用户名: 密码: 验证码:
淡足侧沟茧蜂寄生影响因子及寄生对寄主生化代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在研究淡足侧沟茧蜂(Microplitis pallidipes Szepligeti)对甜菜夜蛾(Spodoptera exigua Hubner)和斜纹夜蛾(Spodoptera litura Fabricius)两种寄主选择的基础上,应用二次回归正交旋转组合设计,研究了温度和光照周期对淡足侧沟茧蜂寄生和雌性比率的影响,明确了寄主密度、寄生蜂日龄和繁蜂寄主饲料对淡足侧沟茧蜂寄生的影响以及在不同温度下补充营养对寄生蜂成蜂寿命的影响。进而测定了被淡足侧沟茧蜂寄生后,甜菜夜蛾寄主在生长发育、生化代谢、寄主免疫等方面的变化。研究结果不仅在理论上有助于加深寄主和寄生蜂相互关系的理解,且在害虫防治实践上为淡足侧沟茧蜂规模化繁殖及田间应用提供依据。主要研究结果如下:
     1.淡足侧沟茧蜂对寄主的选择性研究
     繁育寄主对淡足侧沟茧蜂的寄主选择性有明显影响,寄生蜂偏好于攻击繁育寄主幼虫;无论繁育寄主是斜纹夜蛾还是甜菜夜蛾,寄生蜂均较易搜索到甜菜夜蛾并喜欢攻击甜菜夜峨,但淡足侧沟茧蜂对两种蔬菜夜蛾的寄生率没有显著差异,这表明斜纹夜蛾和甜菜夜蛾均可作为寄生蜂的繁育寄主。
     2.主要生态因子对淡足侧沟茧蜂寄生的影响
     运用二因素二次回归正交旋转组合设计,建立了温度和光照周期对淡足侧沟茧蜂寄生率、出茧率、羽化率和雌性比率的效应模型。模拟结果表明,淡足侧沟茧蜂繁殖最佳条件为:温度28℃、光周期L:D=12h:12h。
     寄生蜂日龄、寄主密度和繁蜂寄主饲料明显制约寄生蜂寄生效果。随着寄生蜂羽化后时间的延长,寄生蜂活力降低,寄生率也随之降低,1-4日蜂龄寄生蜂的寄生率分别为83.890%、82.510%、76.984%、66.327%;蜂虫比1:30、1:40、1:50时,其寄生蜂寄生率分别为63.892%、60.549%、81.311%,而对雌性比率没有显著影响,其中蜂虫比1:50最有利于寄生蜂寄生;繁蜂寄主饲料为大豆、芋艿、卷心菜和青菜叶片的寄主被寄生后寄生率分别为82.390%、75.810%、73.550%、66.390%,其中,大豆叶片作为寄主饲料时,寄生蜂雌性比率最理想(0.449)。
     3.温度和补充营养对淡足侧沟茧蜂成蜂寿命的影响
     建立了以淡足侧沟茧蜂成蜂寿命为目标函数的二次回归模型,模拟结果表明:温度对成蜂寿命影响显著大于光照周期;在试验温度和光照周期范围,随着温度的升高,成蜂寿命呈下降趋势,而随着光照周期的增长,成蜂寿命呈延长趋势。在18~38℃试验温度范围内,随着温度的升高,成蜂寿命缩短,但补充蜂蜜水和清水能显著延长成蜂寿命;在18℃饲喂10%蜂蜜水,雌蜂和雄蜂寿命均最长,分别为17.05d和15.44d;而在38℃不饲喂任何营养物质条件下,雌蜂和雄蜂寿命均最短,分别为1.70d和1.95d。
     4.淡足侧沟茧蜂寄生对寄主幼虫生长发育的影响
     甜菜夜蛾被寄生后,其幼虫体长、体宽、头壳宽度、体重均显著低于对照幼虫,且在寄生后期幼虫体重的增加速率减缓。2龄末或3龄初甜菜夜蛾幼虫被寄生后,其3龄历期、4龄历期均显著延长,寄生后的幼虫发育到4龄末时,无法继续正常发育,寄生蜂钻出寄主幼虫体表后寄主随即死亡
     5.淡足侧沟茧蜂寄生对寄主生化代谢的影响
     在甜菜夜蛾幼虫被寄生的观察时间内(寄生后第1-5天),寄生蜂寄生后第2天,寄主幼虫体内脂肪含量始终显著高于未寄生寄主幼虫(对照),但寄生寄主幼虫体内脂肪含量呈下降趋势;寄生后寄主血淋巴中总糖含量始终高于对照,但显著性差异仅出现在寄生后第2天和第5天;寄生后第1天、第4天和第5天,寄生寄主幼虫血淋巴中蛋白质含量均显著低于对照,而其他观察时间内无显著差异。寄生寄主血淋巴中游离氨基酸总量高于对照,其中,苏氨酸、胱氨酸、谷氨酸和脯氨酸含量始终高于对照。
     6.淡足侧沟茧蜂寄生对寄主保护酶系的影响
     在甜菜夜蛾幼虫被寄生的观察时间内(寄生后第1-5天),寄主幼虫血淋巴中三种保护酶(SOD、CAT、POD)舌力均始终高于未寄生寄主幼虫(对照),寄生后第1~5d寄主血淋巴中SOD活性分别为0.41、0.47、0.58、0.82、2.65U/mg,CAT活性分别为2.377、2.291、1.625、2.846、3.842U/mg,POD活性分别为2.377、3.618、3.077、5.236、14.781U/mg。
     7.淡足侧沟茧蜂寄生对寄主免疫系统的影响
     甜菜夜蛾被寄生后,寄主幼虫血淋巴中血细胞总数和颗粒血细胞总数与未寄生寄主幼虫(对照)相比明显下降;在寄主幼虫被寄生的观察时间内(寄生后第1-6天),浆血细胞数量呈先下降后上升趋势,而颗粒血细胞一直呈下降趋势,其变化趋势均与对照明显不同。
     对照组寄主幼虫血淋巴的黑化率为100%,而被寄生后寄主幼虫血淋巴黑化率明显降低,随着观察时间的延长,其黑化率逐渐降低,且在寄生后第2-6天内黑化率均显著小于对照。
     甜菜夜蛾幼虫在寄生后1-5天内,健康幼虫与寄生幼虫血淋巴中酚氧化酶活性变化趋势呈相同趋势。甜菜夜蛾幼虫在寄生处理后1-3天,寄生幼虫血淋巴中酚氧化酶活性逐渐升高,寄生后第4天略有降低,第5天又呈升高趋势;寄生后第1-5天寄生幼虫血淋巴中酚氧化酶均低于健康幼虫,寄生后第2-5天健康幼虫和寄生幼虫酚氧化酶活性均达到差异显著水平。
     淡足侧沟茧蜂寄生寄主后1-2天,溶菌酶活性增加,寄生后3-5天,溶菌酶活性降低,而健康幼虫血淋巴中溶菌酶活性变化与寄生幼虫血淋巴中溶菌酶活性变化趋势略有不同,仅寄生后第3-4天内寄生幼虫血淋巴中溶菌酶活性值显著大于对照,其他观察时间段没有显著差异。
Based on the study on the effect of Microplitis pallidipes (Szepligeti) on host selectivity of Spodoptera exigua Hiibner and Prodenia litura (Fabriciu), quadratic regression rotating combination design was adopted to study the combined effects of temperature and photoperiod on parasitic rate and sex ratio of M. pallidipes, and to confirm the effect of different density of parasitoids, the age of parasitoids and host diet on the parasitism of M. pallidipes, the effect of extra-nutrition and temperature on the longevity of parasitoids, and further the changes of the growth and development of host, biochemical metabolism as well as hostimmunity of host were determined after host was parasitized by M. pallidipes. This research results not only serve to strengthen the understanding of host-parasitoid interaction in theory, bot also provided paradigm and guide for mass reproduction of M. pallidipes as well as for field application. The main results are as follows:
     1. The effect of M. pallidipes on host selectivity
     Breeding host had apparent effect on host selectivity of M. pallidipes which has preference to attacking breeding host larvae; M. pallidipes was easier to search S. exigua and more liked to attack S. exigua whether the breeding host was S. exigua or P. litura, but there was no significant difference between the parasitic rates of S. exigua and P. litura, which indicated that both S. exigua and P. litura were suitable for breeding hosts.
     2. The effect of ecological factors on the parasitism of parasitoids
     Quadratic regression rotating combination design was adopted to model the effects of temperature and photoperiod on the parasitic rate, cocoon rate, emergence rate and sex ratio of M. pallidipes. According to the simulating result, the optimal conditions for mass propagation was temperature28℃and photoperiod L:D=12h:12h.
     Ages of parastitoids, density of hosts and host plants conspicuously limited parasitic efficacy. As the increase of post-emergence, the activity of parasitoids decreased, parasitic rate was more lower, and the parasitoids of one-day, two-day, three-day and four-day age have the parasitic rate of83.890%,82.510%,76.984%and 66.327%respectively; when the ratios of parasitoids to hosts were1:30,1:40and1:50, the parasitic rates were63.892%,60.549%and81.311%respectively, which had no significant effect on sex ratio, and meanwhile the ratio1:50was most beneficial for parasitoids to parasitize host larvae; after feeding soybean, taro, cabbage, or green vegetable leaves, the parasitic rate was82.390%,75.810%,73.550%and66.390%respectively, and soybean leaves were the best host diet which sex ratio is0.449approaching the most ideal of0.5.
     3. the effect of extra-nutrition and temperature on the longevity of parasitoids
     Quadratic regression model for the goal function of adult parasitoid longevity was constructed, which simulating results indicated that the effect of temperature on the longevity of adult parasitoids was greater than photoperiod; the adult longevity shortened as the increase of temperature, while increased as the increase of photoperiod. Among the18~38℃, the adult longevity shortened as the increase of temperature, but extra-nutrition and fresh water could significantly extended adult longevity; at18℃conditions of feeding10%honey water, the longest longevity of male and female was17.05d and15.44d respectively; at38℃conditions of not feeding any materials, the shortest longevity of male and female was1.70d and1.95d respectively.
     4. The effect of M. pallidipes on the growth and development of host
     After S. exigua was parasitized by M. pallidipes, body length, body width and head capsule width and body weight of S. exigua were all significantly lower than that of controls, and at the late parasitic time, all the increasing rates of body weight of host larvae slowed down. When late second-to initial third-instar host larvae were parasitized, both the periods of third and fourth larvae periods were prolonged, but the host larvae could not continue to normally develop and meanwhile the parasitoids immediately died towards egression when the host larvae developed to the late fourth-instar.
     5. The effect of M. pallidipes on the host biochemical metabolism
     Within the observation time (from the first to the fifth day) of S. exigua being parasitized, the lipids content in parasitized host larvae was constantly significantly higher than that of non-parasitized larvae (control), but the fat content in host larvae decreased gradually; the total carbohydrates free in the host hemolymph of parasitized larvae were significantly more than that in controls but the significant difference just occurred at the2nd and the5st day after host larvae was parasitized; the protein content in parasitized host larvae was all significantly lower than that in controls at the1st, the4th and the5th day after host larvae was parasitized, while there were no significant difference at any other observation time. The free amino acids in the host hemolymph of parasitized larvae were significantly more than that in controls, and threonine, cystine, glutamic acid and proline in the host hemolymph of parasitized larvae were also significantly more than that in controls.
     6.The effect of M. pallidipes on the host protective enzyme system
     Within the observation time (from the first to the fifth day) of S. exigua being parasitized, the activities of three protective enzymes (SOD、CAT、POD) in the host hemolymph of parasitized larvae were all higher than that of controls respectively, and the values of SOD in the host hemolymph of parasitized larvae from the1st to the5th day were0.41,0.47,0.58,0.82, and2.65U/mg respectively, the values of CAT were2.377,2.291,1.625,2.846, and3.842U/mg.min respectively, and the values of POD were2.377,3.618,3.077,5.236, and14.781U/mg.min respectively.
     7. The effect of M. pallidipes on host immune system
     The number of total hemocytes and granular cells in the host hemolymph of parasitized larvae were both less than those of controls; within the observation time (from the first to the sixth day) of S. exigua being parasitized, the number of plasmacytes first decreased then increased while granular cells gradually decreased in the host hemolymph of parasitized larvae, which change tendency was not identical to controls.
     The black change rate in the host hemolymph in controls reached to100%, while that in parasitized host larvae conspicuously decreased; with the increase of observation time, the black change rates gradually decreased which were all significantly lower than that in controls respectively at the2nd-to-5th day after host were parasitized.
     The change tendency of the activities of phenoloxidases in host hemolymph in treatments and controls was the same with the5days after host were parasitized; the activities of phenoloxidases in parasitized host hemolymph gradually increased from the1st to the3rd day after host were parasitized, but slightly decreased at the4th day and increased at the5th day; the values of the activities of phenoloxidases in host hemolymph in treatments from the1st to the5th day were all lower that in controls respectively, and there were the significant difference between the treatments and controls from the2nd to the5th day.
     At the1st-to-2nd day after host were parasitized, the activities of lysozyme in host hemolymph in treatments increased, but decreased at the3rd-5th day; the change tendency of the activities of lysozyme in host hemolymph between treatments and controls was a bit difference, the values of the activities of lysozyme in treatments were significantly higher than that in controls at the3rd-to-4th day after host were parasitized, but there were no significant difference at any other observation time between treatments and controls.
引文
1. Alvarado-Rodriguez B., Parasites and disease associated with larvae of beet armyworm Spodoptera exigua(Lepidoptera:Noctuidae)infesting processing tomatoes in Sinaloa,Mexico[J]. Florida Entomologist,1987,70(4):444-449.
    2. Asgari, S., Theopold, C., Wellby and O. Schmidt, A protein with protective properties against the cellular defence reactions in insects[J]. Proceedings of the National Academy of Science USA.1998,95:3690-3695.
    3. Asgari, S., O.Schmidt. Passive protection of eggs from the parasitoid, Cotesia rubecula, in the host, Pieris rapae[J]. Journal of. Insect Physiology.1994,40:789-795.
    4. Balgopal, M. M., Dover, B. A.,Goodmen, W. G., Strand M.R.,Parasitism by Microplitis demolitor induces alterations in the juvenile hormone titers juvenile hormone esterase activity of its host[J], Pseudoplusia includes.. Journal of Insect Physiology.1996,42:337-345.
    5. Barras, D.J., Joiner, R.L., Vinson SB. Neutral lipid composition of the tobacco hudworm,Heliothis virescens(Fab.),as affected by its habitual parasite[J],Cardiochiles nigriceps Viereck[J].Comparative.Biochemistry and physiology.1970,36(4):775-783.
    6. Bradford, M.M.,A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding[J]. Anal. Biochem.,1976,72:248-254.
    7. Basio, N.A.M., Kim, Y. Larvicidal effect ofin vitro cultured Cotesia plutellae teratocytes on its host,Plutella xylostetlla[J]. Journal of Asia-Pacific Entomology.2005,8:291-296.
    8. Beckage, N.E., Gelman, DB. Parasitism of Manduca sexta by Cotesia congregata:a multitude of disruptive endocdne effects. In:Edwards JP, Weaver RJ(eds.)Endocrine Interactions of Insect Parasite and Pathogens[J]. BIOS Sci. Publ., Oxford, UK, 2001,PP.59-81.
    9. Beckage, N.E., Endocrine interactions between endoparasitic insects and their hosts[J]. Annual Reviews of Entomology.1985,30:371-413.
    10. Beckage, N. E., Kanost, M. R. Effects of parasitism by the braconid wasp Cotesia congregata on host hemolymph protein of the tobacco hornworm[J]. Manduca sexta. Insect Biochemistry and Molecular Biology.1993,23(5):643-653.
    11. Beckage. N. E.,Riddiford. L. M. Effects of parasitism by Apanteles congregatus on the endocrine physiology of the tobacco hornworm, Manduca sexta[J]. General and Comparative Endocrinology.1982,47:308-322.
    12. Beckage, N. E., Temleton, T. J. Physiological effects of parasitism by Apanteles congregatus in terminal-stage tobacco hornworm larvae[J]. Journal of Insect Physiology. 1986,32:299-314.
    13. Beckage, N. E. Modulation of immune responses to parasitoids by polydnavirus[J].Parasitology 1998,116:57-64.
    14. Beckage, N. E. New insights:How parasites and pathogens alter the endocrine physiology and development of insect hosts. In:Beckage, N. E. (Ed.), Parasites And Pathogens:Effects on Host Hormones And Behaviour. New York:Chapman and Hall,1997,pp.3-36.
    15. Beckage, N. E., Metcalf, J. S.. Host hemolymph monophenoloxidase activity in parasitised Manduca sexta larvae and evidence for inhibition by wasp polydnaviruse[J]. Insect Biochemistry.1990,20:285-294.
    16. Beckage, N. E., Templeton, T. J. Parasitism-induced hemolymph polypeptides in Manduca sexta (L.) larvae parasitised by the braconid wasp Cotesia congregata (Say). Insect Biochemistry.1987,17:439-455.
    17. Bischof, C., Ortel, J. The effects of parasitism by Glyptapanteles liparidis (Braconidae:Hymenoptera) on the hemolymph and total body composition of gypsy moth larvae,Lymantria dispar (Lymantriidae:Lepidoptera) [J]. Parasitology Research 1996,82(8):687-692.
    18. Bischof, C. Effects of heavy metal stress on free amino acid in the haemolymph and proteinsin haemolymph and total body tissue of Lymantria dispar larvae parasitized by Glyptapanteles liparidis[J]. Entomol. Exp. Appl.1996,79:61-68.
    19. Caballero P, Aldebis H,Vargas-Osuna E. Epizootics caused by a nuclear polyhedrosis virus in populations of Spodoptera exigua in southern Spain[J]. Biocontrol Science and Technology.1992,2(1):35-38.
    20. Chau, A., Mackauer, M. Host-instar selection in the aphid parasitoid Monoctonuspaulensis (Hymenoptera:Braconidae, Aphidiidae):a preference for small pea aphids[J]. Eur. J.Entomol. 2000,97:347-353.
    21. Christian-Weniger. P., Hardie, J. The influence of parasitism on wing development in male and female pea aphids[J]. J. Insect Physiol.2000,46(6):861-867.
    22. Christian-Weniger, P., Hardie, J. Wing development in parasitized male and femaleSitobion fragariae[J]. Physiological Entomology.1998,23:208-213.
    23. Cloutier, C., Duperron, J., Tertuliano, M. et al. Host instar, body size and fitness in thekoinobiotic parasitoid Aphidius nigripes[J]. Entomol. Exp. Appl.2000,97:29-40.
    24. Cook, D. I..Induction of a new haemolymph glycoprotein in larvae of permissive hosts parasitized by Campoletis sonorensis[J]. Insect Biochemistry 1984,14:45-50.
    25. Coudron, T. A. Host-regulating factors associated with parasitic Hymenoptera. In Hedin PA(ed):Naturally Occurring Pest Bioregulators. Washington, D. C.:American Chemical Society, ACS Symposium Series 449.1991,pp.41-65.
    26. Coudron, T. A., Brandt, S. L. & Raqib, A. Comparison of the response of Heliothis virescens to parasitism by Euplectrus comstockii and Euplectrus plathypenae[J]. Comp.Biochem. Physiol.1997,116B(2):197-202.
    27. Coudron, T. A., Jones, D. & Jones, G. Premature production of late larval storage proteins in larvae of Trichoplusisni parasitized by Euplectrus comstockii[J]. Arch. Insect Biochem.Physiol.1994,26:97-109.
    28. Coudron, T. A., Raqib, A.,. Comparison of the hemolymph proteins in permissive andnon-permissive hosts of Euplectrus comstockii[J]. Compa.Biochem. Physiol. 1998,120B:349-357.
    29. Dahlman, D. L.,Vinson, S. B. Glycogen content of Heliothis virescens parasitized by Micropilitis croceipes[J]. Comp. Biochem. Physiol.1980,66A:625-630.
    30. Dahlman, D. L., Vinson, S. B. Teratocytes developmental and biochemical characteristics.In: Beckage, N. E., Thompson, S. N., Federici, B. A. eds. Parasites and Pathogens of Insect. Vol.1.New York:Academic Press,1993,145-165.
    31. Davies, D. H., Vinson, S. B. Passive evasion by eggs of the braconid parasitoid Cardiochiles nigriceps from encapsulation by haemocytes of host Heliothis virescens[J]. J.Insect Physiol. 1986,32:1003-1010.
    32. Dong, K., Zhang, D., Dahlman. D. L. Down-regulation of juvenile hormone esterase andarylphorin production in Heliothis virenscens larvae parasitized by Microplitis croceipes[J]. Arch. Insect Biochem. Physiol.1996,32:237-248.
    33. Doucet,D., Cusson M. Role of Calyx Fluid in Alterations of Immunity in Choristoneura fumiferana Larvae Parasitized by Tranosema rostrale[J].Comp. Biochem. Physiol.1996, 114A(4):311-317.
    34. Eslin, P., Prevost, G. Racing against host's immunity defenses:a likely strategy for passive evasion of encapsulation in Asobara tabida parasitoids[J]. J. Insect Physiol.2000,46(8): 1161-1168.
    35. Fathpour, H., Dahlman, D. L. Polydnavirus of Microplitis croceipes prolongs the larval period and changes hemolymph protein contents of the host, Heliothis virescens[J]. Arch. Insect Biochem. Physiol.1995,28(1):33-48.
    36. Fernando, C. M., Bailey, P. C. E., Gurr, G. M. In:Zalucki, M. P., Drew, R. A. I., White, G.G., eds. Pest Management Future Challenges[C], Preceedings of the Sixth Australiasian Applied Entomological Research Conference.Brisbane,1998, Vol. I:335-340.
    37. Gelernter, W. D., Federici, B. A. Isolation,identification and detemination of virulence of a nuclear polyhedrosis virus from the beet armyworm,Spodoptera exigua(Lepidoptera:Noctuidae)[J].Environmental Entomology.1986,15(2):240-245.
    38. George, K, Poku, K., Kunimi, Y. Effect of entomopoxvirus in infection of Psedaletia separata larvae on the oviposition behavior of Cotesia kariyai[J]. Entomol. Exp. Appl., 1997,83:93-97.
    39. Gleman, G. B., Carpenter, J. E., Greany, P. D. Ecdysteroid level/profiles of the parasitoid wasp, Diapetimorpha introita, reared on its host, Spodoptera frugiperda and on an artificialdiet[J]. J. Insect Physiol.2000,46(4):457-465.
    40. Grasswitz. T. R., Paine, T. D. Influence of physiological-state and experience on the responsiveness of Lysiphlebus testaceipes (Cression) (Hymenoptera:Aphidiidae) to aphid honeydew and to host plants[J]. Insect Behav.1993,6:511-529.
    41. Gupta.,R., Ferkovich.,S. M. Interaction of calyx fluid and venom from Microplitis croceipes (Braconidae)on developmental disruption of the natural host,Heliocoverpa zea, and two atypical hosts. Galleria mellonella and Spodoptera exigiu[J]. Journal of Insect Physiology,1 998,44:713-719.
    42. Hartstack. A.W., Witz, J. A. Estimating field populations of tobaccobudworm moths from pheromone trap catches[J]. Envir∞Ento immumology. SOS Puba. Fair Haven. NJ.1996, 355-374.
    43. Harwood, G., Grosovsky, A. H., Cowles, E. A., et al. An abundantly expressed hemolymph glycoprotein isolated from parasitized Manduca Sexta larvae is a polydnavirus gene product[J].Virology.1994,205:381-392.
    44. Harwood, S. H. et al. Production of early expressed parasitism-specific proteins in alternate sphingid hosts of the braconid wasp Cotesia congregata[J]. J. Invertebrate Pathol.1998, 71:271-279.
    45. Hawlitzky, N. & Christiane, B. Effects of the egg-larval parasite, Phanerotoma flavitestacea Fisch.(Hymenoptera, Braconidae) on the dry weight and chemical composition of its host Anagasta kuehniella Zell (Lepidoptera, Phyralidae) [J]. J. Insect Physiol.1986,32(4): 269-274.
    46. Hopkins, A. D., Discussion of C. G. Hewitt's paper on insect behavior[J]. J. Chem. Ecol.,1990,16:3119-3135.
    47. Honda, J. Y., R. F. Luck, Interactions between host attributes and wasp size:a laboratory evalution of Trichogramma platneri as an augmentative biological control agent for two avocado pests[J]. Entomol. Exp. Appl.2001,100(1):1-13.
    48. Hunter, M. S. Evolution and behavioral ecology of heteromomous aphelinid parasitids[J]. Annu. Rev. Entomol.2001,46:251-290.
    49. Jiexian Jiang. Aiping Zeng, Xiangyun Ji.Combined effect of nucleopolyhedrovirus and Microplitis pallidipes for the control of the beet armyworm, Spodoptera exigua[J]. Pest management science.2011,67(6):705-13.
    50. Jones, D. Biochemical interaction between chelonine wasps and their lepidopteran hosts: after adecade of researctv--the parasite is in control[J]. Insect Biochemistry and Molecular Biology.1996,26:981-996.
    51. Junnikkala, E. Testis development in Pieris brassicae parasitised by Apanteles glomeratus.Entomol[J]. Exp. Appl.1985,37:283-288.
    52. Kainoh, Y., Brown,J. J. Amino acids as oviposition stimulants for the egg-larval parasitoid. Chelonus sp. near curvimaculatus (Hymenoptera:Braconidae) [J]. J. Bio. Control.1994,4: 22-25.
    53. Kanost, M. R., Kawooya, J. K., Law, J. H. Insect haemolymph proteins[J].Adv. Insect Physiol.1990,22:299-396.
    54. King, B. H. Fitness effects of,sex ratio response to host quality and size in the parasitoid wasp Spalangia cameroni[J],Behav. Ecol.1996.,7:35-42.
    55. King, B. H. Host-size dependent sex ratios among parasitoid wasps:does host growth matter[J]? Oecologia 1989,78:420-426.
    56. Kitano, H. Possible role of teratocytes of the gregarious parasitoid, Cotesia (=Apanteles) glomerata in the suppression of phenoloxidase activity in the larval host, Pieris rapae crucivora[J]. Arch. Insect Biochem. Physiol.1990,13:177-185.
    57. Kolodny Hirsch, D.M.Warkentin,D.L.. Alvarado Rodriguez, B. Spodoptera exigua nuclear polyhedrosis virus as a candidate viral insecticide for the beet armyworm (Lepidoptera:Noctuidae) [J].Jornal of Economic Entomology.1993,86(2):314-321.
    58. Lavine, M.D.,Strand, M.R. Surface characteristics of foreign targets that elicit an encapsulation response by the moth Pseudoplusia includes[J]. J. Insect. Physiol.,2001,47(9):965-974.
    59. Lavine, M.D.,Strand, M.R. Insect hemocytes and their role in immunity[J].Insect Biochem.Mol.Biol..2002,32(10):1295-1309.
    60. Lavine, M.D.,Strand, M.R. Haemocytes from Pseudoplusia includens express multiple alpha and betaintegrin subunits[J]. Insect Molecular Biology.2003,12:44 1-452.
    61. Lavine, M. D., Beckage, N. E. Polydnaviruses:potent mediators of host insect immune dysfunction[J]. Parasitology Today.1995,11:368-378.
    62. Lawrence, P.O., Hagedom, H.H. Relationship between the ecdysteroid litres of a host and those of its parasite[J]. Insect Biochemistry.1986,16:163-161.
    63. Lawrence, P.O. Host-parasite hormonal interactions:an overview[J]. Journal of Insect Physiology.1986a,32:295-298.
    64. Lawrence, P.O. The role of 20-hydroxyecdysone in the moulting of Biosteres longicaudatus, a parasite of the Caribbean fruit fly, Anastrepha suspensa[J]. Journal of Insect Physiology. 1986b.32:329-337.
    65. Lawrence, P. O. Hormonal interactions between parasitoids and hosts:Adaptations to stress.In:Endocrinological Frontiers in Physiological Insect Ecology[M]. Wroclaw:Wroclaw Technical University Press.1988,423-435.
    66. Lawrence, P. O. The biochemical and physiological effects of insect hosts on the development and ecology of their insect parasites:An overview[J]. Arch. Insect Biochem.Physiol,1990.13:217-228.
    67. Lee, H. P., Ko, T. Y. & Lee, K. R. Changes in hemolymph metabolites of Lymantria dispar L. parasitized by the pupal parasitoid, Brachymeria lasus Walker[J]. Korean Journal of Entomology 1990a,20(1):23-32.
    68. Leius, K. Attactiveness of different foods and flowem to the adults of some Hymenopterous parasites[J].Can.Ent.1960,92:369-376.
    69. Mackauer, M., Michaud, J. P., V lkl, W. Host choice by aphidiid parasitoids (Hymenopera: Aphidiidae):host recognition, host quality, and host value[J]. Can. Entomol.1996,128: 959-980.
    70. McAuslane, H. J. Stimuli influencing host microhabitat location in parasitoid Campoletis sonorensi[J]s. Entomol. Exp. Appl.1991,58:267-277.
    71. Nakamatsu, Y.,Gyotoku Y.,Tanaka T. The endoparasitoid Cotesia kariyai(Ck) regulates the growth and metabolic efficiency of Pseudaletia separata larvae by venom and Ck polydnavirus[J].Insect Physiol,2001,47(6):573-584.
    72. Nufio, C. R., Papaj, D. R. Host marking behavior in phytophagous insects and parasitoids[J]. Entomol. Exp. Appl.2001,99:273-293.
    73. Okuda, T., Kadono, Okuda, K. Perilitus coccinellae teratoeyte polypeptide:Evidence for production of a teratocyte-specific 540kDa protein[J]. J. Insect Physiol.1995,41:819-825.
    74. Papaj, D.R., Vet, L.E.M. Odor learning and foraging success in the parasitoid,Leptopilina heterotoma[J].Journal chemical Ecologocal,1990,16:3137-3150.
    75. Pech, L.L.,Strand M,.R. Granular cells are required for encapsulation of foreign targets by insect haemocytes[J].J.Cell Sci.1996,109(8):2053-2060.
    76. Pennacchio, F., Digilio, M.C. Tremblay E. Biochemical and metabolic alterations in Acyrthosiphon pisum parasitized by Aphidius ervi[J]. Arch. Insect Biochem. Physiol., 1995.30(4):351-367.
    77. Pennacchio. F,Vinson. S.B..Tremblay E. Growth and development of Cardiochiles nigriceps Viereck(Hymenoptera,Braconidae)larval and their synochronization with some change of the haemolymph composition of their host[J]. Heliothis virescans.1993,24(2):65-11.
    78. Pennacchio, F.,Vinson, S B.,Tremblay, E. Morphology and ultrastructure of the serosal cells (teratocytes) in Cardiochiles nigriceps Viereck (Hymenoptera:Braconidae) embryos[J] Jnt. J. insect Morphol Embryol,1994,23:93-104.
    79. Pennacchio, F.,Vinson, S. B. Alteration of ecdysone metabolism in Heliothis virescens (F.) (Lepidoptera, Noctuidae) larvae induced by Cardiochiles nigriceps (V.) (Hymenoptera, Braconidae) [J]. Insect Biochem. Mol. Biol.1994a,24(4):383-394.
    80. Pennacchio, F.,Vinson, S. B. Biochemical and developmental alterations of Heliothis virescens (F.)(Lepidoptera, Noctuidae) larvae induced by the endophagous parasitoid Cardiochiles nignceps(V.)(Hymenoptera, Braconidae) [J]. Arch. Insect Biochem. Physiol.1994b,26:211-233.
    81. Pennacchio, F. et al. Host recognition and acceptance behaviour in two aphid parasitoid species:Aphidius ervi and Aphidius mirolophii(Hymenoptera:Braconondae) [J]. Bull. Ent. Res.1994d,84(1):57-64.
    82. Pennacchio, F., et al. Development and nutrition of the braconid wasp, Aphidius ervi in aposymbiotic host aphids[J]. Arch. Insect Biochem. Physiol.1999,40:53-63.
    83. Pennacchio, F., Vinson, S. B. & Tremblay, E. Morphology and ultrastructure of the serosalcells (teratocytes) in Cardiochiles nigriceps Viereck(Hymenoptera:Braconidae) embryos[J]. Int. J. Insect Morphol. Embryol.1994c,23:93-104.
    84. Pfister-Wilhelm, R. & Lanzrein, B. Precocious induction of metamorphosis in Spodoptera littoralis (Noctuidae) by the parasite wasp Chelonus inanitus (Branconidae):Identification of the parasitoid larvae as the key regulatory element and the host corpora allata as the main targets[J]. Arch. Insect Biochem. Physiol.1996,32:511-525.
    85. Quicke, D. L. J. Introduction to the parasitic Hymenoptera. In:Parasitic Wasps[M]. Chapman & Hall Press,1997,1-18.
    86. Rechav, Y. Biological and ecological studies of the parasitoid Chelonus inanitus (Hym.:Braconidae) in Israel IV[J]. Oviposition,host preference and sex ratio.Entomophaga. 1978,23(1):95-102.
    87. Riotberg, B. D. Fitness, parasitoids, and biological control:an opinion[J]. Can. Entomol. 2001,133:429-438.
    88. Sagarra, L. A. & Vincent, C. Influence of host stage on oviposition, development, sex ratio, and survival of Anagyrus kamali Moursi (Hymenoptera:Encyrtidae), a parasitoid of the hibiscus mealybug, Maconellicocus hirsutus Green (Hymenoptera:Encyrtidae)[J]. Biological Control.1999,15:51-56.
    89. Salt, G. Experimental studies in insect parasitism. V. Thesense used by Trichogramma to distinguish between parasitized and unparasitized hosts[J]. Proc. Roy. Soc. London. B 1937,122:57-75.
    90. Schepers, E. J. et al. Microplitis croceipes teratocytes:in vitro culture and biological activityof teratocyte secreted protein[J]. J. Insect Physiol.1998,44:767-777.
    91. Schmidt, O.,Theopold U.,Strand M. Innate immunity and its evasion and suppression by hymenopteran endoparasitoids[J]. Bioessays.2001,23(4):344-351.
    92. Schopf, A.,Nussbaumer, C. Influence of parasitism by Glyptapanteles liparidis (Braconidae: Hymenoptera) on the haemolymph carbohydrate and glycogen content of its host larva, Lymantria dispar (Lymantriidae:Lepidoptera) [J]. J. Appl. Entomol.1996,120(6):357-362.
    93. Sequeira, R. & Mackauer, M. Covariance of adult size and development time in the parasitoid wasp Aphidius ervi in relation to the size of its host[J]. Acyrthosiphon pisum. Evol. Ecol.1992,6:34-44.
    94. Sequeira, R. & Mackauer, M. The nutritional ecology of a parasitoid wasp Ephedrus californicus Baker (Hymenoptera:Aphididae) [J]. Can. Entomol.1993,125:423-430.
    95. Shelby, K. S. & Webb, B. A. Polydnavirus infection inhibits synthesis of an insect plasma protein, arylphorin[J].J. Gen. Virol.1994,75:1-8.
    96. Shelby, K. S., Cui, Li & Webb, B. A. Polydanvirus-mediated inhibition of lysozyme gene expression and the antibacterial response[J]. Insect Molec. Biol.1998,7:265-272.
    97. Shelby, K. S., Webb. B. A. Polydanvirus infection inhibits translation of specific growth-associated host proteins[J]. Insect Biochem. Mol. Biol.1997,27:263-270.
    98. Shelby, K. S., Webb, B. A. Polydanvirus-mediated suppression of insect immunity [J]. J. Insect Physiol.1999,45:507-514.
    99. Simon, L. M., Farrai.Z.,Jonas. D. E. Study of peroxide metabolism enzymes during the development of Phaseolus valgris[J]. Biochem physiol,1974,166:388-392.
    100. Smith, R.H. In:Proc. Bdtwide Cotton Conf, National CottonCouncil, Memphis. TN.1989,273-275.
    101. Soller, M., Lanzrein, B. Polydnavirus and Venom of the Egg-Larval Parasitoid Chelonus inanitus (Braconidae)Induce Developmental Arrest in the Prepupa of its Host Spodoptera littoralis(Noctuidae) [J]. Journal of Insect Physiology.1996,42:471-481.
    102. Strand, M.R.. and B.A.Dover. Development disruption of pseudoplusia includes and Heliothis virescens larvae by the calyx fluid and venom of Microplitis demolitor teratocytes in parasitism of Pseudoplusia includes[J]. J. Insect Physiol.1991,37(7):503-515.
    103. Strand, M. R., Witherell, R., Trudeau, D. Two Microplitis demolitor polydnavirus mRNAs expressed in haemocytes of Psuedoplusia includens contain a common cysteine-rich domain[J]. J. Virol.1997,71:2146-2156.
    104. Sugumaran, M. Role of insect cuticle in immunity. In:New directions in invertebrate immumology. SOS Puba. Fair Haven. NJ.1996,355-374.
    105. Sullivan. D. J. Hyperparasitism:multitrophic ecology and behavior[J].Ann. Rev. Entomol. 1999,44:291-315.
    106. Tagawa, Jun, Shinsuke Aoki et al. Longevity, egg load, and lack of host-quality preference in the hyperparasitoid Eurytoma goidanichi Boucek (Hymenoptera:Eurytomidae) [J]. Appl. Ent. Zool.2000,35(4):541-548.
    107. Takashi, O. & Ceryngier, P. Host discrimination in Dinocampus coccinellae (Hymenoptera: Braconidae), a solitary parasitoid of of coccinellid beetles[J]. Appl. Entomol. Zool. 2000,35(4):535-540.
    108. Tanaka, T. Calyx and Venom Fluids of apanteles kariyai(Hymenoptera:Braconidae)as Factors that prolong larval period of the host, Pseudaletia separate (Lepidoptera:Noctuidae) [J]. Entomological society of America.1987,80:530-533.
    109. Tanaka, T. Effects of the calyx and venom fluid of Apanteles Kariyai watanabe (Hymenoptera:Braconidae) on the fat body and hemolymph protein contents of its host Psedualetia separata (Walker)(Lepidotera:Noctuidae) [J]. Appl. Entomol. Zool.1986,441: 1-6.
    110. Taylor. A. J. et al. Effect of aphid predators on oviposition behavior of aphid parasitoids[J].J. Insect Behav.1998,11(2):297-302.
    111. Telenga, N. A. Biological methods of pest control in crops and forest plants in the USSR [A]. Moscow, Proceedings of the Ninth International Conference in Quarantine and Plant Protection[c].1958:1-15.
    112. Thompson, S. N. Effects of the insect parasite Hyposoter exigua(Viereck)on the carbohydrate metabolism of its host,Trichoplusia ni. (hubner) [J]. J. insect physiol.,1986,32(4):287-293.
    113. Thompson, S N. Effects of the insect parasite, Hyposoter exigue on the total body glycogen and lipid levels of its host[J]. Trichoplusia ni. Comp. Biochem. Physiol. 1982,72B(2):233-237.
    114. Thompson, S. N. & Bradley, F. B. Altered carbohydrate levels and gluconeogenic enzyme activity in Trichoplusia ni parasitized by the insect parasite[J].Hyposoter exiguae. J. Parasit.1984,70(5):644-651.
    115. Thompson, S. N. & Johnson, J. Further studies on lipid metabolism in the insect parasite, Exeristes roborator (F.) [J]. J. Parasitol.1978,64:731-740.
    116. Thompson, S. N. The nutritional physiology of Trichoplusia ni parasitized by the insect parasite, Hyposoter exigue, and the effects of parallel-feeding[J]. Parasitology. 1983,87:15-28.
    117. Tran, Tan Viet, Keiji Takasu. Host age selection by the host-feeding pupal parasitoid Diadromus subtiliconis (Gravenhorst) (Hymenoptera:Ichneumonidae) [J]. Appl. Entomol. Zool.2000,35(4):549-556.
    118. Ueno, T. & T. Tanaka. Self-host discrimination by a parasitic wasp:the role of short-term parasitoids[J]. Anim. Behav.1996,52:875-883.
    119. Ueno, T. Adaptiveness of sex ratio control by the pupal parasitoid Itoplectis naranyae (Hymenoptera:Ichneumonidae) in response to host size[J]. Evolutionary Ecology 1998,12:643-654.
    120. Ueno, T. Host age preference and sex allocation in the pupal parasitoid Itoplectis naranyae (Hymenoptera:Ichneumonidae) [J].Ann. Entomol. Soc. Am.1997,87:592-598.
    121. Van Dijken, M. j., P. van Stratum, et al. Recognition of individual-specific marked parasitized hosts by the solitary parasitoid Epidinocarsis lopezi[J].Behav. Ecol. Sociobiol. 1992,30:77-82.
    122. Vinson, S. B. & Barras, D. J. Effects of the parasitoid, Cardiochiles nigriceps, on the growth development and tissues of Heliothis virescens[J]. J. Insect Physiol.1970,16:1329-1338.
    123. Vinson, S. B. & Iwantsch, G. F. Host regulation by insect parasitoids. The Quarterly Review of Biology[J].1980,55(6):143-165.
    124. Vinson, S. B. et al. Source of possible host regulatory factors in Cardiochiles nigriceps (Hymenoptera:Braconidae) [J].Arch. Insect Biochem. Physiol.1994.26:197-209.
    125. Vinson, S. B. How parasitoids deal with the immune system of their host:An overview[J]. Arch. Insect Biochem. Physiol.1990,13:3-27.
    126. Vinson, S. B. The behavior of parasitoids. In G. A. Kerkut & L.I. Gilber eds. Comprehensive insect physiology, Biochemistry and pharmacology,1985,Vol.9. Pergamon Press, New York.
    127. Von Brand, T. Pathophysiology of the host. Biochemistry and Physiology of Endoparasites, 1979, pp.321-390. Elsevier/north Holland Biomedical Press, Amsterdam.
    128. Wago, H. & Kitano, H. Immunity of Insects and other arthopods. Gupta, A. P. ed. 1991,215-235.
    129. Wani, M., Yagi, S., Tanaka, T. Synergistic effect of venom, calyx and teratocytes of Apanteles kariyai on the inhibiton of the larval-pupal ecdysis of the host, Pdeudaletia separata[J].Entomol. Exp. Appl.1990,57:101-104.
    130. Webb, B. A., Beckage, N. E.,Hayakawa, Y.et al. Polydnaviridae. In:Van Regenmortel MHV,et al.(Eds), Virus taxonomy:classification and nomenclature of viruses. Academic Press, San Diego. CA, PP.2000,253-259.
    131. Webb, B. A. & Summers, M. D. Stimulation of polydnavirus replication by 20-hydroxy-ecdysone[J]. Experientia.1993,42:1018-1022.
    132. Webb. B. A., Summers, M. D. Venom and viral expression products of endoparasite wasp Campoletis sonorensis share epitopes and related sequence[J]. Proc. Natl. Acad. Sci. USA,1990,87:4961-4965.
    133. Zhang, D.,Dahlman, D. L. Microplitis croceipes tertocytes cause developmental arrest of Heliothis virescens larves[J]. Archives of insect Biochemistry and physiology,1989,12:51-61
    134. Zoebe lein, G.,Honigtauals Nahrung, Insekten [J] 1Zeitsch rift fur angewandte Entonologie,1956,38:369-4161.
    135.白素芬,陈学新,叶恭银.畸形细胞对寄生蜂及其寄主的生理作用[J].中国生物治,2003,19(1):35-39.
    136.白素芬.菜蛾盘绒茧蜂调控寄主小菜蛾的生理机制研究[D].浙江大学.博士学位论文.2003.
    137.包杨斌.淡足侧沟茧蜂寄主选择行为及其机理初探[D].扬州大学,硕十学位论文.2009.
    138.程桂芳,张爱清,郭明华.利用昆虫病原线虫防治蔗扁蛾的研究[J].植物保护,1995,219(5):17-19.
    139.狄蕊.菜蛾盘绒茧蜂PDV对小菜蛾幼虫生长发育和免疫系统的影响[D].浙江大学,硕十学位论文.2006.
    140.董钧锋,王琛柱,钦俊德.昆虫性比失调因子及其作用机理[J].昆虫知识,2001,38(3):173-176.
    141.董秋安.亚洲玉米螟Ostrinia furnacalis幼虫对外源物的免疫应激机制研究[D].扬州大学.硕士学位论文.2009.
    142.方改霞,郭玉莲,廖春丽等.正交旋转回归法优化-胡萝卜素发酵培养基[J].河南工业大学学报(自然科学版),2008,29(2):71-73.
    143.冯从经.亚洲玉米螟(Ostrinia furnacalis Guenee)与腰带长体茧蜂(Macrocentrus cingulum Brischke)寄生体系中酚氧化酶原的研究:生理功能,纯化,性质和分子克隆[D].中国科学院上海生命科学院植物生理生态研究所,博十学位论文.2004.
    144.冯慧.昆虫生物化学分析法[M].北京:农业出版社,1989.
    145.甘明.日本柄瘤蚜茧蜂的寄生对黑豆蚜的发育和生化代谢的影响的研究[D].中国科学院上海生命科学研究院植物生理生态研究所.博十学位论文,2002.
    146.高九思,张冠霞,张建林等.影响甜菜夜蛾发生程度原因探析及预测模式研究[A].华中三省(湖北、湖南、河南)昆虫学会2008年学术年会论文集,2008,中国昆虫学会.
    147.高艳.玉米诱导抗虫性对甜菜夜蛾和淡足侧沟茧蜂相关生理行为的影响[D],中国农业科学院.硕十学位论文.2006.
    148.弓建国.利用正交旋转组合法优化平菇培养基研究[J].北方园艺,2010,(3):168-170.
    149.何丽芬,邱洪贵,符文俊等.影响松毛虫赤眼蜂性比的因素[J].昆虫在敌,1990,12(2): 66-70.
    150.侯照远,严福顺.寄生蜂寄主选择行为研究进展[J].昆虫学报.,1997.40(1):94-107.
    151.候建坤,潘云枫.防治甜菜夜蛾的几种药剂应用研究[J].上海农业科技,2006(2)132-133.
    152.胡建.腰带长体茧蜂抵御其寄主亚洲玉米螟细胞免疫反应的机理研究[D].中国科学院上海生命科学院植物生理生态研究所,硕士学位论文.2003.
    153.黄芳.半闭弯尾姬蜂调控寄主小菜蛾的生理机制研究[D].浙江大学,博十学位论文.2009.
    154.姬国红.甘肃省两种昆虫病原线虫对菜青虫和黄粉虫保护酶活力影响的研究[D].甘肃农业大学,硕士学位论文.2009.
    155.吉训聪,岳建军,陈海燕等.4种甜菜夜蛾性诱剂大田诱捕效果比较[J].长江蔬菜,2010(18):22-24.
    156.季香云,蒋杰贤,万年峰.生物因子对淡足侧沟茧蜂寄生的影响[J].长江蔬菜,2010,(18):1-3.
    157.江幸福,罗礼智,李克斌等.温度对甜菜夜蛾飞行能力的影响[J].昆虫学报,2002,45(2):275-278.
    158.江幸福,罗礼智.甜菜夜蛾暴发原因及防治对策[J].植物保护,1999,3(25):32-34.
    159.蒋杰贤,胡颂平,季香云.甜菜夜蛾核型多角体病毒对宿主种群的控制作用[J].植物保护学报,2004,31(4):383-389.
    160.蒋杰贤,梁广文,庞雄飞.斜纹夜蛾核型多角体病毒对宿主种群增长的影响[J].植物保护学报,2000,27(2):146-150.
    161.蒋杰贤,王冬生,曾爱平等.温度对甜菜夜蛾核型多角体病毒流行的影响[J].生态学报,2004,24(8):1726-1733.
    162.蒋杰贤,王奎武,蒋祝瑞.斜纹夜蛾侧沟茧蜂生态学特性及寄生对寄主发育和取食的影响[J].上海交通大学学报,2003,21(2):125-130.
    163.蒋杰贤,朱亚芳,万年峰.斜纹夜蛾核型多角体病毒对宿主子代的弱化作用[J].华中农业大学学报,2011,30(5):599-603.
    164.李季生,夏爱华,高绘菊等.蝇蛆寄生对家蚕血细胞和酚氧化酶活性的影响[J].蚕业科学,2006,32(2):268-271.
    165.李建成,路子云,买买提.牙生.温度和补充营养对中红侧沟茧蜂成虫寿命的影响[J].河 北农业科学,2005,9(1):6-9.
    166.李建成.中红侧沟茧蜂生物学特性及在新疆棉田释放对棉铃虫的控制效果研究[D].中国农业大学.博士学位论文.2005.
    167.李文香,王十军,路子云等.中红侧沟茧蜂寄生对寄主粘虫血淋巴糖类、脂类和蛋白质含量的影响[J].昆虫学报,2011,54(1):34-40.
    168.李欣,崔莉,白素芬.内寄生蜂对寄主小菜蛾发育的调控能力研究[J].河南农业大学学报,2005,39:308-312.
    169.李永.腰带长体茧蜂毒液和卵巢蛋白对寄主免疫反应的抑制[D].中国科学院上海生命科学院植物生理生态研究所.博十学位论文.2007.
    170.李远喜,戴华国,姜金林等.赤眼蜂寄生对亚洲玉米螟卵内蛋白质变化的影响[J].中国生物防治,2004,20(4):243-247.
    171.郦卫弟,黄芳,陈亚锋,陈学新.颈双缘姬蜂毒液对寄主小菜蛾的免疫抑制作用[J].昆虫学报,2006,49(2):206-212.
    172.林珠凤,罗礼智,潘贤丽.杀虫剂使用失当是甜菜夜蛾大发生的重要原因[J].昆虫知识,2007,44(3):327-332.
    173.林珠凤.淡足侧沟茧蜂(?)(?)icroplitis pallidipes生物学及其利用的初步研究.硕十学位论文.华南热带农业大学.2006.
    174.刘奎,林健荣,符悦冠等.椰扁甲啮小蜂寄生对椰心叶甲蛹免疫反应的影响[J].昆虫学报,2008,51(10):1011-1016.
    175.刘树生,江丽辉,李月红.寄生蜂成虫在寄主搜索过程中的学习行为[J].昆虫学报,2003,46(2)228-236.
    176.刘树生.蚜茧蜂的生物学和生态学特性[J].生物防治通报,1989,5(3):129-133.
    177.刘万学,万方浩.棉铃虫齿唇姬蜂寄主识别行为的研究[J].中国生物防治,2007,23(3):201-204.
    178.刘小伙,张青文,李建成等.寄主大小对中红侧沟茧蜂产卵和发育的影响[J].中国生物防治,2004,20(2):110-113.
    179.刘效明,凌万开,熊桂和.甜菜夜蛾生物学特性及防治技术[J].植物保护,1995,(6):29-30.
    180.娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制[J].生态学报,2000,20(6):1097-1106.
    181.陆剑锋.腰带长体虫蜂的寄生行为及寄主亚洲玉米螟细胞免疫机制[D].中國科学院上海生命科学院植物生理生态研究所.博十学位论文.2005.
    182.陆小军,董易之,郑常格等.甜菜夜蛾天敌的研究进展[J].仲恺农业技术学院学报,2004,17(2):68-73.
    183.陆致平,谢贻格.甜菜夜蛾的发生规律及其防治研究[M].中国植物保护研究进展,北京:中国科技出版社,1995.
    184.吕慧平,蔡俊,叶恭银等.寄生对越冬代菜粉蝶血淋巴中蛋白质和糖来代谢的影响[J].浙江大学学报(农业与生命科学版),2000,26(6):611-615.
    185.罗开珺.茧蜂—斜纹夜蛾—杆状病毒相互关系的研究[D].中山大学,博士学位论文.2006.
    186.罗志良,戴开甲.侧沟茧蜂应用研究的新进展[J].昆虫知识,1998,35(5):293-296.
    187.马骏,柏连阳,陈永年.甜菜夜蛾生态学特性研究[J].植物保护学报,2000,27(3):215-220.
    ]88.潘健,余虹,陈学新.寄生蜂毒液的研究概况[J].中国生物防治,2004,20(3):150-155.
    189.秦启联,龚和,丁翠.中红侧沟茧蜂雌蜂输卵管萼中病毒样纤丝的特征和功能[J].昆虫学报,2001,44(2):170-175.
    190.秦启联,李馨,丁翠.粘虫受中红侧沟茧蜂寄生后的生理变化[J].应用与环境生物学报,2000,6(6):554-559.
    191.秦启联,王方海,龚和..畸形细胞在协调寄生蜂同其寄主相互关系中的作用[J].昆虫学报,1999,42(4):431-438.
    192.秦启联,王金耀,徐世新等.影响中红侧沟茧蜂后代性比的因素[J].中国生物防治,2001,17(4):155-158.
    193.任丹青,邱鸿贵,茅洪新等.啮小蜂毒液对寄主亚洲玉米螟蛹发育的影响[J].昆虫知识,2004,41(4):341-344.
    194.宋晓君,陈青,覃伟权等.叶甲截脉姬小蜂寄生对椰心叶甲幼虫体内几种酶活性的影响[J].热带作物学报,2009(5):699-703.
    195.苏建伟,肖能文,戈峰.昆虫性信息素在害虫种群监测和大量诱捕中的应用与讨论[J].植物保护,2005,31(5):78-82.
    196.孙永超,高燕,张中润等.寄主及寄主食物对雅脊金小蜂子代性比、体型和翅型的影响 [J].昆虫知识,2009,46(5)749-755.
    197.唐启义,冯明光.DPS数据处理系统[M].北京:科学出版社,2006,159-170.
    198.干德安,王金耀,陈红印.侧沟茧蜂繁蜂器的研制及操作规程[J].中国生物防治,2001,17 (1):43-44.
    199.王金耀,屈振刚.寄主L期和温度对管侧沟茧蜂寄生的影响[J].中国生物防治,2005,21(2):85-87.
    200.王开运,姜兴印,仪美芹.甜菜夜蛾抗药性及其机理[J].植物保护学报,2002,29(3):229-234.
    201.王奎武,蒋杰贤,游兰韶等.斜纹夜蛾侧沟茧蜂对寄主龄期的选择[J].湖南农业大学学报(自然科学版),2001,27(5):367-369.
    202.吴世吕,顾言真,沈忠良等.试论小菜蛾对酰基脲杀虫剂的抗性[J].上海蔬菜.,1995,22(1):95-97.
    203.徐洁莲,杨广球.斜纹夜蛾侧沟茧蜂生物学特性观察[J].昆虫天敌,1983,5(1):12-13.
    204.徐亚玲,李文楚.昆虫酚氧化酶作用寄主的研究进展[J].安徽农业科学,2010,38(27):14844-14846.
    205.许红兵,陈正耀.昆虫体液免疫中的抗菌物质[J].昆虫知识,1999,36(5):316-319.
    206.杨宝山,曹兰娟,李俊等.甜菜夜蛾及其防治的研究进展[J].安徽农业科学,2006,34(14):3418-3419.
    207.杨艳艳.菜蛾盘绒茧蜂寄生对小菜蛾幼虫生长发育及内分泌活动的影响[D].浙江大学,硕士学位论文.2010.
    208.尹丽红,王琛柱,钦俊德.多分DNA病毒及其在寄生蜂与寄主关系中的作用[J].昆虫学报,2011,44(1):109-118.
    209.曾爱平,季香云,蒋杰贤等.淡足侧沟茧蜂对甜菜夜蛾和斜纹夜蛾的寄生选择性研究[J]环境昆虫学报,2010,32(3):388-391.
    210.曾爱平,蒋杰贤,季香云.甜菜夜蛾被淡足侧沟茧蜂寄生后的生理变化[J].中国农学通报,2010,26(8):216-220.
    211.曾爱平,王奎武,蒋杰贤等.淡足侧沟茧蜂生物学特性研究[J].湖南农业大学学报(自然科学版),2005,31(5)502-505.
    212.曾爱平.淡足侧沟茧蜂生物学及其对甜菜夜蛾的控制研究[D].湖南农业大学,博十学位论文.2005.
    213.张博,冯素芳,黄露等.斑痣悬茧蜂的寄主辨别能力及其影响因素[J].昆虫学报,2011,54(12):1391-1398.
    214.张焘.丽蝇蛹集金小蜂毒液性质及其寄主的生理学校应[D].浙江大学,硕十学位论文.2003.
    215.张倩倩.蝶蛹金小蜂寄生对菜粉蝶蛹细胞免于与生理代谢的影响[D].浙江大学,硕十学位论文.2009.
    216.张小丽,陆佩玲,杨益众.甜菜夜蛾的生物防治及其展望[J].昆虫天敌,2006,28(4):168-173.
    217.张芸,钱秀娟,姬国红等.夜蛾斯氏线虫对黄粉虫三种保护酶活力的影响[J].甘肃农业大学学报,2010,45(5):88-91.
    218.张忠,叶恭银,王洪祥等.蝶蛹金小蜂寄生对菜粉蝶和玉带凤蝶蛹血细胞数量和组成的影响[J].植物保护学报,2005,32(2):158-162.
    219.朱树勋,司升云,邹丰等.昆虫生长调节剂—卡死克(cascade)对几种寄生天敌效应的研究[J].昆虫知识,1996,33(2):82-85.
    220.朱亚芳.斜纹夜蛾核型多角体并度在宿主种群中的传播研究[D].扬州大学,硕十学位论文.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700