用户名: 密码: 验证码:
不确定环境下逆向物流系统的构建与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆向物流是相对于传统正向物流而言的一种新型物流控制模式,主要研究如何有效实现产品的回收与再利用。逆向物流的实施可以带来巨大的经济效益、社会效益和环境效益。不确定性是逆向物流的最大特点,也增加了逆向物流系统构建与优化的难度。本文结合国家863课题,以废旧家电为研究对象,总结了逆向物流管理的研究现状,分析了逆向物流的不确定性,并预测了废旧产品的回收水平。在此基础上,深入研究了回收模式决策、回收网络架构、动态性能优化等方面的内容,并设计了系统的信息服务平台。本文的研究可为逆向物流系统的构建提供科学的理论基础和方法指导。
     第一章回顾了论文研究的背景,阐明了论文研究的意义。描述了逆向物流的相关概念。论述了论文相关领域的国内外研究现状。最后给出了论文的研究思路和框架。
     第二章在分析逆向物流系统不确定的基础上,描述了逆向物流的不确定性衍生机理概念模型,研究了基于模糊理论的系统构建与优化方法体系。接着基于产品全生命周期,分析了影响废旧产品回收数量和回收时间的主要因素,建立了回收水平的模糊神经网络预测模型。
     第三章对比分析了常见的逆向物流回收模式的特征。重点针对制造商自营、经销商负责以及第三方部分负责这三种回收模式,对应建立了模糊不确定环境下的双层规划模型,在Stackelberg框架下进行了模型的求解,考虑到回收方的投资效率和制造商的风险偏好,定量比较分析了各回收模式的最优均衡零售价、回收率、批发价以及供应链各成员利润,并从供应链整体的优化角度判断了制造商决策的合理性。为了保证逆向物流外包模式时合作关系的稳定性,设计了合作契约下的回收利益分配机制。
     第四章描述了逆向物流网络的组成与各设施的功能,根据与正向物流网络的关联程度,分析了三种典型的网络组织结构。以网络运作总成本最小为优化目标,建立了逆向物流网络的通用优化模型,模型中考虑了产品回收量、需求量以及各设施处理能力的不确定性,心用模糊机会约束规划方法将模型转化成了清晰化等价形式,并提出了一种自适应动态调整惯性权重的粒子群算法进行求解。进而探讨了网络结构的环境适应能力,构建了性能稳健指数来评价设计网络的稳健性。
     第五章研究了环保策略、再制造能力扩张策略以及不同市场行为等外部因素对逆向物流系统中长期的影响,建立了SD模型对系统性能进行了动态仿真。通过选择不同的参数组合分析了不同情形下的系统性能,为政策制定者和决策者对逆向物流系统进行中长期的动态规划提供了一个有用的工具。
     第六章在论文理论研究的基础上,对逆向物流信息服务平台进行了需求分析,描述了平台的总体结构和功能模型。
     第七章对总结了本文研究所取得的成果,并指出了今后进一步的研究方向。
Compared with traditional forward logistics, reverse logistics aiming to reuse and recycle effectively is a new logistics control mode with huge economic, social and environmental benefits. Uncertainty is the most obvious characteristics which increases the difficulty of design and optimization for system. Sponsored by the Chinese National Programs for High Technology Research and Development, based on in-depth analysis of uncertainty and forecast of waste products recovery level, this dissertation focused on take-back mode, network construction, performance optimization and information platform of reverse logistics. It provided a solid theoretical basis and guidance method for construction of reverse logistics system.
     In chapter one, background and significance of research paper were stated. Concept of reverse logistics was described. Research state at home and abroad of related fields were summarized. Then main research structure and method were presented.
     In chapter two, uncertainty of the system was analyzed and uncertain derived mechanical model of reverse logistics was described. Construction and optimization methodology architecture was researched based on fuzzy theory. Then main factors affecting the number of recycling waste products and recycling time were analyzed based on product life cycle. A fuzzy neural network prediction model of recovery level was presented.
     In chapter three, characteristic of common reverse logistics model was compared. Focusing on three types of take-back modes in market with leader of manufacturer, distributor or third-party, corresponding bilevel programming models for each mode under fuzzy environment were set up and then solved in Stackelberg game framework. Taking investment efficiency and risk preference into account, the optimal retail prices, product return rates, wholesale price and profits of channel members of each mode were compared quantatively. Rationality of manufacturer decision was judged from perspective of whole supply chain. In order to ensure relationship in outsourcing mode stable, assignment mechanism of recovery benefit under the contract was designed.
     Chapter four described reverse logistics network structure and facilities function. According to liasion with forward logistics network, three kinds of typical network organization structure were analyzed. Taking minimum total operation cost as optimization objective, a common model of network structure was developed. Regarding quantity and demand of returned products and facilities capacity as fuzzy parameters, the proposed model was solved by converting fuzzy chance constraints to their respective crisp equivalents. A new adaptive particle swarm optimization algorithm with dynamically changing inertia weight was brought forward to solve the problem. Then environmental adaptability of network was discussed, and performance robustness index was designed to evaluate network robustness.
     Chapter five examined the impact of environmental issues on long-term behaviour of reverse logistics system. The environmental issues examined were environmental protection strategy, remanufacturing capacity expansion strategy and market behavior. Behaviour of system was analyzed through a dynamic simulation model based on the principles of the system dynamics methodology. The dynamic model provided a useful tool, which can be used to evaluate the effect of environmental issues on long-term decision making in collection and remanufacturing activities.
     In chapter six, based on forword theoretical studies, demand analysis of reverse logistics information platform was carried on. Structural and functional model of platform was built up.
     In chapter seven, main conclusions of this dissertation were summarized and further research issues were put forward.
引文
[l]徐滨士,马世宁,刘世参,等.21世纪的再制造工程[J].中国机械工程.2000,11(Z1):36-39.
    [2]中国家用电器研究院.中国废弃电器电子产品回收处理及综合利用行业现状与展望——行业研究白皮书(2011)[R].,2012.
    [3]张颖,陈莎,张敦信.废旧家电及电子产品污染现状及回收治理对策的探讨[C].中国环境保护优秀论文集(2005)(下册),2005.
    [4]De Brito M P, Dekker R. A Framework for Reverse Logistics[R]. ERIM Report Series Reference No. ERS-2003-045-LIS,2003.
    [5]Stock J R. Reverse logistics[R]. Council of Logistics Management, Oak Brook, IL,1992.
    [6]Thierry M, Salomon M, Van Nunen J, et al. Strategic issues in product recovery management[J]. California management review.1995,37(2):114-135.
    [7]Rogers D S, Tibben-Lembke R S. Going Backwards:Reverse Logistics Trends and Practices[M]. Reverse logistics Executive Council,1998.
    [8]Revlog. The European working group on reverse logistics 1998/1998-10-07.
    [9]Fleischmann M. Reverse logistics network structure and design[R]. The Netherlands:Erim Report Series Research in Management, ERS-2001-52-LIS,2001.
    [10]何明珂等.中国国家标准·物流术语[s].北京:中国标准出版社,国家技术监督局,2001:2001-4-17.
    [11]朱道立,崔益明,陈姝妮.逆向物流系统和技术[J].复旦学报(自然科学版).2003,42(5):673-679.
    [12]马祖军,张殿业,代颖.再制造逆向物流网络优化设计模型研究[J].交通运输工程与信息学报.2004,2(2):53-58.
    [13]达庆利,黄祖庆,张钦.逆向物流系统结构研究的现状及展望[J].中国管理科学.2004,12(1):131-138.
    [14]孙林岩,王蓓.逆向物流的研究现状和发展趋势[J].中国机械工程.2005,16(10):928-934.
    [15]周垂日,梁梁,许传永,等.逆向物流研究的新进展:文献综述[J].科研管理.2007,28(3):123-132.
    [16]Lund R T. Remanufacturing:the experience of the United States and implications for developing countries [R]. Washington DC:World Bank,1983.
    [17]徐滨士.再制造工程基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [18]徐滨士,董世运,朱胜,等.再制造成形技术发展及展望[J].机械工程学报.2012,48(15):96-105.
    [19]孙焰.现代物流管理技术一一建模理论及算法设计[M].上海:同济大学出版社,2004.
    [20]李仁建.逆向物流系统塑料制品回收率预测研究[D].沈阳:沈阳工业大学,2010.
    [21]Marx-Gomez J, Rautenstraucha C, Niirnbergera A, et al. Neuro-fuzzy approach to forecast returns of scrapped products to recycling and remanufacturing[J]. Knowledge-Based Systems.2002, 15(1-2):119-128.
    [22]Kelle P, Silver E A. Forecasting the returns of reusable containers[J]. Journal of Operations Management.1989,8(1):17-35.
    [23]Toktay L B, Wein L M, Zenios S A. Inventory management of remanufacturable products[J]. Manage Science.2000,46(11):1412-1426.
    [24]芮维娜,毛海军,李旭宏,等.机床再制造逆向物流的预测建模方法研究[J].中国制造业 信息化.2006,35(5):58-62.
    [25]谢家平,葛夫财.基于Markov链的逆向物流回流预测[J].科技进步与对策.2007,24(10):37-40.
    [26]吴玉朝,蔡启明,李斌.基于灰色一马尔柯夫模型的逆向物流量预测[J].物流科技.2008(10):19-22.
    [27]谢家平,赵忠.基于GERT随机网络的废弃回收预测模型研究[J].管理学报.2010,7(2):294-300.
    [28]Savaskan R C, Bhattacharya S, van Wassenhove L N. Closed-loop supply chain models with product remanufacturing[J]. Management Science.2004,50(2):239-253.
    [29]Spicer A J, Johnson M R. Third-party demanufacturing as a solution for extended producer responsibility[J]. Journal of cleaner production.2004(12):37-45.
    [30]姚卫新.再制造条件下逆向物流回收模式研究[J].管理科学.2004,17(1):76-79.
    [31]范江华.逆向物流运作模式研究[J].物流科技.2004,15(4):21-23.
    [32]魏洁,李军.EPR下的逆向物流回收模式选择研究[J].中国管理科学.2005,13(6):18-22.
    [33]常香云,范体军,黄建业.基于“生产者延伸责任”的逆向物流管理模式[J].现代管理科学.2006(5):35-37.
    [34]Meade L, Sarkis J. A conceptual model for evaluating and selecting third-party reverse logistics providers[J]. Supply chain management.2002,7(5):283-295.
    [35]Marco S, Ryan S M, Gaytan J. Characterization of reverse logistics networks for outsoucing decisions[Z].2004.
    [36]邓云霞.企业逆向物流模式的决策研究[D].上海:上海海事大学,2004.
    [37]岳辉,陈宇.第三方逆向物流决策研究[J].物流技术.2004(6):38-40.
    [38]徐剑,张云里,金玉然.废旧电子产品逆向物流的模式决策研究[J].物流科技.2006,29(128):14-16.
    [39]Savaskan R C. Reverse chain design:the case of competing retailers[J]. Management Science. 2006,52:1-14.
    [40]王发鸿,达庆利.电子行业再制造逆向物流模式选择决策分析[J].中国管理科学.2006,14(6):44-49.
    [41]韩小花.再制造的闭环供应链回收渠道的决策研究[D].广州:暨南大学,2008.
    [42]易余胤.具竞争零售商的再制造闭环供应链模型研究[J].管理科学学报.2009,12(6):45-54.
    [43]易余胤.基于再制造的闭环供应链博弈模型[J].系统工程理论与实践.2009,29(8):28-35.
    [44]Maschler M, Peleg B, Shapley L S. Geometric properties of the kernel, nucleolus, and related solution concepts[J]. Mathematics of Operations Research.1979(4):303-308.
    [45]郝海,郑丕锷.基于Shapley值的供应链合作伙伴利益风险分配机制[J].哈尔滨工业大学学报(社会科学版).2005,7(5):71-75.
    [46]张延锋,刘益,李垣.战略联盟价值创造与分配分析[J].管理工程学报.2003,17(2):20-23.
    [47]王岳峰,刘伟.考虑权重的shapley值法虚拟企业伙伴利益分配策略的改进[J].上海海事大学学报.2005,12(4):48-51.
    [48]叶飞.虚拟企业利益分配新方法研究[J].工业工程与管理.2003(6):44-46.
    [49]张树义,李肖军,武振业.试论企业战略联盟分配问题[J].系统工程理论方法应用.2002,11(3):235-239.
    [50]林齐宁.决策分析[M].北京:北京邮电大学出版社,2003.
    [51]叶怀珍,胡异杰.供应链中合作伙伴收益原则研究[J].西南交通大学学报.2004,39(1):30-33.
    [52]王旭,贺美亮,林云.基于时间风险的共同配送利益分配模型研究[J].计算机工程与应用.2009,45(3):214-216.
    [53]王文宾,达庆利.考虑消费者利益的逆向供应链利润分配[J].东南大学学报(自然科学版).2007,37(4):726-730.
    [54]邢光军,林欣怡,达庆利.逆向物流系统参与成员利润协调机制研究[J].统计与决策.2009(17):174-177.
    [55]王旭,代应,林云,等.基于循环经济的逆向供应链利益分配机制研究[J].重庆大学学报(社会科学版).2009,15(6):52-56.
    [56]贡文伟,葛翠翠,陈敬贤,等.基于Nash谈判的三级逆向供应链合作利益分配模型[J].工业工程与管理.2011,16(3):16-21.
    [57]Guitinan J P, Nwokoye N G. Developing distribution channels and systems in the emerging recycling industries[J]. International Journal of Physical Distribution.1975,6(1):28-38.
    [58]Pohlen T L, Farris M T. Reverse logistics in plastics recycling[J]. International Journal of Physical Distribution & Logistics Management.1992,22(7):35-47.
    [59]Fleischmann M, Bloemhof-Ruwaard J M, Dekker R, et al. Quantitative models for reverse logistics:A review[J]. European Journal Of Operational Research.1997,103(16):1-17.
    [60]Harold K, Costas P P, Giannis T T, et al. Design principles for closed loop supply chains: optimizing economic, logistic and environmental performance[R]. The Netherlands:ERIM Report Series Research in Management, ERS-2001-62-LIS,2001.
    [61]马祖军,代颖,张殿业.逆向物流网络结构与设计[J].物流技术.2004(4):12-14.
    [62]肖文.产品回收再利用物流网络的特征及其分类[J].物流技术.2004(2):39-41.
    [63]张华歆.逆向物流的网络结构和设计[J].上海海事大学学报.2004,25(4):41-46.
    [64]王发鸿,达庆利,朱立峰.电子类产品逆向物流网络结构设计[J].东南大学学报(哲学社会科学版).2007,9(1):34-38.
    [65]Min H. A ri-criterion reverse distribution model for product recall[J]. Omega.1989,17(5): 483-490.
    [66]Min H, Ko H H, Ko C S. A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns[J]. Omega.2006,34(1):56-59.
    [67]Caruso C, Colorni A, Paruccini M. The regional urban solid waste management system:a modeling approach[J]. European Journal Of Operational Research.1993,70:16-30.
    [68]Kroon L, Vrijens G. Returnable containers:an example of reverse logistics[J]. International Journal of Physical Distribution & Logistics Management.1995,25(2):26-68.
    [69]Splengler T, Puckert H, Penkuhn T, et al. Environmental integrated production and recycling management[J]. European Journal of Operational Research.1997,97:308-326.
    [70]Jayaraman V, Patterson R A, Rolland E. The design of reverse distribution networks:models and solutiion procedures[J]. European Journal of Operational Research.2003,150(2):28-49.
    [71]马祖军,代颖.产品回收逆向物流网络优化设计模型[J].管理工程学报.2005,9(4):114-117.
    [72]马祖军,代颖,刘飞.制造/再制造混合系统中集成物流网络优化设计模型研究[J].计算机集成制造系统.2005,11(11):1552-1557.
    [73]周根贵,曹振宇.遗传算法在逆向物流网络选址问题中的应用研究[J].中国管理科学.2005,13(1):42-47.
    [74]顾巧论,季建华.再制造/制造系统集成物流网络模糊机会约束规划模型[J].控制理论月应用.2005,22(6):889-894.
    [75]代颖,马祖军,刘飞.基于混合遗传算法的制造/再制造集成物流网络优化设计[J].计算机 集成制造系统.2006,12(11):1853-1859.
    [76]代颖,马祖军.基于二阶段随机规划的制造/再制造集成物流网络优化设计[J].系统工程.2006,24(3):8-14.
    [77]Hokey M, Hyun J K, Chang S K. A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns[J]. Omega.2006,34(1):56-69.
    [78]Lu Z, Nathalie B. A facility location model for logistics including reverse flows:the case of remanufacturing activities[J]. Computers and Operations Research.2007,34(2):299-323.
    [79]Listes O. A generic stochastic model for supply-and-return network design[J]. Computers and Operations Reseach.2007,34(2):417-442.
    [80]Vaidyanathan J. The design of reverse distribution networks:models and solution procedures [J]. European Journal of Operational Research.2007,150(1):128-149.
    [81]岳辉,钟学燕,叶怀珍.随机环境下再制造逆向物流网络优化设计[J].中国机械工程.2007,18(4):442-446.
    [82]Ko H J, Evans G W. A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs[J]. Computers & Operations Research.2007,34(2): 346-366.
    [83]狄卫民,胡培.回收物流网络优化设计模糊规划模型[J].中国机械工程.2007,18(23):2840-2844.
    [84]狄卫民,马祖军,代颖.制造/再制造集成物流网络模糊优化设计方法[J].计算机集成制造系统.2008,14(8):1472-1480.
    [85]狄卫民,胡培.设施能力可扩展的制造/再制造物流网络多周期优化设计[J].计算机集成制造系统.2009,15(7):1354-1363.
    [86]Lee D, Dong M. A heuristic approach to logistics network design for end-of-lease computer products recovery[J]. Transportation Research Part E.2008,44(3):455-474.
    [87]孙浩,达庆利.制造/再制造集成物流网络设施选址问题研究[J].计算机集成制造系统.2009,15(2):362-368.
    [88]范体军,常香云,陈荣秋,等.大型废旧产品回收网络的数学模型与算法研究[J].管理科学学报.2009,12(4):94-102.
    [89]伍星华,王旭,代应,等.再制造闭环物流网络的多周期优化设计模型[J].计算机集成制造系统.2011,17(9):2015-2021.
    [90]刘宝碇,赵瑞清.随机规划与模糊规划[M].北京:清华大学出版社,1998.
    [91]夏守长.再制造物流网络健壮性设计方法的研究[D].上海:上海交通大学,2006.
    [92]夏守长,奚立峰,胡宗武.再制造物流网络的健壮性设计[J].机械设计与研究.2004,93(5):68-70.
    [93]夏守长,奚立峰,胡宗武.基于实验设计的再制造物流网络的健壮性设计[J].计算机集成制造系统.2005,11(12):1705-1709.
    [94]马祖军,代颖,刘飞.再制造物流网络的稳健优化设计[J].系统工程.2005,23(1):74-78.
    [95]马祖军,代颖.基于稳健优化的制造/再制造集成物流网络设计[J].西南交通大学学报.2006,41(5):614-619.
    [96]刘诚,黄玉兰,付小勇.基于稳健优化的固体废弃物逆向物流网络设计[J].武汉理工大学学报(信息与管理工程版).2008,30(4):636-638.
    [97]张英,魏明珠.基于鲁棒优化的逆向物流网络设计[J].物流工程与管理.2010,32(11):60-62.
    [98]Daugherty P J, Myers M B, Richey R G. Information support for reverse logistics:the influence of relationship commitment[J]. Journal of Business Logistics.2002,23(1):85-106.
    [99]Daugherty P J, Richey R G, Genchev S E, et al. Reverse logistics:superior performance through focused resource commitments to information technology[J]. Transportation Research:Part E.2005, 41(2):77-92.
    [100]Linton J D, Jonhson D A. A decision support system for planning remanufacturing at Norte Networks[J]. Interfaces.2000,30(6):17-31.
    [101]钱晓江.物流信息系统体系结构[J].东南大学学报(自然科学版).2001,31(6):40-44.
    [102]赵黎明,王迈,王刚.电子商务对反向物流的影响[J].天津大学学报(社会科学版).2002,4(2):101-104.
    [103]张磊.逆向物流流程分析及信息系统规划研究[D].大连:大连理工大学,2006.
    [104]廖瑞辉.企业实施逆向物流SDN-Agent平台研究[D].上海:华东交通大学,2010.
    [105]唐燕,李健,张吉辉.面向再制造的闭环供应链云制造服务平台设计[J].计算机集成制造系统.2012,18(7).
    [106]代颖,马祖军.废旧家电回收处理体系及管理机制[M].北京:科学出版社,2010.
    [107]李德毅,刘常昱,杜鹚,等.不确定性人工智能[J].软件学报.2004,15(11):1583-1594.
    [108]马士华,林勇.供应链管理[M].北京:机械工业出版社,2006.
    [109]徐大丰,李清,谭旭,等.基于模糊认知图的产品回收处理策略的决策研究[J].计算机集成制造系统.2009,15(4):732-740.
    [110]王发鸿,黄祖庆,达庆利.企业再制造条件下逆向物流的“逆牛鞭效应”分析[J].生产力研究.2007(12):107-109.
    [111]赵天智,金以慧.供需链协调控制机制[J].清华大学学报(自然科学版).2001,41(10):123-126.
    [112]Kaufmann A. Introduction to the theory of fuzzy subsets[M]. New York:Academics Press,1975.
    [113]Liu B. An introduction to its axiomatic foundations[M]. Berlin:Springer-Verlag,2004.
    [114]Liu B. A survey of credibility theory[J]. Fuzzy Optimization and Decision Making.2006(5): 387-408.
    [115]Chen S J, Hwang C L. Fuzzy multiple attribute decision making[M]. New York:Springer-Verlag, 1992.
    [116]黄宪成.模糊多目标决策理论、方法及其应用研究[D].大连:大连理工大学,2003.
    [117]罗铮.电子产品逆向物流系统需求分析与预测研究[D].成都:西南交通大学,2007.
    [118]Dean J. Pricing policies for new products[J]. Harvard Business Review.1950,28(6):45-53.
    [119]熊光楞.并行工程的理论与实践[M].北京:清华大学出版社,2001.
    [120]来可伟,殷国富.并行设计[M].北京:机械工业出版社,2003.
    [121]Lee S C, Lee E T. Fuzzy sets and neural networks[J]. Journal of Cybernetics.1974,4:83-103.
    [122]Mamdani E H, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller[J]. International Journal of Man-Machine Studies.1975,7(1):1-13.
    [123]Marx-G6mez J, Rautenstraucha C. Predicting the return of scrapped products through simulation-a case study[J]. Proceedings Second International Working Seminar on Re-Use.1999:71-80.
    [124]Fuller D A, Allen J. Environmental marketing:strategies, practice, theory and research[M]. New York:Haworth Press,1997.
    [125]张玲,潘晓弘,王正肖,等.废旧汽车逆向物流回收模式的研究[J].汽车工程.2011,33(9):823-828.
    [126]靖麦玲.电子电器企业逆向物流的有效经营与控制研究[D].青岛:中国海洋大学,2006.
    [127]Guide V D R, van Wassenhove L N. Closed-loop supply chains[Z]. France:2000.
    [128]常香云.企业逆向物流回收处理若十关键问题研究[D].上海:同济大学,2007.
    [129]Kodak. One-Time-Use Cameras:A tale of product stewardship[Z].
    [130]P H. http://h20430.www2.hp.com/program/csr/cn/zh/070813_2_02.asp[Z].
    [131]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003.
    [132]Liou T S, Wang M J. Ranking fuzzy numbers with integral value[J]. Fuzzy Sets and Systems. 1992,50(3):247-255.
    [133]张都.供应链逆向物流运作模式选择研究[D].成都:电子科技大学,2009.
    [134]潘会平,陈荣秋.供应链合作的利润分配机制研究[J].系统工程理论与实践.2005(6):87-93.
    [135]张听.逆向物流的网络规划与运作模式研究[D].天津:天津大学,2006.
    [136]Salema M I G, Barbosa-Povoa A P, Novais A Q. An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty[J]. European Journal Of Operational Research.2007,179:1063-1077.
    [137]刘宝碇,赵瑞清.随机规划与模糊规划[M].北京:清华大学出版社,2004.
    [138]董颖,唐加福,许宝栋,等.集约生产计划的机会约束规划方法[J].系统工程学报.2003,18(3):255-261.
    [139]Eberhart R C, Shi Y. A modified particle swarm optimizer:Proceedings of 1998 IEEE International Conference on Evolutionary Computation[C]. Anchorage, AK, USA:IEEE Press,1998.
    [140]Kennedy J, Eberhart R C. Particle swarm optimization:Proceedings of the 1995 IEEE International Conference on Neural Networks[C]. IV Piscataway:IEEE Service Center,1995.
    [141]Eberhart R C, Shi Y. Particle swarm optimization:developments, applications and resources: Proceedings of the 2001 IEEE International Conference on Evolutionary Computation[C]. Soul, South Korea:Institute of Electrical and Electronics Engineers Inc.,2001.
    [142]陈立周.稳健设计[M].北京:机械工业出版社,2000.
    [143]高一聪,冯毅雄,谭建荣,等.基于MSRE的机械产品质量特性稳健优化设计方法[J].计算机集成制造系统.2010,16(5):897-904.
    [144]Du X, Chen W. Towards a better understanding of modeling feasibility robustness in engineering design[J]. ASME Journal of Mechanical Design.2000,122(4):385-394.
    [145]丁力平,冯毅雄,谭建荣,等.基于性能稳健指数的产品族稳健优化设计[J].计算机集成制造系统.2010,16(6):1121-1130.
    [146]Gunawan S, Azarm S. Multi-objective robust optimization using a sensitivity region concept[J]. Structural and Multidisciplinary Optimization.2005,29(1):50-60.
    [147]贾江鸣.面向不确定性的供应链性能优化技术研究[D].杭州:浙江大学,2008.
    [148]王其藩.系统动力学理论与方法的新进展[J].系统工程理论方法应用.1995,4(2):6-12.
    [149]Forrester J W. Industrial Dynamics[M]. Cambridge:MIT Press,1961.
    [150]汪应洛.系统工程(第4版)[M].机械工业出版社,2010.
    [151]Towill D R. Industrial dynamics modelling of supply chains[J]. International Journal of Physical Distribution & Logistics Management.1995,26(2):23-42.
    [152]白世贞,王文利.供应链复杂系统资源流建模与仿真[M].北京:科学出版社,2008.
    [153]Georgiadis P, Vlachos D. The effect of environmental parameters on product recovery [J]. European Journal Of Operational Research.2004,157:449-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700