用户名: 密码: 验证码:
薄膜抛光过程仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区别于传统的游离抛光及布基或砂带抛光,研磨抛光膜是采用耐水、耐高温并具备一定弹性和强度的高分子材料作为抛光膜的基体,将AL_2O_3或金刚石粉末与聚酰亚胺等高分子材料混合并涂附于基体的一种新型抛光工具。采用研磨抛光膜进行精密、超精密表面加工,具有效率高和绿色加工等优点。随着现代高科技的发展,具有优良性能的硬脆材料的超精密加工技术已经成为普遍关注的焦点,抛光膜在光学仪器、磁性及电子元器件等精密加工制造领域具有广泛的应用前景,建立基于Internet的薄膜抛光过程仿真系统对面向加工精度要求选择合理抛光膜具有很大的理论和实际意义。
     本文采用极大似然估计及离散数学分析表面磨粒以及形貌的分布规律,总结出不同粒径的磨料露出高度期望值与方差磨料粒径的正态分布曲线,并通过计算机,运用.Net Framework技术实现了基于Internet的表面形貌以及粗糙度仿真。同时,通过与薄膜抛光加工实际被加工工件表面形貌及粗糙度对比,验证了数学模型的有效性。
     本文选用硼硅玻璃、硅片、钨钴合金等不同硬度的硬脆材料作为抛光对象,在自制的抛光机平台上以纯净水作为冷却液,采用不同抛光速度,用不同磨料粒度和磨料类型的抛光膜进行抛光实验。根据实验测得的结果,分析材料实际抛光精度与抛光膜磨料粒度、磨料类型、抛光速度、抛光压力以及抛光时间等参数之间的关系,确定不同硬度材料经薄膜抛光加工所能达到的最大精度以及其加工过程的最优参数。采用SQL Server建立抛光参数数据库,利用大量的实验数据,运用模糊查询及条件检索原理,建立一个薄膜抛光优选参数查询数据库,开发出薄膜抛光数据库工艺参数简易查询系统。该系统可使客户在最短的时间了解薄膜抛光加工所能达到的加工精度以及整个加工过程所需要的工艺参数,减少加工成本,提高生产效率。
Differing from traditional dissociation polishing and cloth base or sand belt polishing, the grinding polishing film is a new-style polishing tool with a macromolecule material mixture of AL2O3, diamond powder and imides smeared onto the base. And its base is made of a macromolecule material, which is water-fast and high-temperature-resistant, and also has some flexibility and intensity. Finish machining or super finish machining surface with grinding polishing film have many merits, such as high efficiency, green and so on. With the high-tech development of modern times, the super finish machining technique for the rigidity and brittleness material with good capability has been a focus of extensive attention. Polishing film has a widely applied foreground in finish machining field of optic instrument, magnetism and electronic component and so on. Setting up a film polishing emulation system, which bases on Internet, has great theoretic and practical significance for choosing a reasonable polishing film according to the machining precision demand.
    In this article, we use maximal similar estimate and dispersion math to analyze the distributing rule of the grinding grain and appearance on the surface. And we summarize the normal school curve of height expectation and square difference of different grinding grain diameters. Utilizing Net Framework technique, we realize the surface appearance and roughness emulation basing on the Internet. At the same time, comparing the surface appearance and roughness of the actual workpiece with the emulation effect after film polishing machining, the validity of math model is validated.
    In this article, we choose the rigidity and brittleness materials with different rigidity such as boric silicon glass, silicon piece, tungsten cobalt alloy and other materials as the polished objects. And we choose pure water as the coolant when we do polishing experiment in different polishing speed and with polishing film of different grinding grain granularity and grain type on homemade polishing machine. According to the result gained in the experiment, we analyze the relation between the actual polishing precision and the parameters such as grinding grain granularity, type,
引文
[1] 袁哲俊,王先速,精密和超精密加工技术,机械工业出版社,1999:2~8
    [2] H. K. Tonshoff, R. Egger. Fine Grinding Can Replace Lapping for a Superior Finish. Manufacturing Engineering. 1998, 120(2): 52~59
    [3] 杨建东,朱艳秋,任长根,王立江,机械密封研磨磨具均匀磨损探讨.农业机械学报,1998,29(1):108~112
    [4] 姜文学,超精研抛技术,北京,国防工业出版社,1988
    [5] Malik F, Hasan M. Manufacturability of the CMP process [J]. Thin SolidFilms, 1995,270:612-615.
    [6] Jairath R, Farkas J, Huang CK, etal. Chemical-mechanical polishing: process manufacturability[J]. SolidStateTechnology,1994,7:71-75.
    [7] Steigermald, Murarka S P, Gutmann RJ. Chemical mechanical planarization of microelectronic materials [M]. New York: A Wiley-Interscience Publication, John Wiley & Sons, Inc, USA, 1996.324.
    [8] Kaufman F B, Thompson D B, Broabie R E, etal. Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects [J]. JElectrochem Soc, 1991, 138(11):3460-3464.
    [9] Sivaram S, Bath H, Leggett R, etal. Planarizing interlevel dielectrics by chemical-mechanical polishing [J]. Solid State Technology, 1992, 5:87-91.
    [10] 董志义,CMP设备市场及技术现状[J].电子工业专用设备,2000,29(4):11-18.
    [11] Jairath. Linear planarization for CMP [J]. Solid State Technology, 1996, 39(10): 107.
    [12] 科莱恩(法国)公司,铜基材料表层的机械化学抛光方法,CN,1244033A(2000).
    [13] 卡伯特公司,金属层用的化学机械抛光淤浆[P].CN,1166805A(1997).
    [14] 摩托罗拉公司,用于铜的化学机械抛光(CMP)浆液以及用于集成电路制造的方法[P].CN,1223308A(1999).
    [15] Stein D J, Hetherington D L, Cecchi J L. Investigation of the kinetics of tungsten chemical mechanical polishing in potassium iodate-based slurries [J]. J Electrochem Soc, 1999, 146(1):376-381.
    [16] Jindal A, Hegde S, Babu S V. Chemical mechanical polishing using mixed abrasive slurries [J]. Electrochem Solid State Letters, 2002, 5(7):G48-G50.
    [17] Mazaheri A R, Ahmadi G. Modeling the effect of bumpy abrasive particles on chemical mechanical polishing [J]. JE lectrochem Soc, 2002,149(7):G370
    [18] Basim G B, Adler J J, Mahajan U, etal. Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects[J]. JElecrochem Soc,2000,147(9):3523-3528.
    [19] Mullany B, Byrne G. The effect of slurry viscosity on chemical-mechanical polishing of silicon wafers [J]. JMater Proc Tech, 2003,132:28-34.
    [20] Bajaj R, Zutshi A, Surana R, etal. Integration challenges for CMP of coppe r[J]. MRS Bulletin, 2002, 27(10):776-778.
    [21] John Schuler. Technology and market for CMP [C]. SEMICON China 99 Technical Symposium, Beijing, China, 17-18,1999:0-1 -6.
    [22] Shi E G, Zhao B. Modeling of chemical-mechanical polishing with soft pads [J]. Applied Physics A, 1998, 67:249-252.
    [23] Ali I, Roy S, Shinn G. Chemical-mechanical polishing of interlayer dielectric: Areview [J]. Solid State Technol, 1994, 37(10):63.
    [24] Stavreva Z, Zeidler D, Plotner M, etal. Characteristics in chemical-mechanical polishing of copper: comparison of polishing pads [J]. Appl Surf Sci, 1997, 108:39-44.
    [25] Thakurta D G, Borst C L, Schwendeman D W, etal. Padporosity, compressibility and slurry delivery effects in chemical-mechanical planarization: modeling andexperiments [J]. Thin Solid Films, 2000, 366(l-2):181-190.
    [26] Sikder A K, Irfan I M, Belyave A, etal. Evaluation of mechanical and tribological behavior, and surface characteristics of CMP pads [C]. Materials Research Society Symposium-Proceedings v 671 Aprl8-202001, 2001 Materials Research Society, pM1.8.1-M1.8.70272-9172.
    [27] Seiichi Kondo. Abrasive free polishing for copper damascene interconnection [J], J Electrochem Soc, 2000, 147(10):3907.
    [28] Thomas Laursen, Malcolm Grief. Characterization and optimization of copper chemical mechanical planarization [J]. J Electronic Mater,2002,31(10):1059.
    [29] Tain Y., Kawata K. Development of High-Efficiency Fine Finishing Process Using Magnetic Fluid. Annals of the CIRP, 1984,33:217-220.
    [30] Niikura Y Saito H, Oshio T, Hanaoka T. Float Polishing Using Magnetic Fluid with Abrasive Grains. Proc 6th Intl Conf Prod Eng, Osaka, 1987.335—340.
    [31] Suzuki H, Kodera S, Hara S, Matsunaga H, Kurobe T. Magnetic field-assisted polishing : application to acurved surface. Prec Eng, 1989, 4:197—202.
    [32] Umehara N. Magnetic Fluid Grinding-A New Technique for Finishing Advanced Ceramics. Annals of the CIRP, 1994, 43:185—188.
    [33] Golini D, Pollicove H, Platt G, Jacobs S, Kordonski W. Computer control makes asphe reproduction run of the mill. Laser Focus World, 1995, 83—86.
    [34] Jacobs S D, Golini D, Hsu Y, Puchebner B E, Strafford D, Kordonski WmI, Prokhorov I V, Fess E ,Pietrowski D, Kordonski V M. Magnetorheological finishing: adeterministic process for optics manufacturing. Proc S P I E, 1995, 2576:372—382.
    [35] Kordonski Wm I, Jacobs S D. Magnetorheological Finishing. International Journal of Modern Physics B, 1996,10:2837-2848.
    [36] Golini D, Jacobs S D, Kordonski W I, Dumas P. Precision Optics Fabrication Using Magnetorheological Finishing. To be published in Proc S P I E, CR67: Advanced Materials for Optics and Precision Structures, Edited by Ealey, Paquin, and Parsonage, San Diego, CA, 26Julyl997.
    [37] Jacobs S D, Yang Fuqian, Fess E M, Feingold J B, Gillman B E, Kordonski W I, Edwards H, Golini D. Magnetorheological Finishing of IR Materials. Proc SPIE, 1997, 3134:258-269.
    
    [38] Mvan F. Diamond and Related Materials, 2000, (9):925-928.
    [39] Gloor S, Luthy W, Weber H Petal. Appl Surface Science, 1999,138-139:135-139
    [40] Cappelli E, Mateo G, Orlado Setal. Diamond and Related Materials, 1999, (8):257~261.
    [41] Pimenov S M, Kononenko V V, Ralccchenko V G etal. Appl Phys, 1999, A69:81~88.
    [42] Udrea M, Orun H, Alaccakir A. Opt Wngng, 2001, 40(9):2026.
    [43] Folwaczny, Mehl A, Haffner C etal. Dent Mater, 1998, 14:186.
    [44] Wallace J. Laser Focus Word, 1999(7):37-38.
    [45] Liu Z Q, Feng Y, Yi X S. Appl Surface Science, 2000, 165:303.
    [46] 《光学零件工艺手册》编写组.光学零件工艺手册国防工业出版社,1977:214 215
    [47] 杨建东.固着磨料超精密高速研磨的理论与实验研究.吉林工业大学博士论文.1998:10
    [48] National Research Council. Unit manufacturing processes. National Academy Press. Washington, D. C., 1995
    [49] NGM office. Next—Generation Manufacturing. 1997, 1
    [50] 游景玉.论仿真技术在知识经济发展中的地位.系统仿真学报,2001,1
    [51] 万军鹏等,浅谈硼硅玻璃的应用现状和发展趋势,全国性建材科技期刊,2004(5)
    [52] S. L. Chao and A. D. Schnur, Applied Optics,1984,23:2115
    [53] F. Preston, J. Soc. GlassTechnol,11,247(1927)
    [54] 张红霞等,定偏心锡磨盘超精密平面抛光均匀去除模拟计算(1),光学精密工程,1998(2)
    [55] 张红霞等,定偏心锡磨盘超精密抛光均匀去除模拟计算,航空精密制造技术,1998(5)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700