用户名: 密码: 验证码:
镍基贵金属纳米材料用于表面增强拉曼光谱基底研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼光谱(SERS)是一种高灵敏度的检测手段。这种检测手段在最近30年里得到迅速发展,特别是在分析化学,药物化学,生命科学领域和环境检测等方面的研究最为广泛。但是从实际应用的角度上看,合成的基底不仅要求能够产生灵敏的SERS信号而且信号必须稳定。本论文中,我们设计了一种新型的磁性基,然后在磁性基表面包裹不同的贵金属纳米材料,研究了不同的形貌的纳米材料对于SERS信号的影响。通过优化条件,选择出最为合适的纳米复合材料用于待测物的SERS检测。这种新型的磁性复合材料,在外加磁场作用下可以实现SERS基底的再生使用。
     本论文共包括四个章节:
     第一章,首先对SERS技术做简单的介绍,然后对SERS基底的制备方法和应用领域进行总结。接着对循环SERS的研究做简单的回顾,最后,对于磁性Ni的合成方法进行介绍,并且利用其独特的优点将其引入到SERS检测领域。
     第二章,以NiCl2·6H2O和85%N2H4作为反应物,控制不同的实验条件,得到了不同形貌的单质Ni纳米材料。通过实验数据,选择最优形貌的单质Ni作为模板,然后通过置换反应在其表面包裹一层Ag纳米颗粒。随后对所制备的材料进行一系列的表征,最后将其应用于SERS研究。由于在材料的制备过程没有加入表面活性剂,基底比较纯净,适于痕量检测。同时利用复合材料的磁性,将所制备材料进行组装和进行SERS信号研究。
     在第三章,我们选用了另外一种较为稳定的贵金属金作为壳层。通过简单的置换反应,在Ni纳米线的表面包覆一层Au纳米颗粒,合成出Ni@Au核壳纳米材料用于SERS基底。在稳定性研究中,发现放置30天前后,同种材料的SERS信号峰位和峰强没有发生变化。另外,在重复性和循环使用方面也做了研究。
     在第四章中,基于前面实验的基础上,继续研究一维Ni纳米线在SERS技术中的应用。选取多刺的Ni纳米线作为磁性模板,然后在其表面包裹了一层半导体Ti02纳米颗粒和Ag纳米颗粒,将其用于有机分子光催化降解。所以我们将SERS技术引入光催化领域,用SERS方法对光降解过程进行动态监测,提高了催化研究的精确度。
     最后,对本论文的工作进行总结。
Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique. The practical applications of this technique have seen a dramatic increase in the past30years and it is widely applied in a variety of fields, including analytical chemistry, medical science, environmental monitoring, explosive analysis and so on. From an application viewpoint, it is necessary to develop an efficient SERS substrate that can not only provide strong enhancement factors, but also be stable and reproducible. In this paper, we have synthesized a new type of magnetic nanomaterials, and then different noble materials are coated on the surface of the magnetic Ni nanowires. The SERS data are obtained from the nanomaterials of different morphologies.
     This paper includes four chapters. In the first chapter, we make the simple introduction of SERS, and then summarize the ways of the preparation methods of SERS substrates and the applications. After that, we review the development of renewable substrate. At last, the ways of synthesis Ni nanomaterials are introduced.
     In chapter2, it is mainly reported the preparation of Ni nanowires using NiCl2·6H2O and85%N2H4as the metal ion precursor and the reducing agent, respectively, without any surfactants. Then the Ni/Ag nanocomposites is used the Ni NWs as the template. It was found that Ag nanomaterials could be coated on the surface of Ni nanowires through a simple and low-cost redox-transmetalation reaction. The approach did not need additional reagents throughout the reduction process, the nanocomposites had a high purity, which would be very helpful in their potential use for SERS detection. SRES measurements showed these nanocomposites were high stable, reproducible and recyclable as the SERS-active substrates. All of these splendid properties used for the SERS substrates open a new opportunity to the recycling SERS measurement.
     In chapter3, we give a simple, rapid and readily upgraded method to prepare Ni@Au nanocomposites without any surfactants or other linkers. Compared with most of the synthetic strategies available in the literature, this simple and effective method has many advantages. Furthermore, the SERS substrate can be stored long time which is of the great importance in practical application.
     In the chapter4, we synthesize the Ag-coated Ni@TiO2nanocomposites, with a very good core/shell structure, using the simple vapor-thermal method. We study the dynamics of photo degradation process of the dye molecules using the SERS. Because of the UV-Vis spectrometer with low sensitivity, the low concentration of organic molecules cannot be detected. So the SERS technology is introduced into the catalytic reaction to study the dynamics. This will improve the precision of the catalytic research.
     At the end of this paper, we give the conclusion of all the work, and then the goal of future research is made.
引文
[1]M Fleischmann; P J Hendra; Mc Quillan A. Raman spectra of pyridine adsorbed at a silver electrode [J], Chem. Phy. Lett.,1974,26:163-166.
    [2]T. M. Cotton; S. G. Schultz; R. P. Vanduyne. Surface-Enhanced Resonance Raman-Scattering from Cytochrome-C and Myoglobin Adsorbed on a Silver Electrode [J]. J. Am. Chem. Soc,1980,102,7960-7962.
    [3]G. A. Baker; D. S. Moore. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis [J]. Anal. Bioanal. Chem., 2005,382,1751-1770.
    [4]J. Homola. Surface plasmon resonance sensors for detection of chemical and biological species [J]. Chem. Rev.,2008,108,462-493.
    [5]H. L. Liu; Q. Peng; Y. D. Wu, et al. Highly Enantioselective Recognition of Structurally Diverse alpha-Hydroxycarboxylic Acids using a Fluorescent Sensor [J]. Angew. Chem. Int. Edit.,2010,49,602-606.
    [6]D. Li; D. W. Li; J. S. Fossey, et al. Portable Surface-Enhanced Raman Scattering Sensor for Rapid Detection of Aniline and Phenol Derivatives by On-Site Electrostatic Preconcentration [J]. Anal. Chem.,2010,82,9299-9305.
    [7]T. Vo-Dinh. Surface-enhanced Raman spectroscopy using metallic nanostructures [J]. Trac-Trend Anal. Chem.,1998,17,557-582.
    [8]J. Ye; L. Lagae; G. Maes, et al. Symmetry breaking induced optical properties of gold open shell nanostructures [J]. Opt Express,2009,17,23765-23771.
    [9]Z. C. Hong; E. Perevedentseva; S. Treschev, et al. Surface enhanced Raman scattering of nano diamond using visible-light-activated TiO2 as a catalyst to photo-reduce nano-structured silver from AgNO3 as SERS-active substrate [J]. J. Raman. Spectrosc.,2009,40,1016-1022.
    [10]M.Volny; A. Sengupta; C. B. Wilson, et al. Surface-enhanced Raman spectroscopy of soft-landed polyatomic ions and molecules [J]. Anal. Chem.,2007, 79,4543-4551.
    [11]A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, M. A. Reed, Observation of plasmon propagation, redirection, and fan-out in silver nanowires[J]. Nano. Lett.2006,6,1822-1826.
    [12]P. H. C. Camargo, M. Rycenga, L. Au, Y. Xia, Isolating and probing the hot spot formed between two silver nanocubes[J]. Angew. Chem. Int. Ed.2009,48,2180-2184.
    [13]P. Chu; D. L. Mills. Electromagnetic response of nanosphere pairs:Collective plasmon resonances, enhanced fields, and laser-induced forces [J]. Phys. Rev. B., 2008,77-84.
    [14]H.Q. Wang, Z.B. Wu, Y.A. Liu, Simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres[J]. J. Phys. Chem. C,2009, 113:13317-13324.
    [15]K. Kneipp; H. Kneipp; J. Kneipp. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells [J]. Accounts. Chem. Res.,2006, 39,443-450.
    [16]H. Ko; S. Singamaneni; V. V. Tsukruk. Nanostructured Surfaces and Assemblies as SERS Media [J]. Small,2008,4,1576-1599.
    [17]N. Ji; W. D. Ruan; Z. S. Li, et al. A potential commercial surface-enhanced Raman scattering-active substrate:stability and usability [J]. J. Raman. Spectrosc., 2013,44,1-5.
    [18]D. Li; D. W. Li; Y. Li, et al. Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering [J]. J. Mater. Chem.,2010,20,3688-3693.
    [19]W. L. Zhai; D. W. Li; L. L. Qu, et al. Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy [J]. Nanoscale,2012,4,137-142.
    [20]Y. Xia; Y. C. Yang; J. F. Zheng, et al. Facile preparation of ordered arrays of polystyrene spheres dissymmetrically decorated with gold nanoparticles at air/liquid interface and their SERS properties [J]. Rsc.Adv.,2012,2,5284-5290.
    [21]Q. Shao; R. H. Que; M. W. Shao, et al. Copper Nanoparticles Grafted on a Silicon Wafer and Their Excellent Surface-Enhanced Raman Scattering [J]. Adv. Funct. Mater.,2012,22,2067-2070.
    [22]X. H. Xia; J. Zeng; B. McDearmon, et al. Silver Nanocrystals with Concave Surfaces and Their Optical and Surface-Enhanced Raman Scattering Properties [J]. Angew. Chem. Int. Edit.,2011,50,12542-12546.
    [23]X. H. Xia; J. Zeng; L. K. Oetjen, et al. Quantitative Analysis of the Role Played by Poly(vinylpyrrolidone) in Seed-Mediated Growth of Ag Nanocrystals [J]. J. Am. Chem. Soc.,2012,134,1793-1801.
    [24]P. H. C. Camargo; L. Au; M. Rycenga, et al. Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes [J]. Chem. Phys. Lett.,2010,484,304-308.
    [25]J. Zeng; J. Tao; D. Su, et al. Selective Sulfuration at the Corner Sites of a Silver Nanocrystal and Its Use in Stabilization of the Shape [J]. Nano. Lett.,2011,11, 3010-3015.
    [26]L. Guerrini; J. V. Garcia-Ramos; C. Domingo, et al. Nanosensors Based on Viologen Functionalized Silver Nanoparticles:Few Molecules Surface. Enhanced Raman Spectroscopy Detection of Polycyclic Aromatic Hydrocarbons in Interparticle Hot Spots [J]. Anal. Chem.,2009,81,1418-1425.
    [27]K. Kim; J. K. Yoon; H. B. Lee, et al. Surface-Enhanced Raman Scattering of 4-Aminobenzenethiol in Ag Sol:Relative Intensity of a(1)-and b(2)-Type Bands Invariant against Aggregation of Ag Nanoparticles [J]. Langmuir,2011,27,4526-4531.
    [28]S. P. Xu; X. H. Ji; W. Q. Xu, et al. Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering [J]. Analyst,2004,129,63-68.
    [29]K. Qian; H. L. Liu; L. B. Yang, et al. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene [J]. Analyst, 2012,137,4644-4646.
    [30]L. Guerrini; I. Izquierdo-Lorenzo; J. V. Garcia-Ramos, et al. Self-assembly of alpha,omega-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots [J]. Phys. Chem. Chem. Phys.,2009,11,7363-7371.
    [31]B. Han; N. Choi; K. H. Kim, et al. Application of Silver-Coated Magnetic Microspheres to a SERS-Based Optofluidic Sensor [J]. J. Phys. Chem. C.,2011, 115,6290-6296.
    [32]J. H. Shen; Y. H. Zhu; X. L. Yang, et al. Multifunctional Fe3O4@Ag/SiO2/Au Core-Shell Microspheres as a Novel SERS-Activity Label via Long-Range Plasmon Coupling [J]. Langmuir,2013,29,690-695.
    [33]X. Y. Zhang; M. A. Young; O. Lyandres, et al. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy [J]. J. Am. Chem. Soc.,2005, 127,4484-4489.
    [34]Y. Ma; H. Liu; K. Qian, et al. A displacement principle for mercury detection by optical waveguide and surface enhanced Raman spectroscopy [J]. J. Colloid Interf.Sci.,2013,265,346-351.
    [35]Q. F. Chen; Y. Y. Rao; X. Y. Ma, et al. Raman spectroscopy for hydrogen peroxide scavenging activity assay using gold nanoshell precursor nanocomposites as SERS probes [J]. Anal. Methods-Uk,2011,3,274-279.
    [36]M. Culha; D. Stokes; L. R. Allain, et al. Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics [J]. Anal. Chem.,2003,75,6196-6201.
    [37]J. C. S. Costa; D. S. Cordeiro; A. C. Sant'Ana, et al. Sensing of 2,4-dichlorophenoxyacetic acid by surface-enhanced Raman scattering [J]. Vib. Spectrosc.,2010,54,133-136.
    [38]S. J. Toal; W. C. Trogler. Polymer sensors for nitroaromatic explosives detection [J]. J Mater Chem,2006,16,2871-2883.
    [39]L. L. He; B. D. Deen; A. H. Pagel, et al. Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy [J]. Analyst,2013,138,1657-1659.
    [40]H. Yoshikawa; T. Adachi; G. Sazaki, et al. Surface-enhanced hyper-Raman spectroscopy using optical trapping of silver nanoparticles for molecular detection in solution [J]. J. Opt a-Pure. Appl. Op.,2007,9,164-171.
    [41]W. F. Nirode; G. L. Devault; M. J. Sepaniak. On-column surface-enhanced Raman spectroscopy detection in capillary electrophoresis using running buffers containing silver colloidal solutions [J]. Anal. Chem.,2000,72,1866-1871.
    [42]L. B. Yang; L. A. Ma; G. Y. Chen, et al. Ultrasensitive SERS Detection of TNT by Imprinting Molecular Recognition Using a New Type of Stable Substrate [J]. Chem-Eur J.,2010,16,12683-12693.
    [43]S. Nath; S. K. Ghosh; S. Praharaj, et al. Silver organosol:synthesis, characterisation and localised surface plasmon resonance study [J]. New J. Chem., 2005,29,1527-1534.
    [44]G. M. Whitesides. Nanoscience, nanotechnology, and chemistry [J]. Small,2005, 1,172-179.
    [45]W. M. Tolles. Nanoscience and nanotechnology:A perspective with chemistry examples [J]. Nanotechnology,1996,622,1-18.
    [46]S. H. Sun. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles [J]. Adv.Mater.,2006,18,393-403.
    [47]Q. Wang; W. J. Jia; B. C. Liu, et al. Controllable Synthesis of Nearly Monodisperse Spherical Aggregates of CeO2 Nanocrystals and Their Catalytic Activity for HCHO Oxidation [J]. Chem-Asian J.,2012,7,2258-2267.
    [48]J. Park; J. Joo; S. G. Kwon, et al. Synthesis of monodisperse spherical nanocrystals [J]. Angew. Chem. Int. Edit.,2007,46,4630-4660.
    [49]H. Lee; S. M. Dellatore; W. M. Miller, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science,2007,318,426-430.
    [50]J. H. Gao; H. W. Gu; B. Xu. Multifunctional Magnetic Nanoparticles:Design, Synthesis, and Biomedical Applications [J]. Accounts Chem. Res.,2009,42,1097-1107.
    [51]S. Wen; J. A. Szpunar. Direct electrodeposition of highly ordered magnetic nickel nanowires on silicon wafer [J]. Micro Nano. Lett.,2006,1,89-93.
    [52]X. M. Ni; Q. B. Zhao; Y. F. Zhang, et al. Reticular nickel microwires with assembled nanostructures:Synthesis, magnetism and catalysis for the growth of carbon nanotubes [J]. Eur. J. Inorg. Chem.,2007,422-428.
    [53]R. Abu-Much; A. Gedanken. Sonochemical Synthesis under a Magnetic Field: Fabrication of Nickel and Cobalt Particles and Variation of Their Physical Properties [J]. Chem-Eur. J.,2008,14,10115-10122.
    [54]H. Deng; X. L. Li; Q. Peng, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Edit.,2005,44,2782-2785.
    [55]C. B. Murray; C. R. Kagan; M. G. Bawendi. Self-Organization of Cdse Nanocrystallites into 3-Dimensional Quantum-Dot Superlattices [J]. Science,1995, 270,1335-1338.
    [56]L. Garcell; M. P. Morales; M. Andres-Verges, et al. Interfacial and rheological characteristics of maghemite aqueous suspensions [J]. J. Colloid. Interf. Sci.,1998, 205,470-475.
    [57]P. K. Gupta; C. T. Hung. Magnetically Controlled Targeted Micro-Carrier Systems [J]. Life Sci.,1989,44,175-186.
    [58]P. Liu; Z. J. Li; B. Zhao, et al. Template-free synthesis of nickel nanowires by magnetic field [J]. Mater. Lett.,2009,63,1650-1652.
    [59]M. Z. Wu; Y. Xiong; Y. S. Jia, et al. Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite [J]. Chem. Phys. Lett.,2005,401,374-379.
    [60]K. R. Krishnadas; P. R. Sajanlal; T. Pradeep. Pristine and Hybrid Nickel Nanowires:Template-, Magnetic Field-, and Surfactant-Free Wet Chemical Synthesis and Raman Studies [J]. J. Phys. Chem. C.,2011,115,4483-4490.
    [61]J. G. Guan; L. J. Liu; L. L. Xu, et al. Nickel flower-like nanostructures composed of nanoplates:one-pot synthesis, stepwise growth mechanism and enhanced ferromagnetic properties [J]. Crysteng. comm.,2011,13,2636-2643.
    [62]S. Thongmee; H. L. Pang; J. B. Yi, et al. Unique nanostructures in NiCo alloy nanowires [J]. Acta. Mater.,2009,57,2482-2487.
    [63]X. L. Hu; G. S. Li; J. C. Yu. Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications [J]. Langmuir,2010,26,3031-3039.
    [64]X. L. Hu; J. C. Yu. High-Yield Synthesis of Nickel and Nickel Phosphide Nanowires via Microwave-Assisted Processes [J]. Chem. Mater.,2008,20,6743-6749.
    [65]C. H. Gong; L. G. Yu; Y. P. Duan, et al. The fabrication and magnetic properties of Ni fibers synthesized under external magnetic fields [J]. Eur. J. Inorg. Chem., 2008,2884-2891.
    [66]G. B. Yue; Q. L. Xu; G. W. Meng, et al. Electrochemical synthesis and magnetic properties of single-crystal and netlike poly-crystal Ni nanowire arrays [J]. J. Alloy. Compd.,2009,477,30-34.
    [67]T. N. Narayanan; M. M. Shaijumon; P. M. Ajayan, et al. Synthesis of High Coercivity Core-Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties [J]. Nanoscale Res. Lett.,2010,5,164-168.
    [68]Y. J. Kim; J. H. Song. Practical synthesis of Au nanowires via a simple photochemical route [J]. B. Korean. Chem. Soc.,2006,27,633-634.
    [69]S. Senapati; S. K. Srivastava; S. B. Singh, et al. Magnetic Ni/Ag core-shell nanostructure from prickly Ni nanowire precursor and its catalytic and antibacterial activity [J]. J. Mater. Chem.,2012,22,6899-6906.
    [70]C. Klingshirn. ZnO:From basics towards applications [J]. Phys. Status. Solidi B., 2007,244,3027-3073.
    [71]T. Wang; X. G. Hu; S. J. Dong. A renewable SERS substrate prepared by cyclic depositing and stripping of silver shells on gold nanoparticle microtubes [J]. Small, 2008,4,781-786.
    [72]X. H. Li; G. Y. Chen; L. B. Yang, et al. Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection [J]. Adv. Funct. Mater.,2010,20,2815-2824.
    [73]B. H. Jun; M. S. Noh; J. Kim, et al. Multifunctional Silver-Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications [J]. Small,2010,6, 119-125.
    [74]L. B. Yang; Z. Y, Bao; Y. C. Wu, et al. Clean and reproducible SERS substrates for high sensitive detection by solid phase synthesis and fabrication of Ag-coated Fe304microspheres [J]. J. Raman Spectrosc.,2012,43,848-856.
    [75]G. Sinha; L. E. Depero; I. Alessandri. Recyclable SERS Substrates Based on Au-Coated ZnO Nanorods [J]. Acs Appl. Mater. Inter.,2011,3,2557-2563.
    [76]W. E. Smith. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis [J]. Chem. Soc. Rev.,2008,37,955-964.
    [77]C. L. Feng; X. H. Zhong; M. Steinhart, et al. Graded-bandgap quantum-dot-modified nanotubes:A sensitive biosensor for enhanced detection of DNA hybridization [J]. Adv. Mater.,2007,19,1933-1941.
    [78]V. Canpean; S. Astilean. Multifunctional plasmonic sensors on low-cost subwavelength metallic nanoholes arrays [J]. Lab Chip,2009,9,3574-3579.
    [79]A. Heller. Chemistry and applications of photocatalytic oxidation of thin organic films [J]. Accounts Chem. Res.,1995,28,503-508.
    [80]C. Sahoo; A. K. Gupta; I. M. S. Pillai. Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO2 and its application to the degradation of real textile wastewater [J]. J. Environ Sci. Heal A.,2012,47, 1428-1438.
    [81]J. G. Yu; Y. R. Su; B. Cheng. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania [J]. Adv. Funct. Mater.,2007,17,1984-1990.
    [82]J. G. Yu; W. G. Wang; B. Cheng, et al. Enhancement of Photocatalytic Activity of Mesporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment [J]. J. Phys. Chem. C.,2009,113,6743-6750.
    [83]E. Pipelzadeh; A. A. Babaluo; M. Haghighi, et al. Silver doping on TiO2 nanoparticles using a sacrificial acid and its photocatalytic performance under medium pressure mercury UV lamp [J]. Chem. Eng. J.,2009,155,660-665.
    [84]D. Wang; Z. H. Zhou; H. Yang, et al. Preparation of TiO2 loaded with crystalline nano Ag by a one-step low-temperature hydrothermal method [J]. J. Mater. Chem., 2012,22,16306-16311.
    [85]Y. X. Zhang; X. Y. Yu; Y. Jia, et al. A Facile Approach for the Synthesis of Ag-Coated Fe3O4@TiO2 Core/Shell Microspheres as Highly Efficient and Recyclable Photocatalysts [J]. Eur. J. Inorg. Chem.,2011,5096-5104.
    [86]W. Xie; C. Herrmann; K. Kompe, et al. Synthesis of Bifunctional Au/Pt/Au Core/Shell Nanoraspberries for in Situ SERS Monitoring of Platinum-Catalyzed Reactions [J]. J. Am. Chem. Soc,2011,133,19302-19305.
    [87]K. Kim; K. L. Kim; K. S. Shin. Coreduced Pt/Ag Alloy Nanoparticles:Surface-Enhanced Raman Scattering and Electrocatalytic Activity [J]. J. Phys. Chem. C., 2011,115,23374-23380.
    [88]X. M. Zhao; B. H. Zhang; K. L. Ai, et al. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman
    spectroscopy [J]. J. Mater. Chem.,2009,19,5547-5553.
    [89]G. Merga; N. Saucedo; L. C. Cass, et al. "Naked" Gold Nanoparticles:Synthesis, Characterization, Catalytic Hydrogen Evolution, and SERS [J]. J. Phys. Chem. C., 2010,114,14811-14818.
    [90]K. N. Heck; B. G. Janesko; G. E. Scuseria, et al. Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells [J]. J. Am. Chem. Soc.,2008,130,16592-16600.
    [91]P. P. Fang; S. Duan; X. D. Lin, et al. Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity [J]. Chem. Sci.,2011,2,531-539.
    [92]N. F. L. Machado; C. Ruano; J. L. Castro, et al. Chromone-3-carboxylic acid as a potential electron scavenger:a surface-enhanced Raman scattering study [J]. Phys. Chem. Chem. Phys.,2011,13,1012-1018.
    [93]D. B. Steensgaard; H. Wackerbarth; P. Hildebrandt, et al. Diastereoselective control of bacteriochlorophyll e aggregation.3(1)-S-BChl e is essential for the formation of chlorosome-like aggregates [J]. J. Phys. Chem. B.,2000,104,10379-10386.
    [94]V. Joseph; C. Engelbrekt; J. D. Zhang, et al. Characterizing the Kinetics of Nanoparticle-Catalyzed Reactions by Surface-Enhanced Raman Scattering [J]. Angew. Chem. Int. Edit.,2012,51,7592-7596.
    [1]A. J. Haes; R. P. Van Duyne. Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy. [J]. Abstr. Pap. Am. Chem. S.,2003,225, 988-988.
    [2]H. Chi; B. H, Liu; G. J. Guan, et al. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles [J]. Analyst, 2010,135,1070-1075.
    [3]Y. Ma; H. Liu; K. Qian, et al. A displacement principle for mercury detection by optical waveguide and surface enhanced Raman spectroscopy [J]. J. Colloid Interf. Sci.,2012.386.451-455.
    [4]K.Qian; L.Yang; H. Liu, et al. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene [J]. Analyst,2012. 137.4644-4646.
    [5]Y. Y. Liu; G. X. Su; B. Zhang, et al. Nanoparticle-based strategies for detection and remediation of environmental pollutants [J]. Analyst,2011,136,872-877.
    [6]T. Vankeirsbilck; A. Vercauteren; W. Baeyens, et al. Applications of Raman spectroscopy in pharmaceutical analysis [J]. Trac-Trend Anal. Chem.,2002,21, 869-877.
    [7]B. H. Zhang; H. S. Wang; L. H. Lu, et al. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy [J]. Adv. Funct. Mater.,2008,18,2348-2355.
    [8]W. Y. Li; P. H. C. Camargo; X. M. Lu, et al. Dimers of Silver Nanospheres:Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering [J].
    Nano Lett.,2009,9,485-490.
    [9]J. Hees; R. Hoffmann; A. Kriele, et al. Nanocrystalline Diamond Nanoelectrode Arrays and Ensembles [J]. Acs Nano.,2011,5,3339-3346.
    [10]L. L. Rouhana; J. A. Jaber; J. B. Schlenoff. Aggregation-resistant water-soluble gold nanoparticles [J]. Langmuir,2007,23,12799-12801.
    [11]M. K. Fan; A. G. Brolo. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy:Optimization and electrochemical stability [J]. Chem. Phys. Chem.,2008,9,1899-1907.
    [12]K. Christou; I. Knorr; J. Ihlemann, et al. Fabrication and Characterization of Homogeneous Surface-Enhanced Raman Scattering Substrates by Single Pulse UV-Laser Treatment of Gold and Silver Films [J]. Langmuir,2010,26,18564-18569.
    [13]P. Peng; H. Huang; A. M. Hu, et al. Functionalization of silver nanowire surfaces with copper oxide for surface-enhanced Raman spectroscopic bio-sensing [J]. J. Mater. Chem.,2012,22,15495-15499.
    [14]P. Aldeanueva-Potel; E. Faoucher; R. A. Alvarez-Puebla, et al. Recyclable Molecular Trapping and SERS Detection in Silver-Loaded Agarose Gels with Dynamic Hot Spots [J]. Anal. Chem.,2009,81,9233-9238.
    [15]L. Zhang; J. J. Xu; L. Mi, et al. Multifunctional magnetic-plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS [J]. Biosens Bioelectron,2012,31,130-136.
    [16]X. Li; G. Chen; L. Yang, et al. Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection [J]. Adv. Funct. Mater.,2010,20,2815-2824.
    [17]C. L. Gao; Y. Y. Liang; M. Han, et al. Hierarchical construction of composite hollow structures of Co@CoO and their magnetic behavior [J]. J. Phys. Chem. C., 2008,112,9272-9277.
    [18]Q. L. Ye; H. Yoshikawa; K. Awaga. Magnetic and Optical Properties of Submicron-Size Hollow Spheres [J]. Materials,2010,3,1244-1268.
    [19]J. H. Zhou; J. P. He; G. X. Li, et al. Direct Incorporation of Magnetic Constituents within Ordered Mesoporous Carbon-Silica Nanocomposites for Highly Efficient Electromagnetic Wave Absorbers [J]. J. Phys. Chem.C.,2010,114, 7611-7617.
    [20]Y. X. Zhang; X. Y. Yu; Y. Jia, et al. A Facile Approach for the Synthesis of Ag-
    Coated Fe3O4@TiO2 Core/Shell Microspheres as Highly Efficient and Recyclable
    Photocatalysts [J]. Eur. J. Inorg. Chem.,2011,127,5096-5104.
    [21]O. N. Tatarinova; I. P. Smirnov; I. V. Safenkova, et al. DNA complexes with Ni nanoparticles:structural and functional properties [J]. J Nanopart Res,2012,14, 1207-1212.
    [22]A. Querejeta-Fernandez; M. Parras; A. Varela, et al. Urea-Melt Assisted Synthesis of Ni/NiO Nanoparticles Exhibiting Structural Disorder and Exchange Bias [J]. Chem. Mater.,2010,22,6529-6541.
    [23]H. Yang; X. J. Li; H. Zhou, et al. Monodisperse water-soluble Fe-Ni nanoparticles for magnetic resonance imaging [J]. J. Alloy. Compd.,2011,509, 1217-1221.
    [24]K. R. Krishnadas; P. R. Sajanlal; T. Pradeep. Pristine and Hybrid Nickel Nanowires:Template-, Magnetic Field-, and Surfactant-Free Wet Chemical Synthesis and Raman Studies [J]. J. Phys. Chem. C.,2011,115,4483-4490.
    [25]D. H. Chen; S. R. Wang. Protective agent-free synthesis of Ni-Ag core-shell nanoparticles [J]. Mater. Chem. Phys.,2006,100,468-471.
    [26]C. C. Lee; D. H. Chen. Large-scale synthesis of Ni-Ag core-shell nanoparticles with magnetic, optical and anti-oxidation properties [J]. Nanotechnology,2006,17, 3094-3099.
    [27]F. Taufany; C. J. Pan; J. Rick, et al. Kinetically Controlled Autocatalytic Chemical Process for Bulk Production of Bimetallic Core-Shell Structured Nanoparticles [J]. Acs Nano.,2011,5,9370-9381.
    [28]H. S. Shin; S. Huh. Au/Au@Polythiophene Core/Shell Nanospheres for Heterogeneous Catalysis of Nitroarenes [J]. Acs Appl. Mater. Inter.,2012,4,6324-6331.
    [29]C. H. Cui; J. W. Yu; H. H. Li, et al. Remarkable Enhancement of Electrocatalytic Activity by Tuning the Interface of Pd-Au Bimetallic Nanoparticle Tubes [J]. Acs Nano.,2011,5,4211-4218.
    [30]Y. Qu; W. Zhou; Z. Y. Ren, et al. Facile preparation of porous NiTiO3 nanorods with enhanced visible-light-driven photocatalytic performance [J]. J. Mater. Chem., 2012,22,16471-16476.
    [31]J. M. Yan; X. B. Zhang; S. Han, et al. Synthesis of Longtime Water/Air-Stable Ni Nanoparticles and Their High Catalytic Activity for Hydrolysis of Ammonia-Borane for Hydrogen Generation [J]. Inorg. Chem.,2009,48,7389-7393.
    [32]B. Y. Lin; R. Wang; J. X. Lin, et al. Sm-promoted alumina supported Ru catalysts for ammonia synthesis:Effect of the preparation method and Sm promoter [J]. Catal. Commun.,2011,12,553-558.
    [33]S. Sarkar; A. K. Sinha; M. Pradhan, et al. Redox Transmetalation of Prickly Nickel Nanowires for Morphology Controlled Hierarchical Synthesis of Nickel/Gold Nanostructures for Enhanced Catalytic Activity and SERS Responsive Functional Material [J]. J. Phys. Chem. C.,2011,115,1659-1673.
    [34]D. E. Zhang; X. M. Ni; H. G. Zheng, et al. Synthesis of needle-like nickel nanoparticles in water-in-oil microemulsion [J]. Mater. Lett.,2005,59,2011-2014.
    [35]J. G. Guan; L. J. Liu; L. L. Xu, et al. Nickel flower-like nanostructures composed of nanoplates:one-pot synthesis, stepwise growth mechanism and enhanced ferromagnetic properties [J]. Crysteng Comm.,2011,13,2636-2643.
    [36]H. Wang; Q. W. Chen; L. X. Sun, et al. Magnetic-Field-Induced Formation of One-Dimensional Magnetite Nanochains [J]. Langmuir,2009,25,7135-7139.
    [37]Y. Liu; L. Zhou; Y. Hu, et al. Magnetic-field induced formation of ID Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment [J]. J. Mater. Chem.,2011,21,18359-18364.
    [38]C. H. Gong; L. G. Yu; Y. P. Duan, et al. The fabrication and magnetic properties of Ni fibers synthesized under external magnetic fields [J]. Eur. J. Inorg. Chem., 2008,48,2884-2891.
    [39]H. Ko; S. Singamaneni; V. V. Tsukruk. Nanostructured Surfaces and Assemblies as SERS Media [J]. Small,2008,4,1576-1599.
    [40]A. Abbas; R. Kattumenu; L. M. Tian, et al. Molecular Linker-Mediated Self-Assembly of Gold Nanoparticles:Understanding and Controlling the Dynamics [J]. Langmuir,2013,29,56-64.
    [41]A. M. Gabudean; M. Focsan; S. Astilean. Gold Nanorods Performing as Dual-Modal Nanoprobes via Metal-Enhanced Fluorescence (MEF) and Surface-Enhanced Raman Scattering (SERS) [J]. J. Phys. Chem. C.,2012,116,12240-12249.
    [42]J. M. Hao; Z. H. Xu; M. J. Han, et al. Surface-enhanced Raman scattering analysis of perchlorate using silver nanofilms deposited on copper foils [J]. Colloid Surface A,2010,366,163-169.
    [43]Y. Zhu; H. Liu; L. Yang, et al. Study on the synthesis of Ag/AgCl nanoparticles and their photocatalytic properties [J]. Mater Res Bull,2012,452,147-153.
    [44]Y. Yang; Z. Y. Li; K. Yamaguchi, et al. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics [J]. Nanoscale,2012,4,2663-2669.
    [45]S. H. Zhou; H. F. Yin; V. Schwartz, et al. In Situ Phase Separation of NiAu Alloy Nanoparticles for Preparing Highly Active Au/NiO CO Oxidation Catalysts [J]. Chem Phys. Chem.,2008,9,2475-2479.
    [46]R. H. Que; M. W. Shao; S. J. Zhuo, et al. Highly Reproducible Surface-Enhanced Raman Scattering on a Capillarity-Assisted Gold Nanoparticle Assembly [J]. Adv. Funct. Mater.,2011,21,3337-3343.
    [47]E. C. Le Ru; E. Blackie; M. Meyer, et al. Surface enhanced Raman scattering enhancement factors:a comprehensive study [J]. J. Phys. Chem. C.,2007,111, 13794-13803.
    [48]A. Tao; F. Kim; C. Hess, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy [J]. Nano. Lett., 2003,3,1229-1233.
    [49]P. Li; Q. Peng; Y. D. Li. Controlled Synthesis and Self-Assembly of Highly Monodisperse Ag and Ag2S Nanocrystals [J]. Chem-Eur. J.,2011,17,941-946.
    [50]L. Zhang; W. F. Dong; Z. Y. Tang, et al. Surface-enhanced Raman scattering substrates of high-density and high-homogeneity hot spots by magneto-metal nanoprobe assembling [J]. Opt. Lett.,2010,35,3297-3299.
    [51]L. Zhang; Q. Luo; F. Zhang, et al. High-performance magnetic antimicrobial Janus nanorods decorated with Ag nanoparticles [J]. J. Mater. Chem.,2012,22, 23741-23744.
    [52]Q. Shao; R. H. Que; L. Cheng, et al. Fast one-step silicon-hydrogen bond assembly of silver nanoparticles as excellent surface-enhanced Raman scattering substrates[J].Rsc Adv.,2012,2,1762-1764.
    [1]H. Deng; X. L. Li; Q. Peng, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Edit.,2005,44,2782-2785.
    [2]S. A. Majetich; Y. Jin. Magnetization directions of individual nanoparticles [J]. Science,1999,284,470-473.
    [3]Y. Zhou; J. Chen; L. Zhang, et al. Multifunctional Ti02-Coated Ag Nanowire Arrays as Recyclable SERS Substrates for the Detection of Organic Pollutants [J]. Eur. J. Inorg. Chem.,2012,3176-3182.
    [4]M. P. Pileni. Magnetic fluids:Fabrication, magnetic properties, and organization of nanocrystals [J]. Adv. Funct. Mater.,2001,11,323-336.
    [5]W. S. Seo; H. H. Jo; K. Lee, et al. Preparation and optical properties of highly crystalline, colloidal, and size-controlled indium oxide nanoparticles [J]. Adv. Mater.,2003,15,795-803.
    [6]U. Jeong; X. W. Teng; Y. Wang, et al. Superparamagnetic colloids:Controlled synthesis and niche applications [J]. Adv. Mater.,2007,19,33-60.
    [7]Y. X. Zhang; X. Y. Yu; Z. Jin, et al. Ultra high adsorption capacity of fried egg jellyfish-like gamma-AlOOH(Boehmite)@Si02/Fe3O4 porous magnetic microspheres for aqueous Pb(II) removal [J]. J. Mater. Chem.,2011,21,16550-16557.
    [8]J. M. Skowronski; A. Wazny. Nickel foam-based composite electrodes for electrooxidation of methanol [J]. J. Solid State Electr.,2005,9,890-899.
    [9]L. C. Zhang; J. Hu; Y. Lv, et al. Recent Progress in Chemiluminescence for Gas Analysis [J]. Appl. Spectrosc. Rev.,2010,45,474-489.
    [10]B. Singh; C. L. Ho; Y. C. Tseng, et al. Controlled synthesis and magnetic properties of nickel phosphide and bimetallic iron-nickel phosphide nanorods [J]. J. Nanopart Res.,2012,14,781-789.
    [11]N. Cordente; M. Respaud; F. Senocq, et al. Synthesis and magnetic properties of nickel nanorods [J]. Nano. Lett.,2001,1,565-568.
    [12]J. W. Park; E. H. Chae; S. H. Kim, et al. Preparation of fine Ni powders from nickel hydrazine complex [J]. Mater. Chem. Phys.,2006,97,371-378.
    [13]C. Wang; X. J. Han; P. Xu, et al. Response to "Comment on 'The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material [J]. Appl. Phys. Lett.,2012,100,210-219.
    [14]C. Wang; X. J. Han; P. Xu, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material [J]. Appl. Phys. Lett.,2011,98,501-510.
    [15]S. Sarkar; A. K. Sinha; M. Pradhan, et al. Redox Transmetalation of Prickly Nickel Nanowires for Morphology Controlled Hierarchical Synthesis of Nickel/Gold Nanostructures for Enhanced Catalytic Activity and SERS Responsive Functional Material [J]. J. Phys.Chem. C.,2011,115,1659-1673.
    [16]Y. Y. Lin; Y. Qiao; Y. J. Wang, et al. Self-assembled laminated nanoribbon-directed synthesis of noble metallic nanoparticle-decorated silica nanotubes and their catalytic applications [J]. J. Mater. Chem.,2012,22,18314-18320.
    [17]M. Hu; J. Y. Chen; Z. Y. Li, et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications [J]. Chem. Soc. Rev.,2006,35, 1084-1094.
    [18]G. von Maltzahn; A. Centrone; J. H. Park, et al. SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-infrared Imaging and Photothermal Heating [J]. Adv. Mater.,2009,21,3175-3186.
    [19]A. Tao; F. Kim; C. Hess, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy [J]. Nano. Lett., 2003,3,1229-1233.
    [20]X. Gong; Y. Bao; C. Qiu, et al. Individual nanostructured materials:fabrication and surface-enhanced Raman scattering [J]. Chem. Commun.,2012,48,7003-7018.
    [21]H. X. Wu; H. L. He; Y. J. Zhai, et al. A facile and general preparation of high-performance noble-metal-based free-standing nanomembranes by a reagentless interfacial self-assembly strategy [J]. Nanoscale,2012,4,6974-6980.
    [22]J. Nogues; V. Skumryev; J. Sort, et al. Shell-driven magnetic stability in core-shell nanoparticles [J]. Phys. Rev. Lett.,2006,97,567-573.
    [23]S. Doppiu; V. Langlais; J. Sort, et al. Controlled reduction of NiO using reactive ball milling under hydrogen atmosphere leading to Ni-NiO nanocomposites [J]. Chem. Mater.,2004,16,5664-5669.
    [24]S. Xu; W. F. Ma; L. J. You, et al. Toward Designer Magnetite/Polystyrene Colloidal Composite Microspheres with Controllable Nanostructures and Desirable Surface Functionalities [J]. Langmuir,2012,28,3271-3278.
    [25]J. F. Li; X. D. Tian; S. B. Li, et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nat. Protoc.,2013,8,52-65.
    [26]K. Qian; H. L. Liu; L. B. Yang, et al. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene [J]. Analyst, 2012,137,4644-4646.
    [27]J. F. Li; Y. F. Huang; Y. Ding, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature,2010,464,392-395.
    [28]J. F. Li; S. B. Li; J. R. Anema, et al. Synthesis and Characterization of Gold Nanoparticles Coated with Ultrathin and Chemically Inert Dielectric Shells for SHINERS Applications [J]. Appl. Spectrosc.,2011,65,620-626.
    [29]H. Zhu; M. L. Du; M. L. Zou, et al. Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates [J]. Dalton T,2012,41,10465-10471.
    [30]L. M. Tian; E. Chen; N. Gandra, et al. Gold Nanorods as Plasmonic Nanotransducers:Distance-Dependent Refractive Index Sensitivity [J]. Langmuir, 2012,28,17435-17442.
    [31]M. A. Mahmoud; C. E. Tabor; M. A. El-Sayed. Surface-Enhanced Raman Scattering Enhancement by Aggregated Silver Nanocube Monolayers Assembled by the Langmuir-Blodgett Technique at Different Surface Pressures [J]. J. Phys.Chem. C.,2009,113,5493-5501.
    [32]Q. Q. Ding; H. L. Liu; L. B. Yang, et al. Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates [J]. J. Mater. Chem.,2012,22,19932-19939.
    [33]B. Bosnich. Cooperative bimetallic redox reactivity [J]. Inorg. Chem.,1999,38, 2554-2562.
    [34]S. P. Shukla; M. Roy; P. Mukherjee, et al. Interaction of bilirubin with Ag and Au ions:green synthesis of bilirubin-stabilized nanoparticles [J]. J. Nanopart. Res., 2012,14,1201-1208.
    [35]R. S. Weatherup; B. C. Bayer; R. Blume, et al. In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growth [J]. Nano. Lett.,2011,11,4154-4160.
    [36]H. Medina; Y. C. Lin; C. H. Jin, et al. Metal-Free Growth of Nanographene on Silicon Oxides for Transparent Conducting Applications [J]. Adv. Funct. Mater., 2012,22,2123-2128.
    [37]Y. C. Chang; D. H. Chen. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst [J]. J Hazard Mater,2009,165,664-669.
    [38]S. K. Samal; M. Dash; S. Van Vlierberghe, et al. Cationic polymers and their therapeutic potential [J]. Chem. Soc. Rev.,2012,41,7147-7194.
    [39]J. P. Singh; H. Y. Chu; J. Abell, et al. Flexible and mechanical strain resistant large area SERS active substrates [J]. Nanoscale,2012,4,3410-3414.
    [40]J. Hu; P. C. Zheng; J. H. Jiang, et al. Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy [J]. Anal. Chem., 2009,81,87-93.
    [41]P. Negri; A. Kage; A. Nitsche, et al. Detection of viral nucleoprotein binding to anti-influenza aptamers via SERS [J]. Chem. Commun.,2011,47,8635-8637.
    [42]L. L. Qu; D. W. Li; J. Q. Xue, et al. Batch fabrication of disposable screen printed SERS arrays [J]. Lab Chip,2012,12,876-881.
    [43]D. He; B. Hu; Q. F. Yao, et al. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity:Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles [J]. Acs Nano.,2009,3,3993-4002.
    [1]Y. J. Chen; G. H. Tian; Z. Y. Ren, et al. Solvothermal Synthesis, Characterization, and Formation Mechanism of a Single-Layer Anatase TiO2 Nanosheet with a Porous Structure [J]. Eur. J. Inorg. Chem.,2011,28,754-760.
    [2]B. Volker; F. Wolzl; T. Burgi, et al. Dye Bonding to TiO2:In Situ Attenuated Total Reflection Infrared Spectroscopy Study, Simulations, and Correlation with Dye-Sensitized Solar Cell Characteristics [J]. Langmuir,2012,28,11354-11363.
    [3]C. A. Castro; A. Jurado; D. Sissa, et al. Performance of Ag-TiCO2 Photocatalysts towards the Photocatalytic Disinfection of Water under Interior-Lighting and Solar-Simulated Light Irradiations [J]. Int. J. Photoenergy,2012,46,1173-1181.
    [4]W. X. Guo; F. Zhang; C. J. Lin, et al. Direct Growth of TiO2 Nanosheet Arrays on Carbon Fibers for Highly Efficient Photocatalytic Degradation of Methyl Orange [J]. Adv. Mater.,2012,24,4761-4764.
    [5]Y. X. Zhang; X. Y. Yu; Y. Jia, et al. A Facile Approach for the Synthesis of Ag-Coated Fe3O4@TiO2 Core/Shell Microspheres as Highly Efficient and Recyclable Photocatalysts [J]. Eur. J. Inorg. Chem.,2011,21,5096-5104.
    [6]J. J. Li; J. T. Feng; W. Yan. Synthesis of polypyrrole-modified TiO2 composite adsorbent and its adsorption performance on acid Red G [J]. J. Appl. Polym. Sci., 2013,128,3231-3239.
    [7]Y. G. Han; L. L. Wu; H. Gu, et al. Synthesis of well-dispersed TiO2 nanorods and their application in hybrid ultraviolet photodetectors [J]. J. Mater. Sci-Mater El, 2013,24,1220-1224.
    [8]D. Papoulis; S. Komarneni; D. Panagiotaras, et al. Halloysite-TiO2 nanocomposites:Synthesis, characterization and photocatalytic activity [J]. Appl. Catal B-Environ,2013,132,416-422.
    [9]S. K. Parayil; H. S. Kibombo; L. Mahoney, et al. Synthesis of mixed phase anatase-TiO2(B) by a simple wet chemical method [J]. Mater. Lett.,2013,95,175-177.
    [10]S. J. Kim; K. Xu; H. Parala, et al. Intrinsic Nitrogen-doped CVD-grown TiO2 Thin Films from All-N-coordinated Ti Precursors for Photoelectrochemical Applications [J]. Chem. Vapor Depos.,2013,19,45-52.
    [11]H. M. Zhang; C. H. Liang; J. Liu, et al. Defect-Mediated Formation of Ag Cluster-Doped TiO2 Nanoparticles for Efficient Photodegradation of Pentachlorophenol [J]. Langmuir,2012,28,3938-3944.
    [12]K. Kim; K. L. Kim; K. S. Shin. Coreduced Pt/Ag Alloy Nanoparticles:Surface-Enhanced Raman Scattering and Electrocatalytic Activity [J]. J. Phys. Chem. C., 2011,115,23374-23380.
    [13]X. M. Zhao; B. H. Zhang; K. L. Ai, et al. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy [J]. J. Mater. Chem.,2009,19,5547-5553.
    [14]S. Huh; J. Park; Y. S. Kim, et al. UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering[J]. Acs Nano.,2011,5,9799-9806.
    [15]X. B. Tan; Z. Y. Wang; J. Yang, et al. Polyvinylpyrrolidone-(PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells [J]. Nanotechnology,2009,20,1316-1320.
    [16]A. C. Power; A. J. Betts; J. F. Cassidy. Non aggregated colloidal silver nanoparticles for surface enhanced resonance Raman spectroscopy [J]. Analyst, 2011,136,2794-2801.
    [17]Y. X. Huang; L. Sun; K. P. Xie, et al. SERS study of Ag nanoparticles electrodeposited on patterned TiO2nanotube films [J]. J. Raman. Spectrosc.,2011, 42,986-991.
    [18]K. Iwashina, A. Kudo, Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation[J]. J. Am. Chem. Soc.,2011,133 (34):13272-13275
    [19]S. Li; M. Suzuki; K. Nakajima, et al. An approach to self-cleaning SERS sensors by arraying Au nanorods on TiO2 layer-art. no.66470J [J]. P. Soc. Photo-Opt Ins, 2007,6647,6470-6470.
    [20]X. Li; G. Chen; L. Yang, et al. Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection [J]. Adv. Funct. Mater.,2010,20,2815-2824.
    [21]Q. Q. Ding; H. L. Liu; L. B. Yang, et al. Speedy and surfactant-free in situ synthesis of nickeI/Ag nanocomposites for reproducible SERS substrates [J]. J. Mater. Chem.,2012,22,19932-19939.
    [22]R. Abu-Much; A. Gedanken. Sonochemical Synthesis under a Magnetic Field: Fabrication of Nickel and Cobalt Particles and Variation of Their Physical Properties [J]. Chem-Eur J.,2008,14,10115-10122.
    [23]W. T. Jiang; N. Ullah; G. Divitini, et al. Vertically Oriented TiOxNy Nanopillar Arrays with Embedded Ag Nanoparticles for Visible-Light Photocatalysis [J]. Langmuir,2012,28,5427-5431.
    [24]L. F. Lu; L. Kong; Z. Jiang, et al. Visible-Light-Driven Photodegradation of Rhodamine B on Ag-Modified BiOBr [J]. Catal. Lett.,2012,142,771-778.
    [25]H. M. Li; Y. C. Luo; Z. X. Li, et al. Nanosemiconductor-Based Photocatalytic Vapor Generation Systems for Subsequent Selenium Determination and Speciation with Atomic Fluorescence Spectrometry and Inductively Coupled Plasma Mass Spectrometry [J]. Anal. Chem.,2012,84,2974-2981.
    [26]Z. C. Hong; E. Perevedentseva; S. Treschev, et al. Surface enhanced Raman scattering of nano diamond using visible-light-activated TiO2 as a catalyst to photo-reduce nano-structured silver from AgNO3 as SERS-active substrate [J]. J. Raman Spectrosc,2009,40,1016-1022.
    [27]L. B. Yang; X. Jiang; W. D. Ruan, et al. Charge-Transfer-Induced Surface-Enhanced Raman Scattering on Ag-TiO2 Nanocomposites [J]. J. Phys. Chem. C., 2009,113,16226-16231.
    [28]R. J. Dijkstra; A. Gerssen; E. V. Efremov, et al. Substrates for the at-line coupling of capillary electrophoresis and surface-enhanced Raman spectroscopy [J]. Anal. Chim. Acta.,2004,508,127-134.
    [29]M. Sackmann; S. Bom; T. Balster, et al. Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy [J]. J. Raman. Spectrosc.,2007,38,277-282.
    [30]J. Hu; P. C. Zheng; J. H. Jiang, et al. Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy [J]. Anal. Chem., 2009,81,87-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700