用户名: 密码: 验证码:
氟对蜈蚣草去除地下水中砷的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,饮水型地方性砷中毒已成为一个世界性的环境问题。因此,高砷地下水的治理技术是广大学者关注的焦点之一。高砷地下水中往往存在着砷-氟共存的现象,研究氟对砷去除效果的影响对于高砷水的治理有着重要的意义。蜈蚣草是一种砷的超累积植物,能够快速有效地环境介质中的砷。本文在水培条件下,研究蜈蚣草的砷累积性和除砷过程中砷形态的变化以及氟对蜈蚣草除砷的影响。
     在不同培养时间下,蜈蚣草对水中不同形态砷的累积性不同。暴露在4.3 mg/L的AsⅤ溶液中1天后,蜈蚣草根部的砷累积浓度略高于叶部的砷累积浓度,转移系数为仅为0.81。AsⅤ处理16天后蜈蚣草中砷累积转移系数为2.83,而As(Ⅲ)处理16天后蜈蚣草中砷累积转移系数为4.96。
     砷-氟共存条件下,初始砷浓度相同,F-浓度不同时对蜈蚣草除砷的影响不同。在去离子水中AsⅤ初始浓度为5 mg/L,共存F-浓度为1 mmol/L时,F-对蜈蚣草累积砷产生一定的抑制作用,且植物体内砷转移系数有所降低。但当共存F-浓度为4 mg/L和6 mg/L时,却比F-浓度为0 mg/L,1 mg/L和2 mg/L的累积浓度高。
     蜈蚣草去除离子水和营养液中砷时,溶液中AsⅤ基本不发生还原作用,但是As(Ⅲ)在去离子水和营养液中分别在试验后4天和6天全部氧化为AsⅤ。F-浓度对As(Ⅲ)的氧化过程没有显著影响。蜈蚣草与As(Ⅲ)处理中,溶液中AsⅤ浓度随着时间的变化而变化:去离子水中,试验后6天AsⅤ浓度达到了最大值;营养液中,实验后4天AsⅤ浓度达到了最大值,之后慢慢减少。
     砷-氟共存时,蜈蚣草叶部和根茎部中不同形态的砷累积浓度均表现为:叶部主要为A(sⅢ),占总砷的60.41%~76.9%;根茎部主要为A(sⅤ),占总砷的68.49%~85.99%。共存F-对蜈蚣草体内不同形态砷的分布没有显著影响。
     由页岩陶粒、沸石、石英砂和蜈蚣草构建的小型人工湿地除砷过程中,基质在系统运行的初期对水中砷起到一定的拦截作用,系统运行稳定后主要是蜈蚣草去除水中的砷。当进水As(Ⅲ)浓度为1 mg/L,单个系统稳定后的除砷率在7%左右,而两柱串联后的去除率在22.2%~66.6%之间,最后稳定在33%左右,高于单个系统的除砷率。
In recent years, endemic arsenism due to drinking high arsenic groundwater hasbecome a worldwide environmental issue. As a result, arsenic removal technologies fromgroundwater have become the focus of environmental scientists. There were both arsenicand fluoride in groundwater in many countries and regions in the world. It was importantto study effects of fluoride on arsenic removal from groundwater during high arsenicgroundwater remediation. Pteris vittata was an arsenic hyperaccumulator and couldremove arsenic from environmental media fastly and effectively. In the paper, Pterisvittata was grown hydroponically to study its arsenic accumulation in plants, its variationin arsenic species and effects of fluoride on arsenic removal during the process ofuptaking arsenic.
     Arsenic accumulation in Pteris vittata was different when incubation time and theinitial arsenic species were different. One day after exposure to 4.3 mg/L of As(V),arsenic concentration accumulated in roots was slightly higher than that of fronds. Thetransfer factor was only 0.81. Sixteen days after exposure to about 5 mg/L of AsⅤandAs (Ⅲ), the transfer factor was 4.96 and 2.83, respectively.
     When F-concentration was different, fluoride had different effects on arsenicremoval from groundwater. The experiment results indicated that 1 mmol/L F-suppressedarsenic accumulation by Pteris vittata. When Pteris vittata was hydroponically exposedto As(Ⅲ) or AsⅤin the presence of 4 mg/L and 6 mg/L of F-, As concentration inPteris vittata were higher than that of 0 mg/L, 1mg/L, 2mg/L. It indicated that if F-concentration was appropriate; F-would promote arsenic’s uptaking by Pteris vittata.
     Pteris vittata was incubated in deionized water or nutrient solution which containedabout 5 mg/L As(Ⅲ) or AsⅤin the presence of different concentration of F-. As (V)was not reducted in AsⅤbatches. As (Ⅲ) was transformed completely to AsⅤafter 4d in deionized water-As(Ⅲ) batches and 6 d in nutrient solution-As(Ⅲ) batches.Concentration of F-had no effect on oxidation of As(Ⅲ) to As(V). In As(Ⅲ) batches, As9(Ⅴ)concentration reached the maximum at 6 th day in de-ionized water and at 4th dayin nutrient solution. After that, the As(Ⅴ)concentration became lower.
     When arsenic and fluoride co-existed in treatement solutions, arsenic species in thefronds and roots were investigated. Results showed that As (Ⅲ) was the major species infronds, accounting for 60.4%-76.9% of total As. However, As(Ⅴ)was the major speciesin roots, accounting for 68.5%-86.0%. The concentration of F-had no significant effecton arsenic species in fronds and roots of Pteris vittata.
     During arsenic removal process in the small artificial wetlands composed of shaleceramic, zeolite, quartz sand and Pteris vittata, the natural media played the role ofarsenic removal in the early stage and Pteris vittata played the role of arsenic removalfrom water in the later stage. When As(Ⅲ) concentration in inflow was about 1 mg/L, thearsenic removal efficiency by single artificial wetland was about 7%, and the arsenicremoval ratio by two small Pteris vittata-natural medium artificial wetlands was between22.2% and 66.6%. The arsenic removal efficiency kept about 33% after the artificialwetland was stable. It was higher than that of the single artificial wetland.
引文
Adhikari A. R., Acharya K., Shanahan S. A., et al. RemoVal of nutrients and metals by constructed andnaturally created wetlands in the Las Vegas Valley, NeVada. EnVironmental monitoring and assessment,2011, 180,(1): 97-113.
    Ahmed K. M., Bhattacharya P., Hasan M. A., et al. Arsenic enrichment in groundwater of the alluVial aquifersin Bangladesh: an oVerView. Applied Geochemistry, 2004, 19,(2): 181-200.
    An J., Kim J. Y., Kim K. W., et al. Natural attenuation of arsenic in the wetland system around abandonedmining area. EnVironmental Geochemistry and Health, 2011, 33: 71-80.
    Anderson L. S. and Walsh M. M. Arsenic uptake by common marsh fern Thelypteris palustris and its potentialfor phytoremediation. Science of the total enVironment, 2007, 379,(2-3): 263-265.
    Armienta M. and SegoVia N. Arsenic and fluoride in the groundwater of Mexico. EnVironmentalGeochemistry and Health, 2008, 30,(4): 345-353.
    Belzile N. and Tessier A. Interactions between arsenic and iron oxyhydroxides in lacustrine sediments.Geochimica et Cosmochimica Acta, 1990, 54,(1): 103-109.
    Bowman R. S., Haggerty G. M. and Hudleston R. G. Sorption of nonpolar organic cmpounds, inorganiccations and inorganic oxyanions by surfactant-modified zeolites. Washington, D.C.: American ChemicanSociety, 1995, 54~56
    Bragato C., Brix H. and Malagoli M. Accumulation of nutrients and heaVy metals in Phragmitesaustralis(CaV.) Trin. ex Steudel and Bolboschoenus maritimus(L.) Palla in a constructed wetland of theVenice lagoon watershed. EnVironmental Pollution, 2006, 144,(3): 967-975.
    Busetti F., Badoer S., Cuomo M., et al. Occurrence and remoVal of potentially toxic metals and heaVy metalsin the wastewater treatment plant of Fusina (Venice, Italy). Industrial & engineering chemistry research,2005, 44,(24): 9264-9272.
    Camm G. S., Glass H. J., Bryce D. W., et al. Characterisation of a mining-related arsenic-contaminated site,Cornwall, UK. Journal of Geochemical Exploration, 2004, 82,(1): 1-15.
    Chakraborti D., Singh E. J., Das B., et al. Groundwater arsenic contamination in Manipur, one of the seVenNorth-Eastern Hill states of India: a future danger. EnVironmental geology, 2008, 56,(2): 381-390.
    Chen T., Wei C., Huang Z., et al. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation.Chinese Science Bulletin, 2002, 47,(11): 902-905.
    Das B., Rahman M. M., Nayak B., et al. Groundwater arsenic contamination, its health effects and approachfor mitigation in West Bengal, India and Bangladesh. Water Quality, Exposure and Health, 2009, 1,(1):5-21.
    Dopp E., Hartmann L., Florea A. M., et al. Uptake of inorganic and organic deriVatiVes of arsenic associatedwith induced cytotoxic and genotoxic effects in Chinese hamster oVary (CHO) cells. Toxicology andapplied pharmacology, 2004, 201,(2): 156-165.
    Elizalde-González M. P., Mattusch J., Wennrich R., et al. Uptake of arsenite and arsenate by clinoptilolite-richtuffs. Microporous and mesoporous materials, 2001, 46,(2-3): 277-286.
    Elless M. P., Poynton C. Y., Willms C. A., et al. Pilot-scale demonstration of phytofiltration for treatment ofarsenic in New Mexico drinking water. Water research, 2005, 39,(16): 3863-3872.
    Farooqi A., Firdous N., Masuda H., et al. Fluoride and Arsenic Poisoning in Ground Water of KalalanwalaArea near Lahore, Pakistan. Geochimica et Cosmochimica Acta Supplement, 2003, 67: 90.
    Farooqi A., Masuda H. and Firdous N. Toxic fluoride and arsenic contaminated groundwater in the Lahore andKasur districts, Punjab, Pakistan and possible contaminant sources. EnVironmental Pollution, 2007,145,(3): 839-849.
    Farooqi A., Masuda H., Kusakabe M., et al. Distribution of highly arsenic and fluoride contaminatedgroundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in thenatural hydrological cycle. Geochemical Journal, 2007, 41,(4): 213-234.
    Fendorf S., Michael H. A. and Van Geen A. Spatial and temporal Variations of groundwater arsenic in Southand Southeast Asia. Science, 2010, 328,(5982): 1123-1127.
    Garcia-Sanchez A., AlVarez-Ayuso E. and Rodriguez-Martin F. Sorption of As(V)by some oxyhydroxidesand clay minerals. Application to its immobilization in two polluted mining soils. Clay minerals, 2002,37,(1): 187-194.
    Garelick H., Dybowska A., Valsami-Jones E., et al. Remediation Technologies for Arsenic ContaminatedDrinking Waters (9 pp). Journal of Soils and Sediments, 2005, 5,(3): 182-190.
    Gomez M., Blarasin M. and Martínez D. Arsenic and fluoride in a loess aquifer in the central area of Argentina.EnVironmental geology, 2009, 57,(1): 143-155.
    Guan X., Zhang J., Yang X., et al. Distribution and treatment of groundwater contaminated by both fluorideand arsenic, Electric Technology and CiVil Engineering,2011: 4046-4049.
    Haggerty G. M. and Bowman R. S. Sorption of chromate and other inorganic anions by organo-zeolite.EnVironmental Science & Technology, 1994, 28,(3): 452-458.
    He Y. T. and Hering J. G. Enhancement of arsenic (III) sequestration by manganese oxides in the presence ofiron (II). Water, Air, & Soil Pollution, 2009, 203,(1): 359-368.
    Huang J. W., Poynton C. Y., Kochian L. V., et al. Phytofiltration of arsenic from drinking water usingarsenic-hyperaccumulating ferns. EnVironmental Science & Technology, 2004, 38,(12): 3412-3417.
    Hung D. Q., NekrassoVa O. and Compton R. G. Analytical methods for inorganic arsenic in water: a reView.Talanta, 2004, 64,(2): 269-277.
    Jacobs L., Keeney D. and Syers J. Arsenic sorption by soils. Soil Science Society of America Journal, 1970,34,(5): 750-754.
    Jain A., RaVen K. P. and Loeppert R. H. Arsenite and arsenate adsorption on ferrihydrite: Surface chargereduction and net OH-release stoichiometry. EnVironmental Science & Technology, 1999, 33,(8):1179-1184.
    Katsoyiannis I. A. and Katsoyiannis A. A. Arsenic and other metal contamination of groundwaters in theindustrial area of Thessaloniki, Northern Greece. EnVironmental monitoring and assessment, 2006,123,(1): 393-406.
    Kelepertsis A., Alexakis D. and Skordas K. Arsenic, antimony and other toxic elements in the drinking waterof Eastern Thessaly in Greece and its possible effects on human health. EnVironmental geology, 2006,50,(1): 76-84.
    Kertulis G., Ma L., MacDonald G., et al. Arsenic speciation and transport in Pteris Vittata L. and the effects onphosphorus in the xylem sap. EnVironmental and Experimental Botany, 2005, 54,(3): 239-247.
    Kulp T., Hoeft S., Asao M., et al. Arsenic (III) fuels anoxygenic photosynthesis in hot spring biofilms fromMono Lake, California. Science, 2008, 321,(5891): 967-970.
    Lamble K. J. and Hill S. J. Arsenic speciation in biological samples by on-line high performance liquidchromatography-microwaVe digestionhydride generation-atomic absorption spectrometry. Analyticachimica acta, 1996, 334,(3): 261-270.
    LeDuc D. L. and Terry N. Phytoremediation of toxic trace elements in soil and water. Journal of industrialmicrobiology & biotechnology, 2005, 32,(11): 514-520.
    Li Z. Chromate extraction from surfactant-modified zeolite surfaces. Journal of enVironmental quality, 1998,27,(1): 240-242.
    Lombi E., Zhao F. J., Fuhrmann M., et al. Arsenic distribution and speciation in the fronds of thehyperaccumulator Pteris Vittata. New Phytologist, 2002, 156,(2): 195-203.
    Lombi E., Zhao F. J., Fuhrmann M., et al. Arsenic distribution and speciation in the fronds of thehyperaccumulator Pteris Vittata. New Phytologist, 2002, 156,(2): 195-203.
    Lubin J. H., Freeman L. E. B. and Cantor K. P. Inorganic arsenic in drinking water: an eVolVing public healthconcern. Journal of the National Cancer Institute, 2007, 99,(12): 906-907.
    Ma L. Q., Komar K. M., Tu C., et al. A fern that hyperaccumulates arsenic. Nature, 2001, 409,(6820):579-579.
    Majzlan J., NaVrotsky A. and Schwertmann U. Thermodynamics of iron oxides: Part III. Enthalpies offormation and stability of ferrihydrite (Fe (OH) 3), schwertmannite (FeO (OH) 3/4 (SO4) 1/8), and[epsilon]-Fe2O3 1. Geochimica et Cosmochimica Acta, 2004, 68,(5): 1049-1059.
    Mandal B. K. and Suzuki K. T. Arsenic round the world: a reView. Talanta, 2002, 58,(1): 201-235.
    Manganelli A., Goso C., Guerequiz R., et al. Groundwater arsenic distribution in South-western Uruguay.EnVironmental geology, 2007, 53,(4): 827-834.
    Mathews S., Ma L. Q., Rathinasabapathi B., et al. Arsenic transformation in the growth media and biomass ofhyperaccumulator Pteris Vittata L. Bioresource Technology, 2010, 101,(21): 8024-8030.
    Mathews S., Rathinasabapathi B. and Ma L. Q. Uptake and translocation of arsenite by Pteris Vittata L.:Effects of glycerol, antimonite and silVer. EnVironmental Pollution, 2011, 159,(12): 3490-3495.
    Matschullat J. Arsenic in the geosphere--a reView. The Science of the Total EnVironment, 2000, 249,(1-3):297-312.
    Natarajan S., Stamps R. H., Ma L. Q., et al. Phytoremediation of arsenic-contaminated groundwater usingarsenic hyperaccumulator Pteris Vittata L.: Effects of frond harVesting regimes and arsenic leVels inrefill water. Journal of hazardous materials, 2011, 185,(2): 983-989.
    Nateewattana J., Trichaiyaporn S., Saouy M., et al. Monitoring of arsenic in aquatic plants, water, andsediment of wastewater treatment ponds at the Mae Moh Lignite power plant, Thailand. EnVironmentalmonitoring and assessment, 2010, 165,(1): 585-594.
    Oremland R. S. and Stolz J. F. The ecology of arsenic. Science, 2003, 300,(5621): 939-944.
    Park J., Lee J., Lee J. U., et al. Microbial effects on geochemical behaVior of arsenic in As-contaminatedsediments. Journal of Geochemical Exploration, 2006, 88,(1): 134-138.
    Pierce M. L. and Moore C. B. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Waterresearch, 1982, 16,(7): 1247-1253.
    Poynton C. Y., Huang J. W., Blaylock M. J., et al. Mechanisms of arsenic hyperaccumulation in Pteris species:root As influx and translocation. Planta, 2004, 219,(6): 1080-1088.
    Prasad M. Aquatic plants for phytotechnology. EnVironmental bioremediation technologies, Springer-Verlag,Berlin, Heidelberg, 2007: 259-274.
    RaVen K. P., Jain A. and Loeppert R. H. Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium,and adsorption enVelopes. EnVironmental Science & Technology, 1998, 32,(3): 344-349.
    Santos J. A. G., Gonzaga M. I. S. and Ma L. Q. Optimum P leVels for arsenic remoVal from contaminatedgroundwater by Pteris Vittata L. of different ages. Journal of hazardous materials, 2010, 180,(1):662-667.
    Scott M. J. and Morgan J. J. Reactions at oxide surfaces. 1. Oxidation of As(III)by synthetic birnessite.EnVironmental Science & Technology, 1995, 29,(8): 1898-1905.
    Shomar B., Müller G., Yahya A., et al. Fluorides in groundwater, soil and infused black tea and the occurrenceof dental fluorosis among school children of the Gaza strip. Journal of water and health, 2004, 2,(1): 23.
    Smedley P. and Kinniburgh D. A reView of the source, behaViour and distribution of arsenic in natural waters.Applied Geochemistry, 2002, 17,(5): 517-568.
    Song W.F., Chen X.Q., Yan M., et al.Absorption and Oxidation of Arsenite by Pteris Vittata Roots and ItsKinetics.Procedia Engineering, 2011, 18: 72–77.
    Sood A., Uniyal P. L., Prasanna R., et al. Phytoremediation Potential of Aquatic Macrophyte, Azolla. AMBIO:A Journal of the Human EnVironment, 2012, 41:122–137.
    Styblo M., Del Razo L. M., Vega L., et al. ComparatiVe toxicity of triValent and pentaValent inorganic andmethylated arsenicals in rat and human cells. ArchiVes of toxicology, 2000, 74,(6): 289-299.
    Su C. and Puls R. W. Arsenate and arsenite sorption on magnetite: Relations to groundwater arsenic treatmentusing zeroValent iron and natural attenuation. Water, Air, & Soil Pollution, 2008, 193,(1): 65-78.
    Su Y., McGrath S., Zhu Y., et al. Highly efficient xylem transport of arsenite in the arsenic hyperaccumulatorPteris Vittata. New Phytologist, 2008, 180,(2): 434-441.
    ThirunaVukkarasu O., ViraraghaVan T. and Subramanian K. Arsenic remoVal from drinking water using ironoxide-coated sand. Water, Air, & Soil Pollution, 2003, 142,(1): 95-111.
    Tu C. and Ma L. Q. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenichyperaccumulator Pteris Vittata L. EnVironmental Pollution, 2005, 135,(2): 333-340.
    Tu S. and Ma L. Comparison of arsenic and phosphate uptake and distribution in arsenic hyperaccumulatingand nonhyperaccumulating fern. Journal of plant nutrition, 2005, 27,(7): 1227-1242.
    Tu S., Ma L. Q., Fayiga A. O., et al. Phytoremediation of arsenic-contaminated groundwater by the arsenichyperaccumulating fern Pteris Vittata L. International Journal of Phytoremediation, 2004, 6,(1): 35-47.
    Tu S., Ma L., MacDonald G., et al. Effects of arsenic species and phosphorus on arsenic absorption, arsenatereduction and thiol formation in excised parts of Pteris Vittata L. EnVironmental and ExperimentalBotany, 2004, 51,(2): 121-131.
    Wang J., Zhao F. J., Meharg A. A., et al. Mechanisms of arsenic hyperaccumulation in Pteris Vittata. Uptakekinetics, interactions with phosphate, and arsenic speciation. Plant physiology, 2002, 130,(3): 1552-1561.
    Wang X., Ma L. Q., Rathinasabapathi B., et al. Uptake and translocation of arsenite and arsenate by PterisVittata L.: Effects of silicon, boron and mercury. EnVironmental and Experimental Botany, 2010, 68,(2):222-229.
    Wilkie J. A. and Hering J. G. Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbentratios and co-occurring solutes. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996, 107: 97-110.
    Wysocki R., Chery C. C., Wawrzycka D., et al. The glycerol channel Fps1p mediates the uptake of arseniteand antimonite in Saccharomyces cereVisiae. Molecular microbiology, 2001, 40,(6): 1391-1401.
    Xu H., Allard B. and GrimVall A. Influence of pH and organic substance on the adsorption of As(V)ongeologic materials. Water, Air, & Soil Pollution, 1988, 40,(3): 293-305.
    Xu X., McGrath S. and Zhao F. Rapid reduction of arsenate in the medium mediated by plant roots. NewPhytologist, 2007, 176,(3): 590-599.
    Zhang B., Zheng J. and Sharp R. Phytoremediation in Engineered Wetlands: Mechanisms and Applications.Procedia EnVironmental Sciences, 2010, 2: 1315-1325.
    Zhang G., Qu J., Liu H., et al. Preparation and eValuation of a noVel Fe–Mn binary oxide adsorbent foreffectiVe arsenite remoVal. Water research, 2007, 41,(9): 1921-1928.
    Zhao F., Ma J., Meharg A., et al. Arsenic uptake and metabolism in plants. New Phytologist, 2009, 181,(4):777-794.
    白艳,王志,樊智锋,等.壳聚糖絮凝-超滤法去除水中微量砷.膜科学与技术,2008,28(3):87-94.
    邴智武.松嫩平原地下水氟、砷的富集规律及影响因素研究:[硕士学位论文].长春:吉林大学,2009.
    陈敬军.Fe(In)负载型鳌合树脂吸附砷(V)的研究:[硕士学位论文].南昌:南昌大学,2005.
    陈丽慧,熊治廷.水体氟污染的植物修复与毒性[J].环境科学与技术,2011,34(4):60-63.
    陈同斌,黄泽春,黄宇营,等.砷超富集植物中元素的微区分布及其与砷富集的关系.科学通报,2003,48(11):1163-1168.
    陈新庆,潘丙才,潘丙军,等.新型树脂基水合氧化铁对水体中微量砷的吸附性能研究.离子交换与吸附,2007, 23(1): 16-23.
    陈云嫩,柴立元.骨炭吸附去除溶液中砷的研究.工业水处理, 2008,28(3):37-40.
    德里木拉提,刘贵安,阿不来提,等.乌苏市高砷和高氟水区分布范围与规律的调查分析.中国地方病学杂志,2006,25(1):61-63.
    付庆芫,秦毅红.无机离子交换剂除砷的研究[J].矿冶工程,1995,15(2):32-34.
    郭华明,杨素珍,沈照理,等.富砷地下水研究进展.地球科学进展,2007,22(11):1109-1117.
    郭学军,陈甫华.载铁棉纤维素吸附剂固定床去除地下水砷.化工学报,2005,56(9):1757-1764.
    韩双宝,张福存,张徽,等.中国北方高砷地下水分布特征及成因分析.中国地质,37(3):747-753.
    何薪,马腾,王焰新,等.内蒙古河套平原高砷地下水赋存环境特征.中国地质,2010,6:781-788.
    洪斌.微生物对砷的地球化学行为的影响——暨地下水砷污染机制的最新研究进展.地球科学进展,21(1):77-82.
    江喆.稀土改性沸石球对水质砷去除规律的研究:[硕士学位论文].昆明:昆明理工大学,2004.
    姜小萍.青海东部地区饮用水的现状.分析与检测,2008,5:112-113.
    焦中志.无机稀土基吸附剂对饮用水中氟、砷的吸附研究:[硕士学位论文].长春:东北师范大学,2002.
    李莉,王业耀,孟凡生.含氟地下水饮用处理技术.地下水, 2007,29(5): 85-86,142.
    李莉,王业耀,孟凡生.饮用水中砷去除技术综述.四川环境,2008,27(1):97-101.
    李树猷,郑宇,何淑敏,等.活性氧化铝去除饮水中共存砷氟的试验研究,卫生研究, 1995, 24 (2):88-91.
    李先宁,宋海亮,朱光灿,等.组合型生态浮床的动态水质净化特性.2007,28(11):2448-2452.
    李雅,PRB修复地下水中铬铅复合污染的研究:[博士学位论文].榆林:西北农林科技大学,2011.
    李英杰,年跃刚,胡社荣,等.生态浮床对河口水质的净化效果研究.中国给水排水,2008,24(11):63-67.
    李永敏,郭华明,王焰新,等。地方性水砷中毒成因、防治和研究现状.环境保护,2001,6:44-46.
    梁秀芬,许汝琪,宋原,等.呼和浩特地区饮水井中砷氟的筛查结果分析.医学动物防制,2009,25(3):328-330.
    廖晓勇,陈同斌,阎秀兰,等.提高植物修复效率的技术途径与强化措施.环境科学学报,2007,27(6):881-893
    林琦.重金属污染土壤植物修复的根际机理:[博士学位论文].杭州:浙江大学,2002.
    林艳.利用高等植物修复富营养化水体试验研究:[硕士学位论文].重庆:重庆大学,2002.
    刘超翔,胡洪营.人工复合生态床处理低浓度农村污水[J ].中国给水排水,2002,18(7):1–4.
    娄淑芳,毛峰,李红玲,等.利用稻秆去除饮用水中五价砷的研究.安徽农业科学,2008, 36 (20) : 8801 - 8802,8866.
    罗婷,景传勇.地下水砷污染形成机制研究进展.环境化学.2011,30(1):77–84.
    缪崑,王雁,彭镇华.植物对氟化物的吸收积累及抗性作用[J].东北林业大学学报,2002,30(3):100-106.
    牛凤奇,纪锐琳,朱义年,等.地下水砷污染的研究进展,广西轻工业,2007 ,4:85–86,59.
    孙桂琴.蜈蚣草人工湿地处理含砷废水的研究:[硕士学位论文].南昌:南昌大学.2007.
    唐小惠,郭华明,刘菲.富砷水环境中微生物及其环境效应的研究现状.水文地质工程地质,2008,3:104-107.
    王福禄,夏雅娟,王玉荣,等.内蒙古农村牧区改水工程氟砷含量调查分析.内蒙古医学院学报,2008,30:8-9.
    王淑勤,李蔷薇.聚硅酸氯化铝铁处理含砷废水的实验研究.化工时刊,2006,20(4) :25-27.
    王薇.生物氧化与吸附相结合处理高浓度含砷废水:[硕士学位论文].南京:南京工业大学,2006.
    王喜宽,黄增芳,赵锁志,等.河套地区盐碱化和砷氟中毒问题探讨.岩矿测试,2007,26(4):328-330.
    韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状.地球科学进展,2002,12:833-839.
    夏颖毅,李国婧,夏亦荠.植物修复技术及其遗传工程改良.中国生物工程杂志,2008,28(4):103-108.
    肖明尧,张欣,李义连,等.聚合硫酸铁去除水中砷的实验研究.安全与环境工程,2007,14 (4):49-53.
    肖细元,廖晓勇,陈同斌.等,砷、钙对蜈蚣草中金属元素吸收和转运的影响,生态学报,2003,23(8):1477-1487.
    肖细元,蜈蚣草的某些营养特性及富砷机理研究:[硕士学位论文],湖南,湖南农业大学,2003.
    辛琳琳,王锦,景传勇,等.复合吸附材料TLA的制备及其砷氟共除性能的研究[J].环境科学学报,2010,(2):375-382.
    杨天明,葛建团,韩菲.铁铝复合氧化物吸附砷氟性能实验研究.广东化工,2010(6):29-31.
    姚娟娟,高乃云,尚亚波,等.砷污染原水的应急处理工艺研究.中国给水排水,2007,23(21):15-18.
    郁梦德.空气污染与植物叶片中污染物含量的关系.中国环境科学,1981(4):42–45.
    苑宝玲,李坤林,邓临莉,等.多功能高铁酸盐去除饮用水中砷的研究.环境科学,2006,27(2):281-284.
    张斌才,不同蜈蚣草种群砷富集能力及其生理机制研究:[硕士学位论文],内蒙古:内蒙古大学,2005.
    张冬冬,肖长来,梁秀娟,等.植物修复技术在水环境污染控制中的应用.水资源保护,2010,26(1):63-65.
    张晖,周明达,张利民,等.改性沸石处理水中砷的研究.贵州化工,2006,31(2): 7-9.
    张强,丁萍,安永清,等. 2005年和2006年青海省饮用水含氟砷量调查.中国地方病学杂志,2009,39(2):63-66.
    赵安珍,徐仁扣.包铁黄砂去除水中砷的研究.环境科学与管理,2006,31(1):16-117.
    赵雅萍,王军锋,陈甫华.载铁(III)-配位体交换棉纤维素吸附剂对饮用水中砷(Ⅴ)和氟联合去除的研究.高等学校化学学报,.2003(4):643~647.
    郑凤英,李顺兴,韩爱琴,等.超富集植物蜈蚣草对水中As(III)吸附行为的研究.分析科学学报,2006,22(4):401-405.
    钟震楠.蜈蚣草去除地下水中砷的研究:[硕士学位论文].北京:中国地质大学(北京).2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700