用户名: 密码: 验证码:
气流床煤气化工艺性能稳健优化与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现煤的高碳资源低碳化利用,必须促进能够有效提高煤炭转化效率且环保效益好的以煤气化为核心的新型煤化工的发展。气流床煤气化技术具有煤种适应广、气化效率高、生产负荷大、环保效益好等优势,必将在新型煤化工中发挥着重要作用。气流床煤气化工艺性能稳健优化与控制的研究对于提高煤炭的清洁高效利用,保证气化生产的经济、稳定、安全运行有着重要意义。
     本文面向气流床煤气化生产过程,以气流床煤气化性能的稳健优化与波动控制为主要研究目的,以典型的气流床工艺——Shell粉煤加压气流床为背景,综合应用实验设计、统计分析、稳健优化和统计控制技术,旨在建立通过调整和优化气流床煤气化工艺参数,使得气流床煤气化各项工艺性能指标在多种随机噪声的影响下依然能够尽最大可能的保持最优与稳定的理论与方法,为气流床煤气化优化生产与稳定生产提供指导。本文研究主要包括:
     1.选择相互独立的气流床煤气化性能指标CO含量百分比、H2含量百分比、产气率和碳转化率为评价指标。以ChemCAD为仿真平台,采用Gibbs自由能最小化方法,建立了Shell气流床煤气化仿真模型。经与典型的Shell煤气化装置SCGP-1实验数据对比,结果表明所建仿真模型具有较好精度。
     2.设计了基于Taguchi方法进行可控工艺参数对气化性能的稳健效应分析流程。构建了采用对照进行气流床可控工艺参数的稳健效应估计,并基于半正态概率分布对效应估计进行显著性判别,采用灵敏度分析进行气流床煤气化可控工艺参数对气化性能进行稳健效应分析的方法。针对Shell气化系统进行了实例分析。
     3.基于DRSM法开展气流床煤气化工艺性能的稳健优化问题研究。构建了气化性能指标与可控工艺参数的双响应面模型,提出了应用改进的损失函数模型将各气化性能指标的均值和方差统一成一个稳健评价指标,设计了气化性能稳健优化的GA随机搜索优化算法。针对煤气化性能指标为多目标的特性,采用AHP1-9标度确定各评价指标的权重,然后采用Desirability函数将各气化性能评价指标集成为一个优化目标,并利用GA随机搜索优化算法进行优化求解。最后针对Shell气化工艺进行了单目标稳健优化与多目标稳健优化,并分别与确定性优化结果加以对比,结果表明,所提出的气流床煤气化性能的单目标稳健优化与多目标稳健优化方法可以实现气流床煤气化性能稳健优化的目的。
     4.煤气化产品需求具有波动性,而JIT精益生产模式是应对市场需求波动的先进的管理模式。本文在分析了波动需求条件下煤气化生产系统JIT精益生产模式的基础上,针对气流床煤气化工艺性能稳健性,研究了波动需求导致生产强度动态调整的JIT精益生产模式下气化性能稳健优化的数学模型,提出来基于“分解——综合”原则,采用“精英优化”的气化性能的JIT精益稳健优化求解策略,进而提出了基于非线性偏最小二乘的优化方法。最后针对Shell煤气化工艺系统进行了实例分析,结果表明所建立的波动需求条件下的气流床工艺性能JIT精益稳健优化方法是切实可行的。
     5.以过程能力指数(PCI)作为气化性能稳健性评价的基本指标,进行气流床煤气化工艺性能稳健性的预测评价,以确定所求解最优操作条件是否满足生产工艺要求或下游产品生产需要。由于煤气化性能评价属于多变量过程能力指数评价问题,而目前多元过程能力指数存在计算复杂、难以推广应用等问题,本文提出了一种基于偏差分量模型的线性加权MPCI,并采用单纯型格子点实验设计求解线性加权权重的方法。进而本文提出了基于蒙特卡罗模拟技术,以线性加权MPCI作为气化性能稳健性评价指标进行煤气化性能稳健性预测评价。最后针对Shell煤气化工艺系统,在获得的稳健优化解的基础上,进行了预测评价,结果表明本文所提的稳健性预测评价方法可以对气流床煤气化工艺性能的稳健性进行有效评价。
     6.针对生产过程中气流床煤气化性能的稳健性,采用统计过程控制(SPC)技术进行监控。构建了基于单变量SPC与多变量MSPC的气化性能“失控”与“失稳”联合监控框架体系。针对休哈特单变量、Totelling T2多变量统计失控监控可能存在漏发报警的不足,采用基于PCA的多变量统计过程控制监控进行气流床煤气化性能监控验证。同时针对传统统计失稳判别准则适用于离散制造系统,而气流床煤气化性能监控要求连续在线监测的特点,开发了基于RBF神经网络的气流床煤气化性能统计失稳智能诊断模型。最后针对Shell煤气化工艺系统,进行了实例仿真验证,结果表明,本文所提的气流床煤气化的统计过程控制可以有效监测气流床气化性能,保证气流床煤气化稳定生产。
In order to realize low carbonization using of coal, it must be promoted for the development of the new coal chemical industry based on coal gasification for it's high carbon conversion and effective environmental protection. Entrained flow coal gasification technology will play an important role in the new coal chemical industry because of it's advantages such as high adaptability to a wide range of coal types, high gasification efficiency and production load, and effective environmental protection. So it is important to study on the performance of the entrained flow coal gasification robust optimization and control, because it is significance to improve the efficient use of clean coal gasification and ensure coal gasification production economically, stably and safely.
     This research aims to realize the performance of coal gasification robust optimization for the entrained flow coal gasification production, that is, to optimize the performance and control the fluctuation as well. The typical entrained flow coal gasification technology-Shell coal gasification process was taken as the research background, and many advanced mathematical methods including Design of Experiment (DOE), statistical analysis, robust optimization and Statistical Process Control (SPC) were applied comprehensively in this dissertation. The main research purpose is to establish the theory and method that ascertaining a set of optimum controllable process parameters which can keep the performance of entrained flow coal gasification stable and optimizing as possible under the influence variety of random noise factors such as the fluctuation of moisture, ash or grain size of coal et al. This reassure will provide the instructions for the optimization operation and stable operation of entrained flow gasifier. In summary, the dissertation includes the following contents and contributions:
     1. The independent performance indexes of entrain flow coal gasification including CO%, H2%, gas yield and carbon conversion were chosen as the evaluation indexes. Shells coal gasification simulation model was founded with the Minimum of Gibbs Energy based on ChemCAD software. The model was verified by the experimental data of typical Shell gasification units SCGP-1. The verification results showed that the simulation model was accuracy.
     2. The analysis procedure of the robustness effect of the controllable process parameters on the performance of the entrained flow coal gasification based on Taguchi method was designed. The analysis method was founded using contrast to estimate the robustness effects of the controllable process parameters, half normal distribution to test the effects' significances and the sensitivity to analysis the effects. Then the Shell gasification was taken as the example and analyzed by the above mentioned method.
     3. DRSM method was used to study on the performance of entrained flow coal gasification robust optimization. Double response surface models, mean-variances RSM models, about the controllable process parameters and the performance indexes of the gasification were founded. An improvement of loss function model was founded and applied to unite mean and variance of each gasification performance indexes into one robust evaluation index. A GA random search optimal algorithm was designed to solve the problem of the coal gasification performance robust optimization. For the indexes of the entrained flow coal gasification performance is multi-objects optimization, so 1-9 scale in Analytic Hierarchy Process (AHP) was used to evaluate the weight of each index, and the Desirability function was applied to integrate the indexes into one optimal object, GA random search optimization algorithm was used to search the optimal solution. Finally, according to the Shell gasification processes, the single objective robust optimal solution and multi-objective robust optimal solution were gained, and that of the certainty optimal solution were also gained to contrast. The contrasting results show that the proposed method about the entrained flow coal gasification performance of single objective robust optimization and multi-objective robust optimization can realize the robust optimization purposes.
     4. The demands of the coal gasification products have the characters of volatility, and JIT lean production mode is the advanced management to cope with the market demand fluctuation. The JIT lean production mode under the condition of the fluctuation demand for coal gasification production system was analyzed. Then the entrained coal gasification performance dynamic robust optimization while the entrained flow coal gasification implement JIT lean production was study, and the mathematical model was founded. The elitist optimizing strategy based on the principle of "Decomposition and Synthesis" was put forward. And then the optimization method based on nonlinear partial least-square was put forward. Finally, Shell coal gasification process system was analyzed, and the results show that the founded robust optimization method for the performance of the entrained flow coal gasification of the JIT lean production mode is feasible.
     5. Process Capability Index (PCI) was taken as the evaluation index to forecast evaluate the robustness of the performance of the entrained flow coal gasification, so as to examine the performance of coal gasification according to the optimal robust solution of the controllable operating conditions whether meet the production process requirement or downstream products production needs. Because coal gasification performance evaluation belong to multivariable process capability index (MPCI) evaluation, and currently MPCI is complex and difficultly application, a linear weighted MPCI based on the deviation model was put forward and simplex grid-point design method was adopted to get the weights. Then the method that the robustness performance of entrained flow coal gasification be forecast evaluated based on Monte Carlo simulation technique and with the linear weighted MPCI was proposed. Finally, Shell coal gasification was taken as the example and evaluated for the special optimal process parameters gained former study. The results show that the proposed method can forecast the performance robustness of entrained coal gasification process effectively.
     6. Statistical process control (SPC) technology was applied to monitor the production process performance of entrained coal gasification. A combined monitoring frame system for the performance of entrained coal gasification based on single variable SPC and multivariate MSPC jointed was constructed, which can inspect the situation of "out of control" and "instability". In allusion to the shortage of current SPC that alarm-omitted may occur, the MSPC based on PCA was adopted to validate the monitoring results. At the meanwhile, the traditional instability criterion in SPC is suitable for the distributed manufacturing system, while the entrained coal gasification belong to process industry, the performance monitoring needs on-line monitoring continuously. So an intelligent diagnosis model based on RBF neural network was developed for the entrain bed coal gasification performance statistics instability monitoring. Finally the application of the proposed monitoring method in Shell coal gasification proves the method can monitor the entrain bed gasification performance effectively and ensure the entrained gasification production stability.
引文
[1]BP. Statistical Review of World Energy 2010 [R].2010
    [2]彭苏萍.中国煤炭资源开发与环境保护[J].科技导报,2009,27(17):0-1
    [3]国家煤炭工业协会. “十一五”我国煤炭工业快速发展[EB/OL].http://www.cctd.com.cn/zhuanti/20101125/index.html
    [4]姜澍.煤炭产量统计数据解析[J].数据,2009,(4):32-33
    [5]国家发展和改革委员会能源局.《煤炭工业发展“十一五”规划》辅导读本[M].北京:中国计量出版社,2007
    [6]廖汉湘.现代煤炭转化与煤化工新技术新工艺实用全书[M].合肥:安徽文化音像出版社,2004,103-108
    [7]李玉静.煤气化分相燃烧技术在锅炉上的应用[C].中国石油和化工勘察设计协会热工设计专业委员会、全国化工热工设计技术中心站2005年年会论文汇编,2005.261-268
    [8]倪维斗.煤的清洁高效利用是中国低碳经济的关键[J].太原理工大学学报,2010,41(5):454-458
    [9]倪维斗.我国能源现状及某些重要战略对策[J].中国能源,2008,30(12):5-9
    [10]周学双.中国高碳资源低碳化利用的环保思索[J].中国人口·资源与环境,2010,20(5):12-16
    [11]郭森,周学双,杜啸岩.煤气化工艺清洁生产及环境保护分析[J].煤化工,2008,36(6):13-16
    [12]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006
    [13]黄戒介,房倚天,王 洋.现代煤气化技术的开发与进展[J].燃料化学学报,2002,30(5):385-391
    [14]王辅臣,于广锁,龚欣等.大型煤气化技术的研究与发展[C].第78场工程科技论坛暨第五届长三角科技论坛——能源安全与可持续发展.上海,2008,77-82
    [15]任永强,韩启元.干法进料气流床煤气化技术的现状与发展[J].煤化工2008,134:1-6
    [16]Kwak Y. H., Anbari F. T. Benefits, obstacles, and future of six sigma approach[J]. Technovation,2006,26(5-6):708-715
    [17]Parast M. M. The effect of Six Sigma projects on innovation and firm performance[J]. International Journal of Project Management,2011,29 (1):45-55
    [18]Chakravorty S. S. Six Sigma programs:An implementation model[J]. International Journal of Production Economics,2009,119(1):1-16
    [19]Linderman K., Schroeder R. G., Zaheer S., et al. Six Sigma:a goal-theoretic perspective [J]. Journal of Operations Management,2003,21(2): 193-203
    [20]何桢.精益六西格玛:新竞争优势的来源[J].天津大学学报(社会科学版),2005,7(5):321-325
    [21]何桢.六西格玛管理及其实施[J].数理统计与管理,2007,26(6):1049-1055
    [22]张志红,何桢,白晓峰.六西格玛设计模式与方法研究[J].起重运输机械,2008,(8):12-17
    [23]胡雅琴,何桢.论六西格玛管理的本质属性[J].科学学与科学技术管理,2004,25(10):137-139
    [24]Lee M. C., Mikulik W. Z., Kelly D. W., et al. Robust design-A concept for imperfection insensitive composite structures[J]. Composite Structures, 2010,92(6):1469-1477
    [25]Kim D.H., Kim K.J. Robustness indices and robust prioritization in QFD[J]. Expert Systems with Applications,2009,36(2, Part 2):2651-2658
    [26]Diaz J.Hernandez S. Uncertainty quantification and robust design of aircraft components under thermal loads[J]. Aerospace Science and Technology, 2010,14(8):527-534
    [27]王宇,余雄庆.稳健优化的表述、不确定分析与求解策略[J].中国制造业信息化,2008,37(3):49-54
    [28]程贤福.稳健优化设计的研究现状及发展趋势[J].机械设计与制造,2005,(8):158-162
    [29]孙光永,李光耀,陈涛,等.基于6σ的稳健优化设计在薄板冲压成形中的应用[J].机械工程学报,2008,44(11):248-254
    [30]高一聪,冯毅雄,谭建荣,等.基于MSRE的机械产品质量特性稳健优化设计方法[J].计算机集成制造系统,2010,16(5):897-904
    [31]程贤福.基于相容决策支持问题法的稳健优化设计方法[J].中国机械工 程,2008,19(1):34-37
    [32]丁力平,冯毅雄,谭建荣,等.基于性能稳健指数的产品族稳健优化设计[J].计算机集成制造系统,2010,16(6):1121-1130
    [33]郭宝峰,杨艳子,金淼.塑性成形工艺参数稳健优化设计方法[J].塑性工程学报,2009,16(6):1-5
    [34]Kamody J. F., Cannon J. F. Economics of the Koppers K-T gasification process for synthetic gas and chemical manufacture [J].1978,23:13-24
    [35]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2006
    [36]Volkwein J. C., Schoeneman A. L., Clausen E. G.,et al. Biological production of methane from bituminous coal[J]. Fuel Processing Technology,1994, 40:339-345
    [37]汪家铭.Shell粉煤气化技术在我国的应用概况[C].全国中氮情报协作组第28次技术交流会论文集,2009:26-30
    [38]郑振安.Shell煤气化技术(SCGP)的特点[J].煤化工,2003,31(2):7-11
    [39]Doering E. L., Cremer G. A. Shell Coal Gasification Process:the Demkolec Project and beyond[C]. Proceedings of the 56th Annual American Power Conference. Part 1 (of 2), April 25,1994-April 27,1994, Chicago, IL, USA,1994.1686-1691
    [40]国蓉,程光旭,赵勇平,等Texaco煤气化工艺技术经济指标的评价方法与评价系统设计[J].化工进展,2003,(09):1001-1004
    [41]徐振刚,吴贤贤.Texaco气化技术及其在中国的应用[J].煤炭转化,1995,(01):19-24
    [42]陈家仁.加压气流床煤气化工艺的发展现状及存在问题[J].煤化工,2006,(06):1-7
    [43]夏鲲鹏,陈汉平,王贤华,等.气流床煤气化技术的现状及发展[J].煤炭转化,2005,(04):69-73
    [44]张东亮.中国煤气化工艺(技术)的现状与发展[J].煤化工,2004,(02):1-5
    [45]步学朋,彭万旺,徐振刚.PRENFLO加压气流床气化炉的开发及应用[J].煤气与热力,2001,(05):439-442
    [46]郑振安.PRENFLO煤气化工艺的开发和应用[J].化肥设计,2005,(03): 3-7
    [47]路文学,亓栋.采用Prenflo气化技术的IGCC流程[J].现代化工, 2002,(09):43-45
    [48]赵瑞同,陈建利.普伦弗洛(PRENFLO)粉煤气化技术[J].煤化工,2000,(02):19-21+11
    [49]Klemmer K.D., Schingnitz M. The GSP gasification process state-of-the-art and further development future energy GMBH a Siemens Company[C].23rd Annual International Pittsburgh Coal Conference, PCC-Coal-Energy, Environment and Sustainable Development, Sep 25-282006, Pittsburgh, PA, United states,2006.University of Pittsburgh, School of Engineering, PA, USA
    [50]Will F. GSP气化技术前景[J].化工技术经济,2005,(07):24-25
    [51]郑先勇,董翔飞,冯 松,等.第二代典型煤气化技术[J].广州化工,2009,(06):55-58
    [521 王澄,严行健,仝德全.国内首座采用GSP气化技术的IGCC电站综述[J].江苏电机工程,2009,(01):11-14
    [53]Hara S., Inumaru J., Ashizawa M.,et al. A study on gasification reactivity of pressurized two-stage entrained flow coal gasifier[J]. JSME International Journal, Series B:Fluids and Thermal Engineering,2002,45:518-522
    [54]沙兴中,杨南星.煤的气化与应用[M].上海:华东理工大学出版社,1995
    [55]Guo X. L., Dai Z. H., Gong, X., et al. Performance of an entrained-flow gasification technology of pulverized coal in pilot-scale plant[J]. Fuel Processing Technology,2007,88(5):451-459
    [56]任永强,许世森,夏军仓,等.粉煤加压气化小型试验研究[J].热能动力工程,2004,(06):579-581+656-657
    [57]任永强,许世森,夏军仓,等.干煤粉加压气流床气化试验研究[J].热能动力工程,2007,(04):431-434+470
    [58]许世森,任永强,夏军仓,等.两段式干煤粉加压气化技术的研究开发[J].中国电力,2006,(06):30-33
    [59]许世森,王保民.两段式干煤粉加压气化技术及工程应用[J].化工进展,2010,(S1):290-294
    [60]任永强,许世森,夏军仓,等.两段式干煤粉加压气流床气化试验研究[J].热力发电,2007,(08):27-30
    [61]西安热工研究院有限公司.干煤粉加压气化技术[EB/OL].http://www.tpri.com.cn/zycp/zycp56.html
    [62]王洋,房倚天,黄戒介,等.一种固态排渣干粉气流床气化过程及装置[P]. 中国,发明专利,2003-03-26
    [63]任永强,许世森,夏军仓,等.神木煤粉加压气流床气化中试试验研究[J].煤化工,2006,(05):15-18
    [64]唐志国.基于无焰氧化的干法煤粉气化特性研究[D]:[博士学位论文].合肥:中国科学技术大学,2009
    [65]唐志国,马培勇,李永玲,等.新型干煤粉气流床气化炉的气化特性研究[J].热能动力工程,2010,(05):547-551+578-579
    [66]Crnomarkovic N., Repic B., Mladenovic R., et al. Experimental investigation of role of steam in entrained flow coal gasification[J]. Fuel,2007,86: 194-202
    [67]Huang X. H., Liu Z. H., Liu J.Z., et al. Experimental investigation on flame characteristics of pulverized coal combustion under O2/CO2 atomsphere[J]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2009,30:1245-1248
    [68]Wu X. J., Zhang Z. X., Piao G. L.,et al. Experimental study on gasification characteristics of coal in lab-scale down flow gasifier[J]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics,2008,29:1431-1434
    [69]代正华,龚欣,王辅臣,等.气流床粉煤气化的Gibbs自由能最小化模拟[J].燃料化学学报,2005,(02):129-133
    [70]步学朋,彭万旺,徐振刚.煤炭气化气流床气化炉的数学模拟[J].煤炭转化,2001,(04):7-12
    [71]刘永,蒋云峰,邓蜀平,等.基于Aspen Plus软件的煤气化过程模拟评述[J].河南化工,2010,(14):25-28
    [72]宋志春.兖州煤气化过程的数值模拟[D]:[硕士学位论文].太原:太原理工大学,2010
    [73]汪洋,代正华,于广锁,等.运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化,2004,(04):27-33
    [74]徐越,吴一宁,危师让.基于ASPEN PLUS平台的干煤粉加压气流床气化性能模拟[J].西安交通大学学报,2003,(07):692-694+706
    [75]Nguyen T. D. B., Lim Y.I., Song B.H., et al. CFD simulation of an entrained-flow coal gasifier for coal IGCC process[C].20th International Offshore and Polar Engineering Conference, ISOPE-2010, June 20,2010-June 25,2010, Beijing, China,2010.77-82
    [76]Kumar M., Zhang C., Monaghan R. F. D.,et al. CFD simulation Of entrained flow gasification With improved devolatilization And char consumption submodels[C].2009 ASME International Mechanical Engineering Congress and Exposition, IMECE2009, November 13,2009-November 19,2009, Lake Buena Vista, FL, United states,2010.383-395
    [77]Slezak A., Kuhlman J. M., Shadle L. J.,et al. CFD simulation of entrained-flow coal gasification:Coal particle density/sizefraction effects[J]. Powder Technology,2010,203:98-108
    [78]Du M., Hao Y, Wang Y. Numerical simulation of coal gasification in A1 T/H two-stage entrained flow gasifier[C]. ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, November 11,2007 November 15,2007, Seattle, WA, United states,2008.781-791
    [79]Celik I. Numerical simulation of coal gasification in an entrained-flow reactor[C]. Proceedings of the 1990 ASME International Computers in Engineering Conference and Exposition, August 5,1990-August 9,1990, Boston, MA, USA,1990.639-643
    [80]Chen C., Horio M.Kojima T. Numerical simulation of entrained flow coal gasifiers. Part Ⅰ:Modeling of coal gasification in an entrained flow gasifier[J]. Chemical Engineering Science,2000,55:3861-3874
    [81]Chen C., Horio M.Kojima T. Numerical simulation of entrained flow coal gasifiers. Part Ⅱ:Effects of operating conditions on gasifier performance[J]. Chemical Engineering Science,2000,55:3875-3883
    [82]Ajilkumar A., Shet U. S. P.Sundararajan T. Numerical simulation of pressure effects on the gasification of australian and indian coals in a tubular gasifier[J]. Heat Transfer Engineering,2010,31:495-508
    [83]Janajreh I., Talab I., Qudaih R. Numerical simulation of the flow inside the entrained flow gasifier[C].2009 US-EU-China Thermophysics Conference-Renewable Energy, UECTC'09, May 28,2009-May 30,2009, Beijing, China,2009.US National Science of Foundation
    [84]Shi S., Guenther C.Orsino S. Numerical study of coal gasification using Eulerian-Eulerian multiphase model[C].2007 ASME Power Conference, July 17,2007-July 19,2007, San Antonio, TX, United states,2007.497-505
    [85]Cheng S.I., Talbot G. R. Dynamic simulation and phase plane analysis of entrained coal gasification[J]. Simulation,1986,46:244-250
    [86]Schneyer G. P., Cook J. L., Brownell Jr D. H.,et al. Dynamic simulation of a single-stage entrained flow coal gasifier [J]. Electric Power Research Institute, Advanced Power Systems Division, (Report) EPRI AP,1982,:var paging-var paging
    [87]Bouma P. H., De Goey L. P. H., Tummers M. J.,et al. Numerical modelling of an entrained-flow gasification simulator[C]. Computational Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications-1999 (The ASME Pressure Vessels and Piping Conference), August 1,1999-August 5,1999, Boston, MA, USA,1999.1/
    [88]Chui E. H., Majeski A. J., Lu D. Y.,et al. Simulation of entrained flow coal gasification[C].9th International Conference on Greenhouse Gas Control Technologies, GHGT-9, November 16,2008-November 20,2008, Washington DC, United states,2009.503-509
    [89]Liu H., Chen C.Kojima T. Theoretical simulation of entrained flow IGCC gasifiers:Effect of mixture fraction fluctuation on reaction owing to turbulent flow[J]. Energy and Fuels,2002,16:1280-1286
    [90]徐越,吴一宁,危师让.二段式干煤粉气流床气化技术的模拟研究与分析[J].中国电机工程学报,2003,(10)
    [91]乌晓江.高灰熔点煤高温、加压气流床气化实验研究与数值模拟[D]:[博士学位论文].上海:上海理工大学,2007
    [92]徐越,吴一宁,危师让.基于Shell煤气化工艺的干煤粉加压气流床气化炉性能研究[J].西安交通大学学报,2003,(11):1132-1136
    [93]Cormos C.C. Evaluation of energy integration aspects for IGCC-based hydrogen and electricity co-production with carbon capture and storage[J]. International Journal of Hydrogen Energy,2010,35 (14):7485-7497
    [94]Cormos C.C. Evaluation of iron based chemical looping for hydrogen and electricity co-production by gasification process with carbon capture and storage[J]. International Journal of Hydrogen Energy,2010,35(6): 2278-2289
    [95]Pettinau A., Vittorio T, Deiana P. Hydrogen production through coal gasification in updraft gasifiers with syngas treating sections[C].23rd Annual International Pittsburgh Coal Conference, PCC-Coal-Energy, Environment and Sustainable Development, September 25,2006-September 28,2006, Pittsburgh, PA, United states,2006.University of Pittsburgh, School of Engineering, PA, USA
    [96]Cormos C. C., Starr F., Tzimas E.,et al. Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture[J]. International Journal of Hydrogen Energy,2008,33(4):1286-1294
    [97]Calabro A., Deiana P., Fiorini P.,et al. Possible optimal configurations for the ZECOMIX high efficiency zero emission hydrogen and power plant[J]. Energy,2008,33(6):952-962
    [98]Cormos C. C., Cormos A. M., Agachi S. Power generation from coal and biomass based on integrated gasification combined cycle concept with pre-and post-combustion carbon capture methods[J]. Asia-Pacific Journal of Chemical Engineering,2009,4:870-877
    [99]Cormos C.C., Starr F., Tzimas E. Use of lower grade coals in IGCC plants with carbon capture for the co-production of hydrogen and electricity[J]. International Journal of Hydrogen Energy,2010,35(2):556-567
    [100]Galeno G, Spazzafumo G. ZECOMIX:Performance of alternative lay-outs[J]. International Journal of Hydrogen Energy,2010,35(18):9845-9850
    [101]申大志.流化床煤气化技术工业化过程的优化与模拟[D]:[硕士学位论文].天津:天津大学,2009
    [102]Karimipour S., Pugsley T., Spiteri R. J. CFD simulation of a fluidized bed gasifier operating with lignite coal[C].2010 AIChE Annual Meeting, 10AIChE, November 7,2010-November 12,2010, Salt Lake City, UT, United states, 2010.
    [103]Sreedharan V., Hjertager B. H., Solberg T. CFD simulation of coal gasification in an entrained-flow gasifier[C].2010 AIChE Annual Meeting,10AIChE, November 7,2010-November 12,2010, Salt Lake City, UT, United states, 2010.
    [104]Gao K., Wu J. H., Wang Y. CFD simulation of the gas-solid flow and the heat and mass transfer in a jetting fluidized bed coal gasifier[J]. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology,2008,36:360-364
    [105]Shi S., Zitney S. E., Guenther C.,et al. A CFD study of coal gasification using eulerian-granular multiphase model[C].05AIChE:2005 AIChE Annual Meeting and Fall Showcase, October 30,2005-November 4,2005, Cincinnati, OH, United states,2005.2859
    [106]Deng Z., Xiao R., Jin B., et al. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed[J]. Energy and Fuels,2008, 22:1560-1569
    [107]Shi S. P., Zitney S. E., Shahnam M.,et al. Modelling coal gasification with CFD and discrete phase method[C].2006.217-221
    [108]Xiong Y., Ji L., Zhang Z.,et al. Three-dimensional CFD analysis of a gas turbine combustor for medium/low heating value syngas fuel[C].2008 ASME Turbo Expo, June 9,2008-June 13,2008, Berlin, Germany, 2008.1769-1778
    [109]Biagini E., Bardi A., Pannocchia G.,et al. Development of an entrained flow gasifier model for process optimization study[J]. Industrial and Engineering Chemistry Research,2009,48:9028-9033
    [110]Tominaga H., Matsushita Y., Aoki H.,et al. The development of entrained flow coal gasification simulator[J]. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy,2006,85:36-41
    [111]Bockelie M., Denison M., Shim H. S.,et al. Issues in modeling entrained flow coal gasifiers[C].23rd Annual International Pittsburgh Coal Conference, PCC Coal-Energy, Environment and Sustainable Development, September 25, 2006-September 28,2006, Pittsburgh, PA, United states,2006.University of Pittsburgh, School of Engineering, PA, USA
    [112]Bockelie M., Denison M., Swensen D.,etal. Modeling entrained flow coal gasifiers[C].25th Annual International Pittsburgh Coal Conference, PCC, September 29,2008-October 2,2008, Pittsburgh, PA, United states,2008.
    [113]Brown B. W., Christensen K. B., Fletcher T. H.,et al. Modeling and experimental studies of entrained flow gasification[C].1984 Annual Meeting-American Institute of Chemical Engineers., San Francisco, CA, USA, 1984.AIChE, New York, NY, USA
    [114]Brown B. W., Smoot L. D.Hedman P. O. Effect of coal type on entrained gasification [J]. Fuel,1986,65:673-678
    [115]Brown B. W., Smoot L. D., Smith P. J.,et al. Measurement and prediction of entrained-flow gasification processes[J]. AIChE Journal,1988,34: 435-446
    [116]Kajitani S., Suzuki N., Kara S.,et al. Influence of pressure on high-temperature coal pyrolysis property and coke particle formation at entrained flow coal gasifier conditions[J]. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy,2004,83:1039-1044
    [117]Kajitani S., Watanabe H., Zhang Y.,et al. Modeling of morphology of char during coal gasification[J]. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy,2008,87:48-55
    [118]Liu G. S., Rezaei H. R., Lucas J. A.,et al. Modelling of a pressurized entrained flow coal gasifier:The effect of reaction kinetics and char structure[J]. Fuel, 2000,79:1767-1779
    [119]Liu H.Kojima T. Theoretical study of coal gasification in a 50 ton/day HYCOL entrained flow gasifier. I. Effects of coal properties and implications[J]. Energy and Fuels,2004,18:908-912
    [120]Liu H., Luo C., Kato S.,et al. Kinetics of CO2/Char gasification at elevated temperatures. Part Ⅰ:Experimental results[J]. Fuel Processing Technology, 2006,87:775-781
    [121]Silaen A., Wang T. Effects of turbulence and devolatilization models on gasification simulation[C].25th Annual International Pittsburgh Coal Conference, PCC, September 29,2008-October 2, Pittsburgh, PA, United states.
    [122]Silaen A.,Wang T. Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier[J]. International Journal of Heat and Mass Transfer,2010,53:2074-2091
    [123]董金国.粉煤加压气流床气化炉内化学平衡分析[J].中氮肥,2009,(04):4-7+11
    [124]吴学成,王勤辉,骆仲泱,等.气化参数影响气流床煤气化的模型研究(II)——模型预测及分析[J].浙江大学学报(工学版),2004,(11):1483-1489
    [125]吴学成,王勤辉,骆仲泱,等.气化参数影响气流床煤气化的模型研究(I)——模型建立及验证[J].浙江大学学报(工学版),2004,(10):1361-1365
    [126]吴玉新.气流床煤气化炉数值模拟及颗粒—涡团作用建模研究[D]:[博士学位论文].北京:清华大学,2007
    [127]吴玉新,张建胜,岳光溪,等.采用简化PDF模型分析分级气流床气化炉的气化特性[J].中国电机工程学报,2008,(26):29-34
    [128]于广锁,王辅臣,代正华,等.气流床气化炉停留时间分布的随机模型[J].化学工程,2002,(02):24-27+22
    [129]张建胜,胡文斌,吴玉新,等.分级气流床气化炉模型研究[J].化学工程, 2007,(03):14-18
    [130]Mahagaokar U., Doering E. L. Cost effective utilization of high level sensible heat in the shell coal gasification process[C]. Proceedings of the 57th Annual American Power Conference. Part 1 (of 3), April 18,1995-April 20, Chicago, IL, USA,1995.78-83
    [131]Azuhata S., Hedman P. O., Smoot L. D.,et al. Effects of flame type and pressure on entrained coal gaisification [J]. Fuel,1986,65:1511-1515
    [132]唐志国,唐超君,马培勇,等.干煤粉加压气流床气化炉炉型分析[J].煤炭科学技术,2009,(08):124-128
    [133]乌晓江,张忠孝,朴桂林,等.高灰熔点煤加压气流床气化特性[J].燃烧科学与技术,2009,(02):182-186
    [1341杜敏,郝英立.气化剂对气流床煤气化炉性能的影响[J].热科学与技术,2009,(02):177-182
    [135]李召召,孙钟华,代正华.煤热值对气化炉模拟结果的影响[C].中国上海,2010.
    [136]贺根良,门长贵.气流床气化炉操作温度的探讨[J].煤化工,2007,(04):8-11
    [137]张大晶.浅析相关参数对气流床粉煤加压气化的影响[J].煤化工,2008,(05):44-46
    [138]张晓,吴诗勇,顾菁,等.神经网络预测煤焦高温气化反应速率研究[J].煤炭转化,2007,(02):22-27
    [139]赵锦超,龚欣,代正华,等.用BP神经网络对气流床粉煤气化炉的预测[J].华东理工大学学报(自然科学版),2009,(05):688-692
    [140]陶明春,杜敏,郝英立.氧煤比对气流床煤气化过程的影响[J].热科学与技术,2010,(02):177-182
    [141]汪洋,于广锁,代正华,等.气流床煤气化系统的热力学分析[J].化学工程,2007,(02):75-78
    [1421徐振刚,步学朋.煤炭气化知识问答[M].北京:化学工业出版社,2008
    [143]李永华,陈振洪,高建强,等.Shell煤气化炉性能的分析[J].发电设备,2008,(04):281-284
    [144]盛新.Shell煤气化技术及其在大化肥装置的应用[J].大氮肥,2007,(06):415-419
    [145]汪家铭.Shell煤气化技术在国内的应用概况及发展前景[J].煤质技术,2009,(S1):34-37
    [146]汪寿建.Shell煤气化技术进展及发展趋势[J].煤化工,2004,(01):18-21
    [147]郑振安.Shell煤气化技术(SCGP)的特点[J].煤化工,2003,(02):7-11
    [148]汪申,邬慧雄,宋静,等ChemCAD典型应用实例(上)——基础应用与动态控制[M].北京:化学工业出版社,2006
    [149]. W W. C.D S. W. Computation of phase and chemical equilibrium:approach to chemical equilibrium[J]. AICHEJ,1981,27(3):466-471
    [150]ChemCAD. ChemCAD user guide(version 6.3) [EB/OL]. http://www.chemstations.com/Downloads/
    [151]Guo X. L., Dai Z. H., Gong X. Performance of an entrained-flow gasification technology of pulverized coal in pilot-scale plant[J]. Fuel Processing Technology,2007,88:451-459
    [152]Montgomery D. C实验设计与分析[M].北京:人民邮电出版社,2009,
    [153]Nishino S. Daikuhara T. Taguchi methods, quality engineering, s/n ratio, parameter design, evaluation characteristics [J]. Yosetsu Gakkai Shi/Journal of the Japan Welding Society,2010,79:9-12
    [154]刘国兴,任世彬.田口方法与稳健性设计[J].电工电气,2010,(10):53-57
    [155]Chen D. C., You C. S., Guo M.W.,etal. Robust design of ring rolling process for titanium alloy using the Taguchi method and the finite element method[C]. 3rd International Conference on Advanced Design and Manufacture, ADM2010, September 8,2010-September 10,2010, Nottingham, United kingdom,2011.177-180
    [156]Chen G., Tang Y., Zhang J. Robust parameter design of power system stabilizer based on Taguchi method and Lyapunov function[J]. Dianwang Jishu/Power System Technology,2010,34:82-87
    [157]Fratila D.Caizar C. Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3[J].2011,
    [158]陈洪燕.基于Modelica的车辆动力性与燃油经济性6σ稳健优化设计[D]:[硕士学位论文].武汉:华中科技大学,2009
    [159]何美华.田口方法在单晶硅太阳能电池生产工艺优化中的应用研究[D]:[硕士学位论文].南京:南京理工大学,2009
    [160]潘尔顺,徐小芸.基于有限元法与田口法的V形件冲压仿真参数稳健设计[J].上海交通大学学报,2005,(07):1077-1081
    [161]孙鹏.稳健设计方法及其在火箭发动机结构设计中的应用[D]:[硕士学位论文].西安:西北工业大学,2006
    [162]唐超勇.车辆动力学操稳特性稳健性优化设计[D]:[硕士学位论文].武汉:华中科技大学,2007
    [163]于鑫,程旭德.基于田口方法的某型轮式装甲车操作性能的稳健性研究[J].机械科学与技术,2003,(S2):20-21+24
    [164]王万中.试验的设计与分析[M].北京:高等教育出版社,2004
    [165]任露泉.试验设计及其优化[M].北京:科学出版社,2009
    [166]杨志程.几种无重复试验的饱和析因设计分析方法的稳健性[D]:[硕士学位论文].上海:华东师范大学,2006
    [167]张晓琴.正交饱和效应模型的统计分析[D]:[博士学位论文].上海:华东师范大学,2007
    [168]窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报,2007,(05):359-363
    [169]李玉强,崔振山,陈军,等.基于双响应面模型的6σ稳健设计[J].机械强度,2006,(05):690-694
    [170]赵媚,潘尔顺,郭瑜,等.基于双响应曲面法的稳健参数设计[J].工业工程与管理,2010,(01):87-91
    [171]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2004
    [172]王小平,曹立明.遗传算法:理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [173]Yacout S. Boudreau J. Assessment of quality activities using Taguchi's loss function[J]. Computers & Industrial Engineering,1998,35(1-2): 229-232
    [174]Maghsoodloo S., Ozdemir G, Jordan V.,et al. Strengths and limitations of taguchi's contributions to quality, manufacturing, and process engineering[J]. Journal of Manufacturing Systems,2004,23(2):73-126
    [175]李丽荣,郑金华.基于Pareto Front的多目标遗传算法[J].湘潭大学自然科学学报,2004,(01):39-41+48
    [176]姜斌,梁士锋.化学工程中多目标遗传算法的应用[J].现代化工,2007,(07):66-69+71
    [177]莫愿斌,陈德钊,胡上序.多目标过程系统优化的粒子群算法求解[J].高校化学工程学报,2008,(01):94-99
    [178]王洪刚,马良,李高雅.多目标微粒群优化算法[J].计算机工程与应 用,2008,(34):64-66+207
    [179]王艳,曾建潮.多目标微粒群优化算法综述[J].智能系统学报,2010,(05):377-384
    [180]唐云岚,赵青松,高妍方,等Pareto最优概念的多目标进化算法综述[J].计算机科学,2008,(10):25-27+57
    [181]Saiz-Abajo M. J., Gonzalez-Saiz J. M., Pizarro C. Multi-objective optimisation strategy based on desirability functions used for chromatographic separation and quantification of-proline and organic acids in vinegar[J]. Analytica Chimica Acta,2005,528(1):63-76
    [182]Zandieh M., Amiri M., Vahdani B.,et al. A robust parameter design for multi-response problems[J]. Journal of Computational and Applied Mathematics,2009,230(2):463-476
    [183]齐欢.数学模型方法[M].武汉:华中理工大学出版社,2000
    [184]汪应洛.系统工程理论、方法与应用[M].北京:高等教育出版社,2002
    [185]Holweg M. The genealogy of lean production[J]. Journal of Operations Management,2007,25(2):420-437
    [186]蒋美仙,林李安,张烨.精益生产在中国企业的应用分析[J].统计与决策,2005,(12):144-146
    [187]刘胜军.以世界最低成本生产同样的产品——精益生产方式JIT[J].企业管理,2002,(08):84-86
    [188]王惠文,吴载斌,孟洁.偏最小二乘回归的线性与非线性方法[M].北京:国防工业出版社,2006
    [189]杨晓英,王会良,张进春,等.质量工程[M].北京:清华大学出版社,2010
    [190]Raissi S. Multivariate process capability indices on the presence of priority for quality characteristics[J]. Journal of Industrial Engineering International, 2009,5(9):27-36
    [191]Stoumbos Z. G. Process capability indices:overview and extensions[J]. Nonlinear Analysis:Real World Applications,2002,3(2):191-210
    [192]Wu C.W., Pearn W. L., Kotz S. An overview of theory and practice on process capability indices for quality assurance[J]. International Journal of Production Economics,2009,117(2):338-359
    [193]蒋家东,冯允成,商广娟.多元过程能力指数计算方法的比较研究[J].航空标准化与质量,2006,(03):16-20
    [194]蒋家东,冯允成,商广娟.多元过程能力指数计算方法的比较研究(续前)[J].航空标准化与质量,2006,(04):14-17
    [195]马义中.多元质量特性的过程能力指数[J].工业工程,2001,(04):22-24
    [196]马义中,赵逢禹.过程能力指数的若干评述[J].中国质量,2002,(12):20-24
    [197]吉庆丰.蒙特卡罗方法及其在水利学中的应用[M].南京:东南大学出版社,2004
    [198]Kane V. E. Process capability indices[J]. Journal of Quality Technology, 1986,18 (1):41-52
    [199]蒋家东,冯允成,赵晗萍.基于体积比的多元过程能力指数的Taam算法的改进[J].中国管理科学,2008,(06):75-81
    [200]周若榆,朱永忠.基于椭球体规格的多元过程能力指数的研究[J].青海大学学报,2010,28(1):77-79
    [201]关颖男.混料实验设计[M].上海:上海科学技术出版社,1990
    [202]褚崴,孙树栋,于晓义.SPC与EPC的集成及相关关键技术研究[J].计算机应用,2007,(01):228-230
    [203]张黎.SPC与EPC整合应用研究[J].郑州大学学报(理学版),2005,(03):104-107
    [204]张黎.统计过程监测与调整:评述与展望[J].控制与决策,2005,(08):841-847
    [205]张黎.过程监测与调整的理论和方法研究[D]:[博士学位论文].西安:西北工业大学,2006
    [206]徐国壮,周红军,周广林等.SheU粉煤气化装置主要运行问题的分析[J].煤化工,2010,148:15-19
    [207]陈二孩,岑涛,马江涛等.试论Shell煤气化装置煤粉管线的稳定性[J].化肥设计,2009,47(5):26-28
    [208]胡益民.岳阳Shell粉煤气化装置运行情况总结[J].大氮肥,2007,30(6):420-426
    [209]高丽.壳牌煤粉加压气化的应用现状和存在问题探讨[J].煤炭技术,2010,29(6):221-223
    [210]Human S. W., Chakraborti S., Smit C. F. Shewhart-type control charts for variation in phase I data analysis[J]. Computational Statistics & Data Analysis,2010,54(4):863-874
    [211]Yang L., Wang Y. R., Pai S. On-line SPC with consideration of learning curve[J]. Computers & Industrial Engineering,2009,57(3):1089-1095
    [212]AlGhazzawi A., Lennox B. Monitoring a complex refining process using multivariate statistics[J]. Control Engineering Practice,2008,16(3): 294-307
    [213]AlGhazzawi A., Lennox B. Model predictive control monitoring using multivariate statistics[J]. Journal of Process Control,2009,19(2): 314-327
    [214]Chen T. On reducing false alarms in multivariate statistical process control[J]. Chemical Engineering Research and Design,2010,88(4):430-436
    [215]Kourti T., MacGregor J. F. Process analysis, monitoring and diagnosis, using multivariate projection methods [J]. Chemometrics and Intelligent Laboratory Systems,1995,28:3-21
    [216]Nijhuis A., Jong S. Vandeginste B.G. M. Multivariate statistical process control in chromatography[J]. Chemometrics and Intelligent Laboratory Systems, 1997,38:51-62
    [217]Camacho J., Pico J., Ferrer A. The best approaches in the on-line monitoring of batch processes based on PCA:Does the modelling structure matter?[J]. Analytica Chimica Acta,2009,642(1-2):59-68
    [218]Lennox B., Goulding P. R., Sandoz D. J. Analysis of multivariate statistical methods for continuous systems[J]. Computers & Chemical Engineering, 1999,23 (Supplement 1):S207-S210
    [219]Lopes J.A., Menezes J.C. Multivariate monitoring of fermentation processes with non-linear modelling methods[J]. Analytica Chimica Acta,2004,515 (1):101-108
    [220]Nijhuis A., Jong S., Vandeginste B. G. M. Multivariate statistical process control in chromatography[J]. Chemometrics and Intelligent Laboratory Systems,1997,38(1):51-62
    [221]Ralston P., DePuy G., Graham J. H. Graphical enhancement to support PCA-based process monitoring and fault diagnosis[J]. ISA Transactions, 2004,43(4):639-653
    [222]冯雄峰,阳宪惠,徐用懋.多元统计过程控制方法的平方预测误差分析[J].清华大学学报(自然科学版),1999,(07):41-45
    [223]许恒,李锋.多变量统计过程控制的现状与展望[J].江苏广播电视大 学学报,2006,(03):55-57
    [224]张建明,徐磊,许仙珍,等.基于混合PCA模型的多工况过程监控方法[J].控制工程,2010,(04):553-556+560
    [225]李荣雨.基于PCA的统计过程监控研究[D]:[博士学位论文].杭州:浙江大学,2007
    [226]余锦华,杨维权.多元统计分析与应用[M].广州:中山大学出版社,2005
    [227]张青贵.人工神经网络导论[M].北京:中国水利出版社,2004
    [228]陈涛,蒋林,屈梁生.基于正交最小二乘学习算法的径向基函数网络设计[J].中国机械工程,1997,(06):95-98
    [229]杨耀华,李昕,江芳泽.基于OLS算法的RBF神经网络高速公路事件探测[J].系统仿真学报,2003,(05):709-712
    [230]朱艺,孙丽英,葛超,等.最小二乘算法在神经网络函数逼近方面的研究[J].山西电子技术,2007,(05):13-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700