用户名: 密码: 验证码:
微创机器人机构设计方法与主从映射策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文密切结合我国对高端治疗装备的需求,围绕手术机器人系统的若干基础理论与关键技术,以腹部微创手术为典型应用对象,开发主从一体式微创手术机器人系统样机。全文取得如下创造性成果:
     利用集成创新的概念,并结合双平行四边形机构的优点,提出了一种新型的满足微创约束的构型形式,并在运动空间/机构体积约束下,对该机构进行了优化设计。该机构已成功应用于我国首台主从式腹腔微创手术机器人“MicroHand A”中。
     为增加满足微创手术约束条件机构的多样性,结合经典Sarrus机构的运动特点,提出了一种基于相交平面的空间RCM机构综合方法。利用本方法,通过在平面内设计不同类型的串联机构,可以得到多种不同类型的新型闭环RCM机构,部分机构具有向临床应用转化的潜力。
     在机器人初始位姿优化方面,以机器人的可达性为约束条件,以全局条件数指标为优化目标,建立了一类采用添加被动关节方式实现微创约束的机器人术前位姿优化流程,并通过算例验证了所建流程的有效性。
     针对传统微创操作中存在的困难,建立了运动一致性控制、相对式运动控制和增量式控制等控制策略,实现了操作者对手术工具末端运动的直觉控制。根据上述策略的需求,进一步建立了机器人主从空间运动的映射方法和各功能的实现流程。
     在保证辅助手术的流畅性与安全性方面,设计人工干预映射策略,建立了手术工具撤离与安装时的机器人安全运动算法,并重点研究了保证电气系统安全性的手段。
     在新型微创手术机器人系统设计方面,创造性地提出了主从一体式微创机器人系统的设计概念,并对机器人各子系统进行了详细设计;此外,以对我国常见疾病的快速有效治疗为驱动,首创对实性脏器在微创条件下进行有效处理的止血切割手术方案,并完成了该新型手术操作所需的专用器械的设计。
     在实验研究方面,对系统的实时性、主从延迟、操作力、主从运动策略等性能和功能进行了测定和验证,并分别通过离体组织实验和动物实验验证了所建立微创手术机器人设计方法的有效性。
In according to the demands of the high-end treatment equipments, combiningthe basic theories and key technologies of surgical robots and taking the minimallyinvasive abdominal surgery as the typical application, a prototype of the integratedmater-slave Minimally Invasive Surgery (MIS) Robot has been developed and thefollowing contributions have been made in this dissertation.
     A novel configuration which meets the requirements of the incision positionconstrains of MIS is presented. With the optimal design under the workspace/bodyvolume ratio constraint, the system achieves optimal overall kinematic performancewith smaller size. This mechanism has been successfully applied in the master-slaveMIS robot "MicroHand A" system which is the first MIS robot in China.
     By generalizing the intersection of motion planes, that are the constitutingfeature of the classic Sarrus mechanism, a new Remote Center of Motion (RCM)mechanism type synthesis method is proposed. The basic principle of the typesynthesis method is to combine special planar mechanisms with their intersectingmotion planes free to tilt. The line of intersection passes through a fixed pointrepresenting the RCM. Several new two degrees of freedom (DoF) spatial RCMmechanisms as well as two three DoF overconstraint RCM mechanisms designedaccording to the proposed method.
     To guide the initial set-up of the robot before surgery, an optimization processfor MIS Robots with two passive joints is established. The pose of the robot relativeto the incision and the task-space is optimized by maximizing the global conditionnumber and meeting a set of performance constraints. The calculation results verifythe effectiveness of the technique in robot-assisted MIS.
     In allusion to the existing difficulties in performing the traditional MIS, Intuitivecontrol strategy, relative motion control strategy and scaling control strategy are founded to map the motion between the master and the slave. MIS requirements aremet and problems encountered in traditional MIS are overcome. Then, the method ofestablishing the desired motion relationship between the master and the associatedslave as viewed in the image device is provided.
     To ensure the smoothness and the safety of assisting MIS, reliable and effectivemanual interventions are established. A guided tool movement algorithm is developedto guide the tool exchange during the robot-assisted MIS. Finally, the electricalsecurity is strengthened to guarantee the use of the robot.
     In the field of novel MIS robot system design, an integrated system is proposedcreatively. Master manipulators, slave manipulators, image display device, andcontrol system have been designed and integrated into a novel system. Detaileddesign of the subsystems of the system is also provided. Further, stimulated by thedemands of rapid and valid treatment of common disease in China, the bloodless cutoperation scheme for the solid organs is presented, and the dedicated instruments forperforming this operation is developed.
     Experiments have been carried out to test the function of the robot. Theseexperiments include the mapping frequency, motion delay, operation force, and thevalidation of the control strategies and the manual interventions. The tissueexperiment has also been carried out in vitro to test the proposed bloodless cut.Finally, the animal experiment is performed, and the results show that the robot cancomplete the operation well. All of these verify the effectiveness of the design methodproposed in the dissertation.
引文
[1]吕平,刘芳,戚昭恩,腹腔镜外科百年发展史[J],中华医史杂志,2001,31(4):217-220
    [2] Bernkeim B M, Organoscopy: Cystoscopy of the abdominal cavity[J], Ann. Surg,1911,53:764
    [3] Alessandrini M, Padova D, Napolitano B, et al, The Aesop robot system for video-assistedrigid endoscopic laryngosurgery[J], Eur Arch Otorhinolarygol,2008,265:1121-1123
    [4] Ghodoussi M, Butner S E, Wang Y L, Robotic surgery-the transatlantic case[C], In: Proc.2002IEEE/ICRA, Washington DC, May2002,1882-1888
    [5] Cholecystectomy[OL], Available at: http://en.wikipedia.org/wiki/Cholecystectomy
    [6] Taylor R H, A perspective on medical robotics[J], Proceedings of the IEEE,2006,94(9):1652-1664
    [7] Mitchell J H L, Diana C W, et al, The RAVEN: design and validation of a telesurgerysystem[J], The International Journal of Robotics Research,2009,28(9):1183-1197
    [8] Mitchell J H L, Diana C W, Ganesh S, Hawkeye K, etal Objective assessment oftelesurgical robot systems: Telerobotic FLS[C], In: Proceedings Medicine Meets VirtualReality (MMVR), Long Beach, CA,29Jan-1Feb,2008:263-271
    [9] Cheaper, Portable Surgical Robots Under Development[OL], Available at:http://www.medgadget.com/archives/2006/03/cheaper_portabl.html
    [10] Van D B L, Hendrix R, Rosielle N, et al, Design of a minimally invasive surgicalteleoperated master-slave system with haptic feedback[C]. In: Proceedings of the2009IEEE International Conference on Mechatronics and Automation, Aug2009,60-65.
    [11] Van D B L, Rosielle, Steinbuch M, Design of a slave robot for laparoscopic andthoracoscopic surgery[C], In: Electronic Proceedings of20thInternational Conference ofSociety for Medical Innovation and Technology,28-30Aug,2008,211-214
    [12] Medical Robotics[OL], Available at: http://www.dlr.de/rm/desktopdefault.aspx/tabid-3795
    [13] Nawrat Z, Kostka P, Polish cardio-robot ‘Robin Heart’. System description and technicalevaluation[J], Int J Med Robotics Comput Assist Surg,2006,2:36-44
    [14] Gumbs A A, Crovari F, Vidal C, Henri P, Gayet B, Modified robotic lightweightendoscope (ViKY) validation in Vivo in a porcine model[J], Surg Innov,2007,14:261-264
    [15] Wang S X, Ding J N, Yun J T, et al, A robotic system with force feedback formicro-surgery[C], In: Proceeding of the2005IEEE International Conference on Roboticsand Automation, Barcelona, Spain, April2005,199-204
    [16] Preusche C, Ortmaier T, Hirzinger G, Teleoperation concepts in minimal invasivesurgery[J], Control Engineering Practice,2002,10(11):1245-1250
    [17] Simaan N, Taylor R, Flint P, A dexterous system for laryngeal surgery[C], In: Proceedingsof the2004IEEE/ICRA, New Orieans, LA, April2004,351-357.
    [18] Hockstein N G, Nolan J P, Malley B W, et al, Robot-assisted pharyngeal and laryngealmicrosurgery: results of robotic cadaver dissection[J], Laryngoscope,2005,115(6):1003-1008
    [19] Wang S X, Yue L W, Li Q Z, et al, Conceptual design and dimensional synthesis of‘MicroHand’[J], Mechanism and Machine Theory,2008,43(9):1186-1197
    [20] Hyosig K, John T, EndoBot: a robotic assistant in minimally invasive surgeries[C], In:Proceedings of the2001IEEE/ICRA, Seoul, Korea, May2001,2:2031-2036
    [21] Ding J N, Xu Kai, Goldman R, et al, Design, Simulation and Evaluation of kinematicalternatives for insertable robotic effectors platforms in single port access surgery[C], In:Proceeding of2010IEEE/ICRA, Anchorage, Alaska, USA, May2010,1053-1058
    [22] Ho K Y, Phee S J, Shabbir A, et al, Endoscopic submucosal dissection of gastric lesionsby using a master and slave transluminal endoscopic robot (MASTER)[J],Gastrointestinal Endoscopy,2010,72(3):593-599
    [23] Harada K, Susilo E, Menciassi A, Dario P, Wireless reconfigurable modules for roboticendoluminal surgery[C], In: Proceedings of2009IEEE/ICRA, Kobe, Japan, May2009,2699-2704
    [24] Hermann R, ARTEMIS. A telemanipulator for cardiac surgery[J], Eur J Cardiothorac Surg,1999,16:106-111
    [25]王树新,周文亮,李建民,辅助微创外科手术机器人的三维力反馈主操作手[P],ZL200810154364.X,2008
    [26]王树新,罗海风,李建民,微创外科手术机器人主控数据手套[P],ZL201010031379.4,2010
    [27]王树新,丁杰男,贠今天等,具有力感觉的显微外科手术机器人控制系统[P],ZL200510016290.X,2005
    [28] Guthart G S, Salisbury J K, The intuitiveTMtelesurgery system: overview andapplication[C], In: Proceedings of2000IEEE/ICRA, San Francisco, April2000,628-621
    [29] Satava R M, Surgical robotics: the early chronicles-A personal historical perspective, In:Surgical Laparoscopy, Endoscopy&Percercutaneous Techniques[J], Lipincott Willians&Wilkins, Inc. Philadelphia,2002,12:6-16
    [30] Taylor R H, Funda J, Eldridge B, et al, A telerobotic assistant for laparoscopic surgery[J],IEEE Engineering in Medicine and Biology,1995,279-288
    [31] Miyamoto S, Sugiura M, Watanabe S, Oyama K, Development of minimally invasivesurgery systems[J], Hitachi Review,2003,52(4):189-195
    [32] Products[OL], Available at: http://www.intuitivesurgical.com/products/
    [33] da Vinci, Changing the experience of surgery[OL], Available at: http://www.davincisurgery. com/
    [34]周宁新,机器人微创外科手术探索与实践[M],北京:人民军医出版社,2010
    [35] Murphy D, Bhallacombe B, Khan M S, Dasgupta P, Robotic technology in Urology[J],Postgrad. Med. J,2006,82:743-747
    [36] Murphy D A, Miller J S, Langford D A, Endoscopic robotic mitral valve surgery[J], JThorac Cardiovasc Surg,2007,133(4):1119-1120
    [37] Morgan J A, Thornton B A, Peacock J C, et al, Does robotic technology make minimallyinvasive cardiac surgery too expensive? A hospital cost analysis of robotic andconventional techniques.1[J], J Card Surg,2005,20(3):246-251
    [38] Marescaux J, Rubino F, The Zeus robotic system: experimental and clinical application[J],Surg Clin N Am,2003,83:1305-1315
    [39] Marohn C M, Hanly E J, Twenty-first century using twenty-first century technology:surgical robotics[J], Current Surgery,2004,61(5):466-473
    [40] Marescaus J, Leroy J, Gagner M, et al, Transatlantic robot-assisted telesurgery-ATMtechnology now enables operations to be performed over huge distances[J], Nature,2001,413:379-380
    [41]王树新,李建民,张林安等,辅助微创外科手术的机器人本体系统[P],ZL200810152764.7,2008
    [42] Li J M, Wang S X, Wang X F, et al, Optimization of a novel mechanism for a minimallyinvasive surgery robot[J], Int J Med Robotics Comput Assis Surg,2010,6(1):83-90
    [43] Ballantyne G, Moll F, The da Vinci telerobotic surgical system: the virtual operative fieldand telepresence surgery[J], Surg Clin N Am,2003,83:1293-1304
    [44] Taylor R H, Stoianovici D, Medical robotics in computer-integrated surgery[J], IEEETrans. Robotics and Automation,2003,19:765-781
    [45] Mayer H, Nagy I, Knoll A, et al, the Endo[PA]R system for minimally invasive roboticsurgery[C], In: Proc.2004IEEE/RSJ Int. Conf. Intelligent Robots and System, Sendal,2004,3637-3642
    [46] Locke R C, Patel R V, Optimal remote center-of-motion location for robotic-assistedminimally invasive surgery[C], In: Proc.2007IEEE/ICRA, Roma,2007,1900-1905
    [47] Wang Y L, Uecker D R, Laby K P, et al, Apparatus for performing minimally invasivecardiac procedures with a robotic arm that has a passive joint and system which candecouple the robotic arm from the input device[P], US patent, US6905491,2005
    [48] Unger S, Unger H, Bass R, AESOP robotic arm[J], Surg Endosc,1994,8:1131
    [49]潘博,付宜利,王树国,杨宗鹏,微创条件约束下内窥镜操作机器人运动学[J],机械工程学报,2009,45(3):162-168
    [50]王树新,李建民,张林安等,一种用于辅助微创外科手术的持镜机器人系统[P],ZL200810152765.1,2008
    [51] Shi J R, Pascal M, Viviane P, et al, Preliminary results on the design of a novellaparoscopic manipulator[C], In: Proceeding of2003World Congress in Mechanism andMachine Science, Tianjin, China, Aug2003,1811-1815
    [52] Mitchell J H, Rosen J, Sinanan M N, Hannaford B, Optimization of a sphericalmechanism for a minimally invasive surgical robot: theoretical and experimentalapproaches[J], IEEE Transactions on Biomedical Engineering,2006,53(7):1440-1445
    [53] Mitchell J H, Rosen J, Sinanan M N, Hannaford B, Kinematic optimization of a sphericalmechanism for a minimally invasive surgical robot[C], In: Proceedings of the2004IEEEInternational Conference on Robotics and Automation, New Orieans,2004,829-834
    [54] Madhani A J, Niemeyer G, Salisbury J K, The Black Falcon: A teleoperated surgicalinstrument for minimally invasive surgery[C], In: Proceedings of the1998IEEE/RSJInternational Conference on Intelligent Robots and Systems, Victoria, Canada,1998,936-944
    [55] Podsedkowski L, RobIn Heart0,1, and3–mechanical construction development[J],Bulletin of the Polish Academy of Sciences, Technical Sciences,2005,53(1):79-85
    [56] Nawrat Z, Podsedkowski L, Mianowski K, et al, RobIn Heart in2002–Actual state ofPolish cardio-robot[C], Third International Workshop on Robot Motion and Control,2002,33-38
    [57]王树新,李建民,张林安等,一种用于辅助微创外科手术的机器人主动支架[P],ZL200810153717.4,2008
    [58] Li J M, Wang S X, Wang X F, et al, Development of a novel mechanism for minimallyinvasive surgery[C], In: Proceedings of the2010IEEE International Conference onRobotics and Biomimetics, Tianjin China,2010
    [59] Kim J, Lee Y J, Ko S Y, et al, Compact camera assistant robot for minimally invasivesurgery: KaLAR[C], In: Proceeding of2004IEEE/RSJ International Conference onIntelligent Robots and Systems, Sendai, Japan,28Sep-2Oct,2004,2587-2592
    [60] Simaan N, Taylor R H, Flint P, A dexterous system for laryngeal surgery[C], In:Proceedings of the2004IEEE/ICRA, New Orieans, LA,2004,351-357
    [61] Kapoor A, Simaan N, Taylor R H, Suturing in confined spaces: constrained motioncontrol of a hybrid8-DoF Robot[C], In Proceedings of the12thInternational Conferenceon Advanced Robotics,2005,452-459
    [62] Kapoor A, Xu K, Wei W, et al, Telemanipulation of snake-like robots for minimallyinvasive surgery of the upper airway[C], In: MICCAI Medical Robotics Workshop,2006
    [63] Abbott D J, Becke C, Rothstein R I, Peine W J, Design of an endoluminal NOTES roboticsystem[C], In: Proceedings of the2007IEEE/RSJ International Conference on IntelligentRobots and Systems, San Diego, USA,2007,410-416
    [64] Xu K, Goldman R E, Ding J N, Allen P K, et al, System design of an insertable roboticeffector platform for single port access (SPA) surgery[C], In: Proceedings of the2009IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA,2009,5546-5552
    [65] Hogle N J, Hu T, Allen P K, Fowler D L, Comparison of monoscopic insertable remotelycontrolled imaging device with a standard laparoscope in a porcine model[J], SurgicalInnovation,2008,15:271-276
    [66] Simaan N, Snake-like units using flexible backbones and actuation redundancy forenhanced miniaturization[C], In: IEEE/ICRA, Barcelona, Spain,2005,3012-3017
    [67] Simaan N, Xu K, Kapoor A, Wei W, et al, Design and integration of a telerobotic systemfor minimally invasive surgery of the throat[J], International Journal of Robotics Research,2009,28(9):1134-1153
    [68] Cooper T G, Surgical instrument with parallel motion mechanism[P], US Patent,US2008/0065102,2008
    [69] Larkin D Q, Cooper T G, Mohr C J, Rosa D J, Minimally invasive surgical instrumentadvancement[P], US Patent, US2008/0065104,2008
    [70] Hayashibe M, Suzuki N, Hashizume M, Konishi K, Hattori A, Robotic surgery setupsimulation with the integration of inverse-kinematics computation and medical imaging[J],Computer Methods and Programs in Biomedicine,2006,83(1):63-72
    [71] Adhami L, Maniere E C, Optimal planning for minimally invasive surgical robots[J],IEEE Transactions on Robotics and Automation,2003,19(5):854-863
    [72] Sun L W, Van M F, Schmid J, et al, Advanced da Vinci surgical system simulator forsurgeon training and operation planning[J], Int J Med Robotics Comput Assis Surg,2007,3(3):245-251
    [73] Hayashibe M, Suzuki N, Hashizume M, et al, Preoperative planning system for surgicalrobotics setup with kinematics and haptics[J], Int J Med Robotics Comput Assist Surg,2005,1(2):76-85
    [74] Zeghloul S, Blanchard B, Ayrault M, SMAR: A robot modeling and simulation system[J],Robotica,1997,15:63-73
    [75] Pashkevich A, The robomax system [OL], Available at: http://robolab.hypermart.net/robomax.htm
    [76] Hsu D, Latombe J, Sorkin S, Placing a robot manipulator amid obstacles for optimizedexecution [J], In: Proc. IEEE Int. Symp. Assembly and Task Planning,1999,258-280
    [77] Selha S, Dupont P, Howe R, Torchiana D, Dexterity optimization by port placement inrobot-assisted minimally invasive surgery[C], SPIE International Symposium onIntelligent System and Advanced Manufacturing,2002,4570:97-104
    [78] Garr M, Braxmeier, W, Endoscope[P], US Patent, US6817975,2004
    [79] Gere D, Burns C R, Stern J D, Tierney M J, Stereo imaging system and method for use intelerobotic systems[P], US Patent, US7277120,2007
    [80]代煜,张建勋,基于双路偏振影像分光的立体视觉[J],物理学报(待刊),2011
    [81] Ballantyne G H, Robotic surgery, telerobotic surgery, telepresence and telementoring[J],Surg Endosc,2002,16:1389-1402
    [82] Haptic Devices[OL], Available at: http://www.sensable.com/products-haptic-devices.htm
    [83] Massie T H, Salisbury K J, PHANToM haptic interface: a device for probing virtualobjects[J], ASME Dynamic System and Control Division,1994,55(1):295-299
    [84] Declerck G, Lenay C, The role of tactile augmentation of a phantom force feedbackdevice studied on a task of goal-directed displacement[C], In:2ndEnactiveWorkshop-Lecture Descriptions, Montreal, Canada,2006
    [85] Products[OL], Available at: http://www.forcedimension.com/products
    [86] Salisbury J K S, Madhani A J, Guthart G S, et al, Master having redundant degrees offreedom[P], US Patent, US6714839,2004
    [87] Blumenkranz S J, Rosa D J, Manipulator positioning linkage for robotic surgery[P], USPatent, US6441577,2002
    [88]王树新,李建民,张林安,李进华,一种具有自重平衡特性的力反馈型主操作手[P],ZL200910305576.8,2009
    [89] Kraft B M, Jager C, Kraft K, et al, The AESOP robot system in laparoscopic surgery:increase risk or advantage for surgeon and patent?[J], Surg Endosc,2004,18(8):1216-1223
    [90] Nowlin W C, Guthart G S, Salisbury J K, Niemeyer G D, Repositioning and reorientationof master/slave relationship in minimally invasive telesurgery[P], US Patent, US7087049,2006
    [91] Niemeyer G D, Guthart G S, Nowlin W C, et al, Camera referenced control in aminimally invasive surgical apparatus[P], US Patent, US7155315,2006
    [92] Niemeyer G D, Nowlin W C, Guthart G S, Alignment of master and slave in a minimallyinvasive surgical apparatus[P], US Patent, US6364888,2002
    [93] Wang Y L, Uecker D R, Laby K P, et al, Medical robotic system with different scalingfactors[P], US Patent, US7695481,2010
    [94] Wang Y L, Ghodoussi M, Uecker D, et al, Modularity system for computer assistedsurgery[P], US Patent US7239940,2007
    [95]李建民,王树新,张建勋等,微创手术机器人控制策略研究[J],天津大学学报(待刊),2011
    [96] Jaspers J E N, Grimbergen C A, Mechanical manipulator for intuitive control ofendoscopic instruments with seven degrees of freedom[C], In: Proceedings of2004IEEEInternational Conference on Systems, Man and Cybernetics,2004,3:2479-2485
    [97] Diks J, Jaspers J E N, Wisselink W, et al, The mechanical master-slave manipulator: aninstrument improving the performance in standardized tasks for endoscopic surgery[J],Surg Endosc,2007,21:1025-1031
    [98] Bauernschmitt R, Schirmbeck E U, Knoll A, et al, Towards robotic heart surgery:Introduction of autonomous procedures into an experimental surgical telemanipulatorsystem[J], Int J Med Robotics Comput Assist Surg,2005,1(3):74-79
    [99] Mayer H, Nagy I, Knoll A, et al, An experimental system for robotic heart surgery[C], In:18thIEEE Symposium on Computer-Based Medical Systems,2005,56-60
    [100] Zemiti N, Morel G, Ortmaier T, Bonnet N, Mechatronic design of a new robot for forcecontrol in minimally invasive surgery[J], IEEE/ASME Transactions on Mechatronics,2007,12(2):143-153
    [101] Kumar R, Berkelman P, Gupta P, et al, Preliminary experiments in cooperativehuman/robot force control for robot assisted microsurgical manipulation[C], In:Proceedings of the2000IEEE International Conference on Robotics and Automation, SanFrancisco, CA,2000,610-617
    [102] Tholey G, Desai J P, Castellanos, A E, Force feedback plays a significant role inminimally invasive surgery[J], Ann Surg,2005,241(1):102-109
    [103] Baumann R, Glauser D, Tappy D, et al, Force feedback for virtual reality based minimallyinvasive surgery simulator[J], Stud Health Technol Inform,1996,29:564-579
    [104] Macfarlane M, Rosen J, Hannaford B, et al, Force-feedback grasper helps restore sense oftouch in minimally invasive surgery[J], Journal of Gastrointestial Surgery,1999,3(3):278-285
    [105] Dhiharu I, Yusuke K, Force feedback control of robotic forceps for minimally invasivesurgery[C], In: Proceedings of the1stMediterranean Conference on Intelligent Systemand Automation,2008,1019:154-155
    [106] Available at: http://www.abb.com
    [107] Available at: http://www.sg-motoman.com.cn
    [108] Available at: http://www.fanuc.co.jp
    [109] Casadei C, Fiorini P, Martelli S, Montanari M, Improving the performance of PC-basedcontroller for robot-assisted surgery[C], In: Proceedings of the1998IEEE InternationalConference on Control Applications,1998,2:1215-1219
    [110] Berkelman P, Boidard E, Cinquin P, Troccaz Z, Control and user interface design forcompact manipulators in minimally-invasive surgery[C], In: Proceedings of2005IEEEConference on Control Applications,2005,25-30
    [111] Luo H F, Ding J N, Wang S X, A master-slave robot system for minimally invasivelaryngeal surgery[C], In: Proceedings of the2009IEEE International Conference onRobotics and Biomimetics, Guilin, China, Dec2009,782-787
    [112]付宜利,潘博,杨宗鹏,王树国,腹腔镜机器人控制系统的设计及实现[J],机器人,2008,30(4):340-345
    [113] Palep J H, Robotic assisted minimally invasive surgery[J], Journal of Minimal AccessSurgery,2009,5(1):1-7
    [114] Niemeye G D, Aspects of a control system of a minimally invasive surgical apparatus[P],US Patent, US6493608,2002
    [115]鞠浩,腹腔镜微创外科手术机器人控制系统研究[D],天津;南开大学,2009
    [116] Taylor R, Jensen P, Whitcomb L, et al, A steady-hand robotic system for microsurgicalaugmentation[J], International Journal of Robotics Research,1999,18(12):1201-1210
    [117] Kobayashi E, Masamune K, Sakuma I, et al, A new safe laparoscopic manipulator systemwith a five-bar linkage mechanism and an optical zoom[J], Computer Aidded Surgery,1999,4:182-192
    [118] Ng W S, Tan C K, On safety enhancements for medical robot[J], Reliab Engng SystSafety,1996,54(1):35-45
    [119] Lewis C, Maciejewski A A, Dexterity optimization of kinematically redundantmanipulators in the presence of joint failures[J], Int J Comput Elect Engng,1994,20(3):273-288
    [120] English J D, Maciejewski A A, Measuring of reducing the euclidspace effects of roboticjoint failure[J], IEEE Trans Robot Automat,2000,16(1):20-28
    [121] Ikuta K, Nokata M, General evaluation method of safety for human-care robots[C], In:Proceedings of the International Conference of IEEE on Robotics and Automation,Detroit, MI,1999,2065-2072
    [122] Dohi T, Hata N, Miyata K, et al, Robotics in computer aided surgery[J], Computer AiddedSurgery,1995,1(1):4-10
    [123] Tang H W, A telesurgical robot system with intuitive and direct writing interfaces for CO2laser laparoscopic surgery[D], Katholieke University Leuven, Belgium,2006
    [124] Davies B L, A discussion of safety issues for medical robot, In: Taylor R H, Lavalle S,Burdea G C, et al, Computer-Integrated surgery technology and clinical applications[M],Cambridge, MA: MIT Press,1995,287-296
    [125] Rau G, Radermacher K, Thull B, Pichler C, Aspects of an ergonomic system design of amedical worksystem, In: Taylor R H, Lavallee S, Burdea G C, et al, Computer integratedsurgery[M], Cambridge, MA, MIT Press,1996,203-221
    [126] Erbse S, Radermacher K, Anton M, Rau G, et al, Development of an automatic surgicalholding system based on ergonomic analysis, In: Troccaz J, Grimson E, Mosges R,CVRMED II and MRCAS III, lecture notes in computer science, Berlin: Springer,1997,737-746
    [127] Connolly B, Software safety goal verification using fault tree techniques: a critically IIIpatient monitoring example[C], In: Proceedings of the Forth Annual Conference onComputer Assurance, Systems Integrity, Software Safety and Process Security,1989,18-21
    [128] Hamilton D L, Visinsky M L, Bennett J K, et al, Fault tolerant algorithms andarchitectures for robotics[C], In: Proceedings of the IEEE Seventh MediterraneanElectrotechnical Conference, Antalya, Turkey,1994,3:1034-1036
    [129] Rosen J, Brown J, Chang L, et al, The Blue DRAGON–A system for measuring thekinematics and the dynamics of minimally invasive surgical tools In-Vivo[C], In:Proceedings of the2002IEEE/ICRA, Washington DC, USA,2002,11-15
    [130] Rosen J, Brown J D, Barreca M, et al, The Blue DRAGON–A system for monitoring thekinematics and dynamics of endoscopic tools in minimally invasive surgery for objectivelaparoscopic skill assessment[C], In: Studies in Health Technology andInformatics-Medicine Meets Virtual Reality, Newport Beach, CA,2002
    [131] Madhani A J, Design of teleoperated surgical instruments for minimally invasivesurgery[D], Massachusetts Institute of Technology,1998
    [132] Chiu S L, Kinematic characterization of manipulators: an approach to definingoptimality[C], In: Proceedings of1988IEEE/ICRA,1988,2:828-833
    [133] Merlet J P, Jacobian, Manipulability, Condition Number, and Accuracy of parallelrobots[J], ASME Journal of Mechanical Design,2006,128:199-206
    [134] Gosselin C M, Angeles J, A global performance index for the kinematic optimization ofrobotic manipulators[J], ASME Journal of Mechanical Design,1991,113(3):220-226
    [135] Huang T, Li M, Zhao X M, et al, Kinematic design of a reconfigurable miniature parallelkinematic machine[J], Chinese Journal of Mechanical Engineer,2003,16(1):79-82
    [136] Huang T, Li Z X, Li M, et al, Conceptual design and dimensional synthesis of a novel2-DOF translational parallel robot for pick-and-place operations[J], ASME Journal ofMechanical Design,2004,126(3):449-455
    [137] Huang T, Li M, Zhao X M, et al, Conceptual design and dimensional synthesis of a3-DOF module of TriVariant-a novel5-DOF reconfigurable hybrid robot[J], IEEETransactions on Robotics,2005,21(3):449-456
    [138] Ortmaier T J, Motion compensation in minimally invasive robotic surgery[D], TechnicalUniversity of Munich,2002
    [139] Shin W H, Ko S Y, Kim J, Kwon D S, Development of a5-DOF laparoscopic assistantrobot[J], Int J ARM,2006,7:21-28
    [140] Angeles J, Fundamentals of robotic mechanical systems, theory, methods, andalgorithms[M], Springer-Verlag,2nded., New York,2003
    [141] Carbone G, Ottaviano E, Ceccarelli M, An Optimum design procedure for both serical andparallel manipulators[J], J. Mech. Eng. Sci.,2007,221(7):829-843
    [142] Melvin W S, Needleman B J, Krause K R, et al, Computer-Enhanced vs. StandardLaparoscopic antireflux surgery[J], Journal of Gastrointestinal Surgery,2002,11-16
    [143] Nio D, Bemelman W A, Busch O R, Robot-assisted laparoscopic cholecystectomy vsconventional laparoscopic cholecystectomy, A comparative study[J], Surg Endosc,2004,18:379-382
    [144] Marescaux J, Rubino F, Robotic surgery: potentials, barriers, and limitations[J], Eur Surg,2005,37(5):279-283
    [145]黄真,赵永生,赵铁石,高等空间机构学[M],高等教育出版社,北京,2006
    [146] Ramans A D, Surgical tool with mechanical advantage[P], US Patent, US6206903,2001
    [147] Wallace D T, Julian C A, Morley T A, Baron D S, Surgical tools for use in minimallyinvasive telesurgical application[P], US Patent, US6936042,2005
    [148] Elble R, and Koller W, Tremor [M], Johns Hopkins Univ. Press, Baltimore MD,1990
    [149] Song S K, Kim W S, Kwon D S, et al, Analysis of microsurgery task for developingmicromanipulator [C], Proceedings of the12thKorea Automatic Control Conference,1997,2:1631-1634
    [150] Peirs J, Clijnen J, Reynaerts D, et al, A micro optical force sensor for force feedbackduring minimally invasive robotic surgery [J], Sensors and Actuators A,2004,115:447-455
    [151]王树新,桑宏强,何超,李建民,张林安,一种用于辅助微创外科手术机器人的快换接口[P],ZL200910305201.1,2009
    [152]张林安,力反馈型主操作手设计及其控制策略研究[D],天津;天津大学,2010
    [153]史瑞芝,用于腹腔镜手术机器人立体视觉系统的研究与实现[D],天津;南开大学,2009
    [154]陈祥军,面向微创手术立体视觉系统的软件体系结构建模与研究[D],天津;南开大学,2011
    [155]桑宏强,基于模型的微创手术机器人力检测技术研究[D],天津;天津大学,2011
    [156] Zhang K T, Dai J S, Fang Y F, Zhu Q, Topology and constraint analysis of reconfigurationin metamorphic mechanisms[C], Proceedings of the ASME2010International DesignEngineering Technical Conference&Computers and Information EngineeringConference,2010,1689-1698.
    [157] Zhang K T, Dai J S, Fang Y F, Topology and constraint analysis of phase change in themetamorphic chain and its evolved mechanism, ASME Journal of Mechanical Design,2010,132:121001-1-121001-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700