    Arn H, Rauscher S, Buser H R, Guerin P M.1986. Sex pheromone of Eupoecilia ambiguella female:analysis and male response to ternary blend. J Chem Ecol,12:1417-1429.
    Arsequell G, Camps F, Fabriàs G, Guerrero A.1990. Sila-pheromones: silicon analogues of the femalesex pheromone of the processionary moth Thaumetopoea pityocampa. Tetrahedron Lett,31:2739-2742.
    Baker P B, Shelton A M, Andale J T.1982. Monitoring of diamondback moth (Lepidoptera: Plutellidae)in cabbage with pheromones. J Econ Entomol,75:1025-1028.
    Baker T C, Cardé R T.1979. Analysis of pheromone-mediated behaviors in male Grapholitha molesta,the Oriental fruit moth (Lepidoptera: Tortricidae). Environ Entomol,8:956-968.
    Beevor P S, Campion D G.1979. The field use of inhibitory components of lepidopterous sexpheromones and pheromone mimics. In Chemical Ecology: Odour Communication in Animals, ed.FJ Ritter, pp.313-25. Amsterdam: Elsevier/North Holland Biomed. Press.
    Bengtsson M, Liljefors T, Hansson B S.1987. Dienic analogs of (Z)-5-decenyl acetate, a pheromonecomponent of the turnip moth, Agrotis segetum. Synthesis, conformational analysis and structure-activity relationships. Bioorg Chem,15:409-422.
    Bengtsson M, Liljefors T, Hansson B S, L fstedt C, Copaja S V.1990. Structure-activity relationshipsfor chain-shortened analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip moth,Agrotis segetum. J Chem Ecol,16:667-684.
    Bengtsson M, Rauscher S, Arn H, Sun W C, Prestwich G D.1990. Fluorine-substituted pheromonecomponents affect the behavior of the grape berry moth. Experimentia,46:1211-1213.
    Berg B G, TumLinson J H, Mustaparta H.1995. Chemical communication in heliothine moths. IV.Receptor neuron responses to pheromone compounds and formate analogues in the male tobaccobudworm moth Heliothis virescens. J Comp Physiol,177:527-534.
    Beroza M.1967. Nonpersistent inhibitor of the gypsy moth sex attractant in extracts of the insect. J EconEntomol,60:875-876.
    Bestmann H J, Hirsch H L, Platz H, Rheinwald M, Vostrowsky O.1980. Differenzierung chiralerpheromon-analoga durch chemorezeptoren. Angew Chem,92:492-493.
    Bestmann H J, Rehefeld C.1989. Elektrophysiologische Messungen mit deuterierten Pheromonen zumNachweiseines Isotopieeffektes. Naturwissenschaften,76:422-424.
    Bestmann H J, Wu C H, Rehefeld C, Kern F, Leinemann B.1992. Do pheromone receptors that receivethe same or similar signal molecule have the same or similar structure? Angew Chem Int Ed Engl,31:330-331.
    Borden J H, Lindgren B S, Chong L.1980. Ethanol and a-pinene as synergists for the aggregationpheromones of two Gnathotrichus species. Can J Forest Res,10:290-292.
    Bosch M P, Pérez R, Lahuerta G, Hernanz D, Camps F, Guerrero A.1996. Difluoropalmitic acids aspotential inhibitors of the biosynthesis of the sex pheromone of the Egyptian armyworm Spodopteralittoralis. Bioorg Med Chem,4:467-472.
    Briggs G G, Cayley G R, Dawson G W, Griffiths D C, Macaulay E D M, Pickett J A, Pile M M,Wadhams L J, Woodcock C M.1986. Some fluorine-containing pheromone analogs. J Pestic Sci,17(4):441-448.
    Butenandt A, Beckman R, Stamm D, Hecker E.1959. über den Sexuallockstoff des SeidenspinnersBombyx mori; Reindarstellung and Konstitution. Z. Naturforsch Teil B,14:283-284.
    Byers J A.2002. Internet programs for drawing moth pheromone analogs and searching literaturedatabase. J Chem Ecol,28:807-817.
    Byers J A.2005. Chemical constraints on the evolution of olfactory communication channels of moths. JTheor Biol,235:199-206.
    Byers J R, Struble D L.1990. Identification of sex pheromones of two sibling species of dingy cutwormcomplex, Feltia jaculifera (GN.)(Lepidoptera: Noctuidae). J Chem Ecol,16(10):2981-2992.
    Campion D G, Bettany B W, Nesbitt B F, Beevor P S, Lester R, Poppi R G.1974. Field studies of thefemale sex pheromone of the cotton leafworm Spodoptera littoralis (Boisd.) in Cyprus. BullEntomol Res,64:84-96.
    Camps F, Coll J, Fabriàs G, Guerrero A.1984a. Synthesis of dienic fluorinated analogs of insect sexpheromones. Tetrahedron,40:2871-2878.
    Camps F, Fabriàs G, Guerrero A, Riba M.1984b. Fluorinated analogs of insect sex pheromones.Experimentia,40:933-934.
    Camps F, Fabriàs G, Gasol V, Guerrero A, Hernández R, Montoya R.1988. Analogs of the sexpheromone of processionary moth Thaumetopoea pityocampa: synthesis and biological activity. JChem Ecol,14:1331-1346.
    Camps F, Fabriàs G, Guerrero A.1986. Synthesis of a fluorinated analog of the sex pheromone of theprocessionary moth Thaumetopoea pityocampa (Denis and Schiff). Tetrahedron,42:3623-3629.
    Camps F, Gasol V, Guerrero A.1990a. Inhibitory pheromonal activity promoted by sulfur analogs of theprocessionary moth Thaumetopoea pityocampa (Denis and Schiff.). J Chem Ecol,16:1155-1172.
    Camps F, Gasol V, Guerrero A, Hernández R, Montoya R.1990b. Inhibition of the processionary mothsex pheromone by some haloacetate analogues. J Pestic Sci,29:123-134.
    Camps F, Hospital S, Rosell G, Delgado A, Guerrero A.1992. Synthesis of biosynthetic inhibitors of thesex pheromone of Spodoptera littoralis. Part II: Acetylenic and cyclopropane fatty acids. ChemPhys Lipids,61:157-167.
    Cardé R T,Baker T C.1984. Sexual communieation with Pheromones. In: Bell W J,Cardé R T eds.Chemieal Eeology of Insects. NewYork: Plenum Press,355-383.
    Carvalho J F, Prestwich G D.1984. Synthesis of x-tritiated and x-fluorinated analogues of the trailpheromone of subterranean termites. J Org Chem,49:1251-1258.
    Chapman O L, Mattes K C, Sheridan R S, Klun J A.1978. Stereochemical evidence of dualchemoreceptors for an achiral sex pheromone in Lepidoptera. J Am Chem Soc,100:4878-4884.
    Chisholm M D, Steck W, Underhill E W.1980. Effects of additional double bonds on some olefinicmoth sex attractants. J Chem Ecol,6(1):203-212.
    Claude A.1982. The chemical basis for sex recognition in Drosophila melanogaster. J Insect Physiol,28(10):873-880.
    Conner W E, Boach B, Benedict E, Meinwald J, Eisner T.1990. Courtship pheromone production andbody size as correlates of larval diet in males of the arctiid moth, Utethisa ornatrix. J Chem Ecol,16:543-552.
    Cork A,Boo K S,Dunkelblum E,Hall D R,Jee-Rajunga K,Kehat M,Kong J E,Park K C,TePgidagarmP,Liu X.1992. Female sex pheromone of oriental tobacco budworm,Helicoverpa assulta(Guenée)(Lepidoptera: Noctuidae): Identification and field testing. J Chem Ecol,18:403-418.
    De Marques F A, Mcelfresh J S, Millar J G. Kovats retention indexes of monounsaturated C12, C14, andC16alcohols, acetates and aldehydes commonly found in lepidopteran pheromone blends. J BrazChem Soc,2000,11(6):592-599.
    Delgado A, Ruiz M, Camps F, Hospital S, Guerrero A.1991. Synthesis of potential inhibitors of thebiosynthesis of the sex pheromone of Spodoptera littoralis. Part I: Monofluorinated fatty acids.Chem Phys Lipids,59:127-135.
    Demir A S.2001. Tetramethyldiamidophosphoric acid chloride mediated epoxide-diene conversion andsteroidal aromatization. Tetrahedron,57(1):227-233.
    Deng J Y, Wei Y Y, Huang Y P, Du J W.2004. Enhancement of attraction to sex pheromones ofSpodoptera exigua by volatile compounds produced by host plants. J Chem Ecol,30(10):2037-2045.
    Dickens J C, Prestwich G D, Sun W C, Mori K.1991. Receptor site analysis using neurosensoryresponses of the boll weevil to analogs of the cyclohexylideneethanol of its aggregation pheromone.Chem Senses,16:239-250.
    Ding Y S, Prestwich G D.1986. Metabolic transformation of tritium-labeled pheromone by tissues ofHeliothis virescens moths. J Chem Ecol,12:411-429.
    Durán I, Parrilla A, Feixas J, Guerrero A.1993. Inhibition of antennal esterases of the Egyptianarmyworm Spodoptera littoralis by trifluoromethyl ketones. Bioorg Med Chem Lett,3:2593-2598.
    El-Sayed A M.2006. Internet database: http:///www.pherobase.com/
    Fabriàs G, Barrot M, Camps F.1995. Control of the sex pheromone biosynthetic pathway inThaumetopoea pityocampa by the pheromone biosynthesis activating neuropeptide. Insect BiochemMol Biol,25:655-660.
    Fabriàs G, Gosalbo L, Quintana J, Camps F.1996. Direct inhibition of (Z)-9-desaturation of (E)-11-tetradecenoic acid by methylenehexadecenoic acids in the biosynthesis of Spodoptera littoralis sexpheromone. J Lipid Res,37:1503-1509.
    Ferkovich S M, Mayer M S, Rutter R R.1973. Conversion of the sex pheromone of the cabbage looper.Nature,242:53-55.
    Francke W, Franke S, Toth M, Sz cs G, Guerin P, Arn H.1987. Identification of5,9-dimethylheptadecane as a sex pheromone of the moth Leucoptera scitella. Naturwissenschaften,74:143-144.
    Gerhard C, Keith N S, Regine C, Grigori K, Priyantha D C W, Tom G G, Gary G G, Alan S T, And M H.1997.(Z)6,(E)8-Heneicosadien-11-one: synergistic sex pheromone component of douglas-firtussockmoth, Orgyia pseudotsugata (Mcdunnough)(Lepidoptera: Lymantriidae). J Chem Ecol,23(1):19-34.
    Graham S M, Prestwich G D.1994. Synthesis and inhibitory properties of pheromone analogues for theepoxide hydrolase of the gypsy moth. J Org Chem,59:2956-2966.
    Grant A J, Mayer M S, Mankin R W.1989. Responses from sensilla on antennae of male Heliothis zea toits major pheromone component and two analogs. J Chem Ecol,15:2625-2634.
    Greenway A R, Wall C.1981. Attractant lures for males of the pea moth Cydia nigricana (F.) containing(E)-10-dodecenyl acetate and (E,E)-8,10-dodecadienyl acetate. J Chem Ecol,7:563-573.
    Gries G, Gries R, Perez A L, Gonzales L M, Pierce H D, Oehlschlager A C, Rhainds M, Zebeyou M,Kouame B.1994. Ethyl propionate: synergistic kairomone for African palm weevil, Rhynchophorusphoenicis L.(Coleoptera: Curculionidae). J Chem Ecol,20:889-897.
    Gustavsson A L, Liljefors T, Hansson B S.1995. Alkyl ether and enol ether analogs of (Z)-5-decenylacetate, a pheromone component of the turnip moth, Agrotis segetum: probing a proposed bioactiveconformation for chain-elongated analogs. J Chem Ecol,21:815-832.
    Gustavsson A L, Tuvesson M, Larsson M C, Wenqi W, Hansson B S, Liljefors T.1997. Biostericapproach to elucidation of binding of the acetate group of a moth sex pheromone component to itsreceptor. J Chem Ecol,23:2755-2776.
    Hansson B S, Ochieng S A, Wellmar U, J nsson S, Liljefors T.1996. No inhibitory effect on receptorneurone activity by sulphur analogues of the sex pheromone component (Z)-5-decenyl acetate in theturnip moth, Agrotis segetum (Lepidoptera: Noctuidae). Physiol Entomol,21:275-282.
    Hartmann T, Theuring C, Bernays E A.2003. Are insect-synthesized retronecine esters (creatonotines)the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J Chem Ecol,29:2603-2608.
    Hattori M, Wakamura S, Igita K, Yasuda K, Tridjaka.2001. Comparison of the characteristics and sexpheromone of Etiella behrii (Zeller), a newly identified pod borer of soybean in Indonesia, with E.zinckenella (Treit.). JARQ,35:19-24.
    Hayes J L, Strom B L, Roton L M, Lngram L L.1994. Repellent properties of the host compound4-allylanisole to the southern pine beetle. J Chem Ecol,20:1595-1615.
    Hendrikse A, Vos-Bunnemyer E.1987. Role of host plant stimuli in sexual behavior of small erminemoths (Yponomeuta). Ecol Entomol,12:363-371.
    Henrick C A.1977. The synthesis of insect sex pheromones. Tetrahedron,33:1844-1889.
    Hernanz D, Fabriàs G, Camps F.1997. Inhibition of sex pheromone production in female lepidopteranmoths by2-halofatty acids. J Lipid Res,38:1988-1994.
    Hildebrand J G.1995. Analysis of chemical signals by nervous systems. Proc Natl Acad Sci USA,92:67-74.
    Hoskovec M, Hovorka O, Kalinova B, Koutek B, Streinz L, et al.1996. New mimics of the acetatefunction in pheromone-based attraction. Bioorg Med Chem,4:479-488.
    Hoskovec M, Kalinová B, Konecny K, Koutek B, Vrkoc J.1993. Structure-activity correlations amonganalogs of the current clearwing moth pheromone. J Chem Ecol,19:735-750.
    Hofmeyr J H, Burger B V.1995.Controlled-release pheromone dispenser for use in traps to monitor flightactivity of false codling moth. J Chem Ecol,21(3):355-363.
    http://www. epa. gov/pesticides/biopesticides/product_lists/.
    Huang Y P,Takanashi T,Hoshizaki S,Tatsuki S,Honda H.2002. Female sex pheromone polymorphismin adzuki bean borer, Ostrinia scapulalis, is similar to that in European corn borer, O. nubilalis. JChem Ecol,28:533-539.
    Huber D P W, Borden J H.2001. Angiosperm bark volatiles disrupt response of Douglas-fir beetle,Dendroctonus pseudotsugae,to attractant-baited traps. J Chem Ecol,27:217-233.
    Jaffe K, Sanchez P, Cerda H, Hernandez J V, Jaffe R, Urdaneta N, Guerra G, Martinez R, Miras B.1993.Chemical ecology of the palm weevil Rhynchophorus palmarum (L.)(Coleoptera: Curculionidae):attraction to host plants and to a male-produced aggregation pheromone. J Chem Ecol,19:1703-1720.
    J nsson S, Liljefors T, Hansson B S.1991a. Alkyl substitution in terminal chain of (Z)-5-decenyl acetate,a pheromone component of turnip moth, Agrotis segetum: synthesis, single sensillum recordings,and structure-activity relationships. J Chem Ecol,17:103-122.
    J nsson S, Liljefors T, Hansson B S.1991b. Replacement of the terminal methyl group in a moth sexpheromone component by a halogen atom. Hydrophobicity and size effects on theelectrophysiological single-cell activities. J Chem Ecol,17:1381-1397.
    J nsson S, Liljefors T, Hansson B S.1992. Introduction of methyl groups to acetate substituted chain of(Z)-5-decenyl acetate, a pheromone component of turnip moth, Agrotis segetum. Synthesis,single-sensillum recordings, and structure-activity relationships. J Chem Ecol,18:637-657.
    J nsson S, Liljefors T, Hansson B S.1993. Enantiomers of methyl substituted analogs of (Z)-5-decenylacetate as probes for the chirality and complementarity of its receptor in Agrotis segetum: synthesisand structure-activity relationships. J Chem Ecol,19:459-483.
    Kalinova B, Svatos A, Borek V, Vrokc J.1990. What is the basis for the antipheromone activity of somehaloacetate sex pheromone analogs? Proc. Conf. Insect Chem. Ecol., pp.51–55. Tábor: AcademiaPrague/SPB Acad. Publ. The Hague.
    Kasang G.1974. Uptake of the sex pheromone3H-bombykol and related compounds by male and femaleBombyx antennae. J Insect Physiol,20:2407-2422.
    Khrimian A P, Demilo A B, Waters R M, Liquido N J, Nicholson J M.1994. Monofluoro analogs ofeugenol methyl ether as novel attractants for the Oriental fruit fly. J Org Chem,59(26):8034-8039.
    Khrimyan A P, Makaryan G M, Ovanisyan A L, Wimmer Z, Romanyuk M, Streinz L, Badanyan S O,1991.A new synthesis of the pheromone of the codling moth–Dodeca-8E,10E-diene-1-ol–via an enynicintermediate. Chem Nat Comp,27(1):103-108.
    Klein M G, TumLinson J H, Ladd T L, Doolittle R E.1981. Japanese beetle (Coleoptera: Scarabeidae). JChem Ecol,7:1-7.
    Klun J, Chapman O, Mattes K, Beroza M.1975. European corn borer and red-banded leafrollerdisruption of reproduction behavior. Environ Entomol,4:871-876.
    Klun J A, Oliver J E, Khrimian A P, Dickens J C, Potts W J E.1997. Behavioral and electrophysiologicalactivity of the racemate and enantiomers of a monofluorinated analog of European corn borer(Lepidoptera: Pyralidae) sex pheromone. J Entomol Sci,32:37-49.
    Klun JA, Schwarz M, Uebel EC.1991. European corn borer: pheromonal catabolism and behavioralsponse to sex pheromone. J Chem Ecol,17:317-334.
    Klun J A, Schwarz M, Uebel E C.1992. Biological activity and in vivo degradation of tritiated femalesex pheromone in the male European corn borer. J Chem Ecol,18:283-298.
    Klum J A.1998. Genetic regulation of sex pheromone production and response: Interaction of sympatricpheromonal types of European corn borer, Ostrinia nubilalis (Lepidoptera:Pyralidae). J Chem Ecol,24:2047-2061.
    Klun J A,Plimmer J R,Bierl-leonhardt B A,Sparks A N,Primiani M,Chapman O L, Lee G H, LeponeG.1980a. Sex pheromone chemistry of the female corn earworm moth, Heliothis zea. J Chem Ecol,6:165-175.
    Klun J A.1980b. Bierl-leonhardt B A,Plimmer J R,Sparks A N,Primiani M,Chapman O L, LeponeG,Lee G H. Sex pheromone chemistry of the female tobacco budworm moth,Heliothis vireseens. JChem Ecol,6:177-183
    Kochansky J, Card R T, Roelofs W L.1975. Sex pheromone of European corn borer, Ostrinia nubilalis(Lepidoptera: Pyralidae). J Chem Ecol,11(1):225-231.
    Koshihara T, Yamada H.1980. Attractant activity of the female sex pheromone of the diamondback moth,Plutella xylostella (L.), and analog. Jap J Appl Ent Zool,24(1):6-12.
    Krasnoff S B, Dussourd D E.1989. Dihydropyrrolizine attractants for arctiid moths that visit plantscontaining pyrrolizidine alkaloids. J Chem Ecol,15:47-60.
    Konno Y K, Arai K S, Matsumoto Y.1982.(E)-10-hexadecenal, A sex pheromone component of yellowpeach moth, Dichocrocis puncticralis Guenee. Appl Ent Zool,17:207-217.
    Landolt P J, Curtis C E, Coffelt J A, Vick KW, Doolittle R E.1982. Field trials of potential navelorangeworm mating disruptants. J Econ Entomol,75:547-550.
    Landolt P J, Heath R R.1990. Sexual role reversal in mate finding strategies of the cabbage looper moth.Science,249:1026-1028.
    Landolt P J, Phillips T W.1997. Host plant influences on sex pheromone behavior of phytophagousinsects. Annu Rev Entomol,42:371-391.
    Latli B, Prestwich G D.1991. Metabolically blocked analogs of housefly sex pheromone. I. Synthesis ofalternative substrates for the cuticular monooxygenases. J Chem Ecol,17:1745-1768.
    Liblikas I.2004. Syntheses and behaviour activity of conjugated polyenic pheromone components [D].Stockholm, Sweden: Hamburg University.
    Liljefors T, Bengtsson M, Hansson B S.1987. Effects of double-bond configuration on interactionbetween a moth sex pheromone component and its receptor: a receptor-interaction model based onmolecular mechanics. J Chem Ecol,13:2023-2040.
    Liljefors T, Thelin B, Van Der Pers J N C.1984. Structure-activity relationships between stimulusmolecule and response of a pheromone receptor cell in turnip moth, Agrotis segetum. Modificationof the acetate group. J Chem Ecol,10:1661-1675.
    Liljefors T, Thelin B, Van Der Pers J N C, L fstedt C.1985. Chain-elongated analogs of a pheromonecomponent of the turnip moth, Agrotis segetum. A structure-activity study using molecularmechanics. J Chem Soc Perkins Trans II,2:1957-1962.
    Linn C, Roelofs W L, Sun W C, Prestwich G D.1992. Activity of perfluoro-butyl-containingcomponents in pheromone blend of cabbage looper moth, Trichoplusia ni. J Chem Ecol,18:737-748.
    Linn C E Jr, Bjostad L B, Du J W, Roelofs W L.1984. Redundancy in a chemical signal: behavioralresponses of mate Trichoplusia ni to a6-component sex pheromone blend. J Chem Ecol,10:1635-1658.
    Linn C E Jr, Campbell M G, Roelofs W L.1986. Male moth sensitivity to multicomponent pheromones:critical role of female-released blend in determining the functional role of components and activespace of the pheromone. J Chem Ecol,12:659-668.
    Linn C E Jr, Campbell M G, Roelofs W L.1987. Pheromone components and active spaces: what domoths and where do they smell it? Science,237:650-652.
    Lin H, Phelan P L, Bartelt R J.1992. Synergism between synthetic food odors and the aggregationpheromone for attracting Carpophilus lugubris in the field (Coleoptera: Nitidulidae). EnvironEntomol,21:156-159.
    Liu X, Macaulay E D M, Pickett J A.1984. Propheromones that release pheromonal carbonylcompounds in light. J Chem Ecol,10:809-822.
    Lucas P, Renou M, Tellier F, Hammoud A, Audemard H, Descoins C.1994. Electrophysiological andfield activity of halogenated analogs of (E,E)-8,10-dodecadienol, the main pheromone component,in the codling moth (Cydia pomonella L.). J Chem Ecol,20:489-503.
    Malik M S, Vetter R S, Baker T C, Fukuto T R.1991. Dialkyl phosphorofluoridates and alkylmethylphosphonofluoridates as disruptants of moth sex pheromone-mediated behavior. J Pestic Sci,32:35-46.
    Marks R J.1976. Field studies with the synthetic sex pheromone and inhibitor of the red bollwormDiparopsis castanea Hmps.(Lepidoptera, Noctuidae) in Malawi. Bull Entomol Res,66:243-265.
    Mcelfresh J S, Millar J G.1999. Geographic variation in sex pheromone blend of Hemileuca electrafrom southern california. J Chem Ecol,25:2505-2525.
    Mcneil J N, Delisle J.1989. Host plant pollen influences calling behavior and ovarian development of thesunflower moth, Homeosoma electellum. Oecologia,80:201-205.
    Millar J G.2000. Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractantpheromones. Annu Rev Entomol,45:575-604.
    Mitchell E R, Jacobson M, Baumhover A H.1975. Heliothis spp.: disruption of pheromonalcommunication with (Z)-9-tetradecen-1-ol formate. Environ Entomol,4:577-579.
    Mitchell E R, TumLinson J H, Baumhover A H.1978. Heliothis virescens: attraction of males to blendsof (Z)-9-tetradecen-1-ol formate and (Z)-9-tetradecenal. J Chem Ecol,4:709-716.
    Mori K.1974. Simple synthesis of sex pheromones of codling moth and red bollworm moth by thecoupling of Grignard reagents with allylic halides. Tetrahedron,30(20):3807-3810.
    Naito A, Harnoto, Iqbal A, Hattori I.1986. Notes on the morphology and distribution of Etiella hobsoni(Butler), a new soybean podborer in Indonesia, with special reference to comparisons with Etiellazinckenella (Treitschke)(Lepidoptera: Pyralidae). Appl Entomol Zool,21:81-88.
    Naito A.1961a. Effect of temperature and moisture on the development of the lima-bean podborer, Etiellazinckenella, and soybean podborer, Grappholith glycinivorella Matsumura. IV. On the distribution ofthe two secies in the world and their host plants. Jap J Appl Ent Zool,5:98-102.
    Naito A.1961b. Studies on the distribution and abundance of the lima-bean podborer, Etiella zinckenella,and soybean podborer, Grappholith glycinivorella Matsumura. IV. On the distribution of the twospecies in the world and their host plants. Konty,29:39-55.
    Nishida R.2002. Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol,47:57-92.
    Norinder U, Gustavsson A L, Liljefors T.1997. A3D-QSAR study of analogs of (Z)-5-decenyl acetate, apheromone component of the turnip moth, Agrotis segetum. J Chem Ecol,23:2917-2934.
    Odinokov V N, Balezina G G, Ishmuratov G Y, Salimgareeva I M, Bogatova N G, Zelenova L M,Muslukhov R R, Tolstikov G A,1985. Insect pheromone and their analogues. Ⅹ. The stereodirectedsynthesis of (E, E)–dodeca-8,10-dienol. Chem Nat Comp,20(4):486-489.
    Petroski R J, Weisdeler D.1997. Inhibition of Carpophilus freemani Dobson (Coleoptera: Nitidulidae)aggregation pheromone response by a Z-double-bond pheromone analog. J Agric Food Chem,45:943-945.
    Pfeiffer D G, Killian J C, Rajotte E G, Hull L A, Snow J W.1991. Mating disruption for reduction ofdamage by lesser peach-tree borer (Lepidoptera: Sesiidae) in Virginia and Pennsylvania peachorchards. J Econ Entomol,84:218-223.
    Pickett J A, Dawson G W, Griffiths D C, Liu X, Macaulay E D M, Woodcock C M.1984.Propheromones: an approach to the slow release of pheromones. J Pestic Sci,15:261-264.
    Poland T M, Haack R A.2000. Pine shoot beetle, Tomicus piniperda (Col., Scolytidae), responses tocommon green leaf volatiles. J Appl Entomol,124:63-69.
    Prestwich G D.1986. Fluorinated sterols, hormones and pheromones: enzyme-targeted disruptants ininsects. J Pestic Sci,37:430-440.
    Prestwich G D.1987. Chemical studies of pheromone reception and catabolism. In PheromoneBiochemistry, ed. GD Prestwich, GJ Blomquist, pp.473–527. New York: Academic.
    Prestwich G D, Golec F A J, Andersen N H.1984. Synthesis of a highly tritiated photoaffinity labelledpheromone analog for the moth Antheraea polyphemus. J Label Comp Radiopharm,21:593-601.
    Prestwich G D, Graham S M, Handley M, Latli B, Streinz L, Tasayco M L.1989. Enzymatic processingof pheromones and pheromone analogs. Experimentia,45:263-270.
    Prestwich G D, Graham S M, Kuo J W, Vogt R G.1989. Tritium-labeled enantiomers of disparlure.Synthesis and in vitro metabolism. J Am Chem Soc,111:636-642.
    Prestwich G D, Streinz L.1988. Haloacetate analogs of pheromones: effects on catabolism andelectrophysiology in Plutella xylostella. J Chem Ecol,14:1003-1021.
    Priesner E, Bestmann H J, Vostrowsky O, R sel P.1977. Sensory efficacy of alkyl-branched pheromoneanalogues in noctuid and tortricid lepidoptera. Z Naturforsch Teil C,32:979-991.
    Priesner E, Jacobson M, Bestmann H J.1975. Structure-response relationships in noctuid sex pheromonereception. Z Naturforsch Teil C,30:283-293.
    Quero C, Camps F, Guerrero A.1995. Behavior of processionary males (Thaumetopoea pityocampa)induced by sex pheromone and analogs in a wind tunnel. J Chem Ecol,21:1957-1969.
    Reddy G V P, Guerrero A.2000. Behavioral responses of the diamondback moth, Plutella xylostella, togreen leaf volatiles of Brassica oleracea subsp. capitata. J Agric Food Chem,48:6025–6029.
    Reddy G V P, Holopainen J K, Guerrero A.2002. Olfactory responses of Plutella xylostella naturalenemies to host pheromone, larval frass, and green leaf volatiles. J Chem Ecol,28:131-143.
    Riba M, Eizaguirre M, Sans A, Quero C, Guerrero A.1994. Inhibition of pheromone action in Sesamianonagrioides by haloacetate analogues. Pestic Sci,41:97-103.
    Rider D A, Berger R S.1985. Toxicity and electrophysiological and behavioral effects ofinsecticide-pheromone-related chemicals on cabbage looper moths. Environ Entomol,14:427-432.
    Rochat D, Meillour P, Esteban-Duran J E, Malosse C, Perthuis B, Morin J-P, Descoins C.2000.Identification of pheromone synergists in American weevil, Rhynchophorus palmarus, andattraction of related Dynamis borassi. J Chem Ecol,26:155-187.
    Roelofs W L, Cardé R T.1977. Responses of Lepidoptera to synthetic sex pheromone chemicals andtheir analogues. Annu Rev Entomol,22:377-405.
    Roelofs W L, Comeau A.1971. Sex pheromone perception: synergists and inhibitors for the red-bandedleaf roller attractant. J Insect Physiol,17:435-448.
    Roelofs W, Comeau A, Hill A, Milicevic G.1971. Sex Attractant of the Codling Moth: Characterizationwith Electroantennogram Technique. Science,174(4006):297-299.
    Roelofs W L, Comeau A, Selle R.1969. Sex pheromone of the oriental fruit moth. Nature,224:723.
    Roelofs W L, Hill A S, Carde R T, Baker T C.1974. Two sex pheromone components of the tobaccobudworm moth, Heliothis virescens. Life sciences,14(8):1555-1562.
    Ronald T.1997. Relationship between the number of males captured by sex pheromone traps and wildpopulation density in the field. J Entomol Sci,22:120-137.
    Rosell G, Hospital S, Camps F, Guerrero A.1992. Inhibition of a chain shortening step in thebiosynthesis of the sex pheromone of the Egyptian armyworm Spodoptera littoralis. Insect BiochemMol Biol,22:679-685.
    Samain D, Descoins C, Commer on A.1978. A short, stereoselective synthesis of8E,10E-dodecadien-1-ol; the sex pheromone of the codling moth, Laspeyresia pomonella, L.Communication,1978(5):388-389.
    Schwarz M, Klun J A, Uebel E C.1990. European corn borer sex pheromone. Inhibition and elicitationof behavioral response by analogs. J Chem Ecol,16:1591-1604.
    Schulz S.1998. Insect–plant interactions. Metabolism of plant compounds to pheromones and allomonesby Lepidoptera and leaf beetles. Eur J Org Chem,1:13-20.
    Shakova F A, Zorin V V, Musavirov R R, Safarov M G, Muslukhov R R, Kharisov R Y, Ishmuratov G Y,Rakhmankulov D L,1996. Synthesis of dodeca-8E,10E-dien-1-ol-the sex pheromone of Laspeyresiapomonellavia the acetolysis of4-propenyl-1,3-dioxane. Chem Nat Comp,32(4):582-584.
    Shirai Y, Nakamura A.1995. Relationship between the numbers of wild males captured by sexpheromone trap and the population density estimated from a mark-recapture study in thediamondback moth, Plutella xylostella (L.)(Lepidoptera: Plutellidae). Appl Entomol Zool,30:543-549.
    Smith L M, Smith R G, Loehr T M, Daves G D Jr, Daterman G E, Wohleb R H.1978. Douglas fir tussockmoth pheromone: identification of a diene analog of the principal attractant and synthesis ofstereochemically defined1,6-,2,6-, and3,6-heneicosadien-11-ones. J Org Chem,43(12):2361-2366.
    Stephen P F, Wendell L R.1987. Sex pheromone differences in populations of the brownheadedleafroller, Ctenopseustis obliquana. J Chem Ecol,13(3):623-629.
    Streinz L, Horák A, Vrkoc J, Hrdy I.1993. Propheromones derived from codlemone. J Chem Ecol,19:1-9.
    Struble D L, Arn H, Buser H R, St dler E, Freuler J.1980. Identification of four sex pheromonecomponents isolated from calling females of Mamestra brassicae. Z Naturforsch Teil C,35:45-48.
    Suckling D M, Burnip G M.1996. Orientation disruption of Planotortrix octo using pheromone orinhibitor blends. Entomol Exp Appl,78:149-158.
    Sun W C, Prestwich G D.1990. Partially fluorinated analogs of (Z)-9-dodecenyl acetate: probes forpheromone hydrophobicity requirements. Tetrahedron Lett,31:801-804.
    Tabata J, Yokosuka T, Hattori M, Ohashii M, Noguchi H, Sugie H.2008. Sex attraction pheromone ofthe limabean pod borer, Etiella zinckenella (Treitschke)(Lepidoptera: Pyralidae), in Japan. ApplEntomol Zool,43:351-358.
    Tamura M, Kochi J.1971. Coupling of Grignard reagents with organic halides. Synthesis,1971(6):303-305.
    Tan Z X,Gries R,Gries G,Lin G Q,Pu G Q,Slessor K N, Li J X.1996. Sex pheromone componentsof mulberry looper,Hemerophila atrilineata Butler(Lepidoptera: Geometridae). J Chem Ecol,122:2263-2271.
    Tellier F, Sauvêtre R.1992. Synthesis of a new fluorinated analog of (E,E)-8,10-dodecadienol(codlemone). Tetrahedron Lett,33:3643-3644.
    Tellier F, Sauvêtre R, Normant J F.1989. Synthèse de fluorocodlémones. J Organomet Chem,364:17-28.
    Thaler J S.1999. Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature,339:686-688.
    Todd J L, Millar J G, Vetter R S, Baker T C.1992. Behavioral and electrophysiological activity of(Z,E)-7,9,11-dodecatrienyl formate, a mimic of the major sex pheromone component of carob moth,Ectomyelois ceratoniae. J Chem Ecol,18:2331-2352.
    Tóth M, L fstedt C, Hansson B S, Sz cs G, Farag A I.1989. Identification of four components from thefemale sex pheromone of the lima-bean pod borer, Etiella zinckenella. Entomol Exp Appl,51(2):107-112.
    Tóth M, Talekar N S, Sz cs G.1996. Optimization of blends of synthetic pheromone components fortrapping male limabean pod bores (Etiella zinckenella Tr.)(Lepidoptera: Phycitidae): Preliminaryevidence on geographical differences. Bioorg Med Chem,4(3):495-497.
    Vang L V, Ishitani M, Komai F, Yamamoto M, Ando T.2006. Sex pheromone of the soybean pod borer,Leguminivora glycinivorella (Lepidoptera:Tortricidae):identification and field evaluation. ApplEntomol Zool,41:507-513.
    Voerman S, Minks A K.1973. Sex pheromones of summerfruit tortrix moth, Adoxophyes orana.2.Compounds influencing their attractant activity. Environ Entomol,2(5):751-756.
    Vogt H, Schropp A, Neumann U, Eichhorn K W.1993. Befallsregulierung des EinbindingenTraubenwicklers, Eupoecilia ambiguella Hbn, durch Paarungsst rung mit synthetischen Pheromon.J Appl Entomol,115:217-232.
    Vogt R G, Riddiford L M, Prestwich G D.1985. Kinetic properties of a sex pheromone-degradingenzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci USA,82:8827-8831.
    Wakamura S, Hattori M, Igita K, Yasuda K, Tridjaka.1999. Sex pheromone of Etiella behrii, a pod borerof soybean in Indonesia: identification and field attraction. Entomol Exp Appl,91:413-420.
    Wakamura S.1985. Identification of sex pheromone components of the podborer, Matsumuraesed falcana(Walshingham [sic])(Lepidoptera: Tortricidae). Appl Entomol Zool,20:189-198.
    Wakamura S, Kegasawa K.1986. Sex pheromone of the podborer, Matsumuraesed falcana (Walshingham[sic])(Lepidoptera: Tortricidae): activity of the third component,(E,Z)-7,9-dodecadienyl acetate, and3-component formulation. Appl Entomol Zool,21:334-339.
    Wall C.1990. Principles of monitoring. In Behavior-Modifying Chemicals for Insect Management, ed.RL Ridgway, RM Silverstein, MN Inscoe, pp.9-23.New York: Marcel Dekker
    Weatherston I, Minks A K.1995. Regulation of semiochemicals—global aspects. IntegrPest ManageRev,1:1-13.
    Wenqi W, Bengtsson M, Hansson B S, Liljefors T, L fstedt C.1993. Electrophysiological andbehavioral responses of turnip moth males, Agrotis segetum, to fluorinated analogs. J Chem Ecol,19:143-157.
    Witzgall P.1990. Attraction of Cacoecimorpha pronubana male moths to synthetic sex pheromoneblends in the wind tunnel. J Chem Ecol,16:1507-1515.
    Wright R H.1965. Finding metarchons for pest control. Nature,207:103-104.
    Wu C Y, Hsien M F, Yen Y P.2008. Facile synthesis of the sex pheromone components of the legume podborer and soybean pod borer by Suzuki-Miyaura cross-coupling reaction. Lett Org Chem,5(7):514-517.
    Yamamoto M, Kamata T, Do N-D, Adachi Y, Kinjyo M, Ando T.2007. A novel lepidopteran sexpheromone produced by females of a Lithosiinae species, Lyclene dharma dharma, in the family ofArctiidae. Biosci Biotech Bioch,71:2860-2863.
    Yang Z H, Bengtsson M, Witzgall P.2004. Host plant volatiles synergize response to sex pheromone incodling moth, Cydia pomonella. J Chem Ecol,30:619-629.
    Yang Z H, Du J W.2003. Effects of sublethal deltamethrin on the chemical communication system andPBAN activity of Asian corn borer, Osrinia furnacalis (Guenée). J Chem Ecol,29(7):1611-1618.
    Yasumasa K, Noriko A, Michael M, Shigeru M, Takahisa S.1994. Chemical ecology of astigmatid mitesXXXVIII. Aggregation pheromone and kairomone activity of lardolure and its analogs againstLardoglyphus konoi and Carpoglyphus lactis. Appl Entomol Zool,29(2):253-257.
    Zhao G Y, Wang J, Han Y P, Teng W L, Sun G L, Li W B.2008. Identification of QTL underlying theresistance of soybean to pod borer, Leguminivora glycinivorella (Mats.) obraztsov, and correlationswith plant, pod and seed traits. Euphytica,164:275-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700