用户名: 密码: 验证码:
虫草发酵及其代谢产物的分离与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虫草是一类珍稀的真菌药材资源,具有代谢产物和生物活性多样的特点,在功能性食品和生物医药领域展现出巨大的应用前景。本学位论文主要以我国特有的药用虫草新资源——戴氏虫草Cordyceps taii Z.Q. Liang & A.Y. Liu (1991) (= Metacordyceps taii)和江西虫草Cordyceps jiangxiensis Z.Q. Liang, A.Y. Liu & Y.C. Jiang (2001)为研究对象,立足于虫草可持续开发利用尚待解决的一些科学技术问题,在前期研究的基础上,重点就虫草菌丝体及其多糖的发酵生产、生物活性、菌丝体的化学组成分析及其代谢产物的分离纯化等展开研究。
     虫草及其代谢产物的发酵生产是虫草研究领域的重要课题。率先把非线性数学模型——期望函数法引入到真菌发酵过程优化,针对江西虫草发酵菌丝体及其多糖两个目标的发酵生产条件进行优化。优化后的发酵条件使虫草菌丝体产量和多糖产量分别高达24.5g/L和8.9g/L,均比优化前增加了2倍多。这为发酵过程复数个目标的优化提供了成功的事例,也奠定了江西虫草可持续开发利用的基础。同时,还采用一种组合的优化实验设计策略,即单次单因子法与Plackett-Burman设计、最陡爬坡法、中心组合设计等响应面法联用的策略,对戴氏虫草胞外多糖的发酵生产条件进行优化,建立了预测戴氏虫草多糖发酵生产的二次多元回归数学模型,并获得了最适的发酵生产条件。优化后的条件使多糖产量从0.77g/L提高到40g/L以上,这为戴氏虫草活性多糖的进一步研发提供了有力的保障。
     在上述发酵条件的研究基础上,对戴氏虫草和江西虫草发酵菌丝体多糖组分的生物活性及作用机制进行了探索。观察到这两种虫草的菌丝体多糖组分均具有较强的抗氧化新功效。尤其是大部分多糖组分清除超氧阴离子自由基的活性明显强于硫脲和丁基羟基茴香醚两个阳性对照组;有两个戴氏虫草发酵菌丝体多糖组分,在中低剂量时螯合Fe离子的活性,明显强于EDTA阳性对照组;戴氏虫草多糖的抗氧化作用机制与显著提高内源性抗氧化酶SOD、CAT和GSH-Px的活性以及明显降低脂质过氧化代谢产物MDA的水平有关。另外,观察到江西虫草发酵菌丝体多糖组分MPCJ4和MPCJ5存在非免疫应答的抗肿瘤作用机制,即,作用于肿瘤细胞G1/S期,阻断细胞进入G2/M期,并诱导G1期细胞凋亡,且其与Caspase依赖的凋亡途径有关。
     除了多糖这一虫草的主要活性成分之外,江西虫草和戴氏虫草发酵菌丝体中还有其它具有重要价值的营养成分和生物活性物质。为此,对戴氏虫草、江西虫草和古尼虫草Cordyceps gunnii (Berk.) Berk. (1859)发酵菌丝体的营养成分、生物活性物质及潜在的有毒化学物等进行了系统的定性定量分析。古尼虫草、戴氏虫草和江西虫草发酵菌丝体中多糖、虫草酸和核苷类化合物的水平均为江西虫草>戴氏虫草>古尼虫草;古尼虫草、戴氏虫草和江西虫草的发酵菌丝体中富含不饱和脂肪酸和氨基酸,不饱和脂肪酸分别占总脂肪酸中的78.7%,66.9%和79.0%;古尼虫草、戴氏虫草和江西虫草虫草发酵菌丝体中总氨基酸的含量在146.0-168.3mg/g范围,其中必需氨基酸分别占总氨基酸中的37.05%、39.39%和39.37%;古尼虫草、戴氏虫草和江西虫草发酵菌丝体均富含Fe、Zn、Se, Cr和Co等微量元素,Al、Sn、Pb、Cd、As和Hg等潜在毒性物质含量均低于国家的限制水平。综上,江西虫草、戴氏虫草和古尼虫草发酵菌丝体富含较高利用价值的营养成分和生物活性物质,所含潜在毒性物质均在安全范围内,具有作为食药品新资源的潜力。同时,研究结果为建立这些虫草菌丝体生产的相应质控体系提供了实验依据。
     在虫草菌丝体营养成分及生物活性物质的全面分析过程,本文还建立了虫草菌丝体中作为重要质控指标的虫草酸和核苷的检测方法。确立了酶标仪比色法检测虫草酸,该方法可替代常规分光光度比色法,其灵敏度、精确度和稳定性良好,准确度较高,并具高通量检测特点;还建立了同时检测7种主要核苷与碱基的高效液相色谱法(HPLC-PDA)。该方法有良好的精密度、稳定性和重复性,比已报道的HPLC方法的分析时间缩短了一半(12min),并能更全面反映虫草及其发酵菌丝体产品中的核苷及碱基;采用HPLC-PDA法检测到江西虫草发酵菌丝体含有尿嘧啶、尿苷、鸟苷、腺嘌呤、腺苷和虫草菌素,其中尿苷(7802.14gg/g)和腺苷(2705.92μg/g)是主要的核苷成分。
     众所周知,虫草的研发价值除氨基酸等营养成分以及多糖、虫草酸、核苷等生物活性物质外,还有其它许多有用的次生代谢产物,这些是功能食品研发和新药创制的源泉,也是真正实现虫草高附加值二次化学成分开发利用的基础。在前期抗肿瘤活性检测的基础上,首次从江西虫草发酵菌丝体抗肿瘤有效部位中分离出30多种单体,其中鉴定出18种化合物,即二十四烷酸(2)、十八烷酸-α-单甘油酯(5)、江西烯酮酯jiangxienone(7)、菜油甾醇-二十二烷酸酯(8)、麦角甾醇-十六烷酸酯(9)、尿嘧啶核苷(14)、麦角甾醇(21)、5a-麦角甾-7,22-二烯-3β-醇(22)、丁二酸(23)、尿嘧啶(24)、腺嘌呤(25)、腺嘌呤核苷(26)、烟酸(27)、3’-甲氧基尿嘧啶核苷(28)、2’-甲氧基腺嘌呤核苷(31)、2’-脱氧尿嘧啶核苷(32)、L-焦谷氨酸甲酯(33)和龙脑香醇酮(34)。在这18种化合物中,化合物7-9为新化合物,属于甾体类。其中化合物7(江西烯酮酯)的氧化度高,抑制肿瘤细胞增殖活性明显强于一线化疗药物顺铂,具有创制抗肿瘤新药的潜力。此外,还有10个已知化合物(2,5,22-23,27-28,31-34)为首次从虫草属真菌中获得。这些研究结果丰富了虫草天然产物化合物库,为新药创制增添了化合物资源,也为江西虫草菌丝体的二次化学成分研发奠定了基础。
Cordyceps, an entomopathogenic macrofungus, has been used for centuries as a rare traditional Chinese medicinal herb. It contains various known and untapped bioactive compounds, and is recognized as an important natural resource for the development of health-promoting functional food and for new drug discovery related to immunomodulatory, antitumor, hypoglycemic and hypocholesterolemic activities, etc. The fungi of Cordyceps therefore receive increasing attention around the world as an interesting natural drug resource. Two new and folk medicinal species of Cordyceps, namely Cordyceps taii Z.Q. Liang & A.Y. Liu (1991) (=Metacordyceps taii) and Cordyceps jiangxiensis Z.Q. Liang, A.Y. Liu & Y. C. Jiang (2001), which were discovered in China, were used in the present study. Fermentation for production of mycelial biomass and polysaccharide, evaluation of polysaccharide bioactivity, analysis of Cordyceps mycelia chemical composition, and separation and purification of metabolites from the fermented Cordyceps were performed on the basis of previous work.
     The production of Cordyceps spp. and its metabolites using fermentation technology is seen as an important project on research yield of Cordyceps. Desirability function, a nonlinear mathematical model, was applied to optimize the fermentation conditions for simultaneous hyper-production of biomass and intracellular polysaccharide by C. jiangxiensis in submerged cultivation for the first time. Under optimal fermentation conditions obtained by desirability function method, the production titer of mycelia and intracellular polysaccharide reached 24.45 and 8.93 g/1, respectively, after a 9-day submerged cultivation, which was 2 folds higher than that of un-optimized conditions. The use of desirability function was proved effective in optimizing multi-response fermentation processes and it is readily applicable to other bioprocesses.
     A combinatorial experimental design strategy involving both the one-variable-at-a-time method and response surface methodology (Plackett-Burman, steepest ascent, and central combination designs) was employed for the optimization of mycelial growth and exopolysaccharides (EPS) production by C. taii. A quadratic multivariate regression model accurately predicting EPS yield was established through the above optimization process. This optimization gave a surprising increase in EPS yield (>40g/L) compared to the level (0.77g/L) obtained in basal medium in shake-flask culture. The improved production condition will be helpful for the development of EPS in the fields of health foods and drug discovery.
     Further works such as bioactivity of mycelial polysaccharide from both C. taii and C. jiangxiensis and their mechanism of action were also performed. The antioxidant potency of polysaccharides from C. taii and C. jiangxiensis were evaluated using five different in vitro assays after the fermentation conditions of biomass and polysaccharide production by both C. jiangxiensis and C. taii were established. Among these assays, polysaccharide from C. taii and C. jiangxiensis showed a strong capability of scavenging free radicals and the ferrous ion chelating activity, however, there was a certain variation among different fractions of polysaccharide from the same Cordyceps species. Especially most polysaccharide fractions from two cultured Cordyceps species possessed more potent scavenging superoxide anion radical activity than positive control, and two polysaccharide fractions of C. taii exhibited more significant chelating capability on ferrous ion than positive control. The antioxidant effect of C. taii polysaccharide fraction on D-galactose induced aging mice is associated with enhancing markedly the activities of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase, and decreasing evidently maleic dialdehyde level. The results suggest that C. taii and C. jiangxiensis are promising sources for development of natural antioxidant. In additional, MPCJ4 and MPCJ5, two enriched-polysaccharide fractions of cultured C. jiangxiensis, exerted antitumor effects at different dose range from 5 to 500μg/mL while had no cytotoxicity. Further investigations indicated that MPCJ4 and MPCJ5 markedly induced cell cycle arrest in the S phase, and resulted in tumor cell death of G1 phase via apoptotic biochemical pathway. These findings thus suggest that MPCJ4 and MPCJ5 might be a promising candidate for application in cancer therapy, and Cordyceps-derivated polysaccharides possess a new antitumor mechanism of action with non-immunologic response.
     Besides polysaccharide, the mycelial biomass of Cordceps spp. including both C. jiangxiensis and C. taii possess many high-value nutritional ingredient and bioactive compounds. To evaluate the nutritional and health-promoting value of three edible and medicinal mushrooms C. jiangxiensis, C. taii, and Cordyceps gunnii (Berk.) Berk.(1859) and simultaneously get a considerable data for establishing the quality control standard of Cordyceps preparations, their proximate compositions, bioactive ingredients and potential toxic constituents were investigated by using various chromatographic and spectrographic assays such as HPLC, GC/MS, amino acid high speed chromatography, ICP atomic emission spectrometer etc. and routine physical and chemical analysis. The contents of polysaccharide, cordycepic acid, and nucleosides were C. jiangxiensis>C. taii>C. gunnii. The three fungi contained high levels of unsaturated fatty acids (UFA) and essential amino acids. The percent of UFA relative to total fatty acids was 78.7% for C. gunnii,66.9% for C. taii, and 79.0% for C. jiangxiensis. The Cordyceps species displayed similar amino acid profiles and a high level of total amino acids ranging from 146.0 to 168.3 mg/g, where glutamic acid and aspartic acid were the two principal amino acids with over 10% of the total amino acid contents. Other essential amino acids made up 37.05%,39.39%,39.37% of the total amino acids of C. gunnii, C. taii, and C. jiangxiensis, respectively. Abundant amounts of Fe、Zn、Se、Cr and Co were found in these species, while toxic microelements such as Al、Sn、Pb、Cd、As and Hg were presented at very low amounts and could reach the related quality standard of SFDA in China. Taken together, our findings suggest that the three medicinal Cordyceps species can be regarded as a promising source of nutriceuticals and drugs without any health risk.
     During the above process of detecting nutritional ingredients and bioactive compounds of Cordyceps spp, a new universal and high-throughput method was also developed for quantitative determination of cordycepic acid in Cordyceps species using microplate reader, detected at 412 nm. The linearity of the method was found within 6.3-60μg/ml concentration ranges of cordycepic acid, and the linear correlation coefficient was good (R2> 0.9997) within the test ranges. The limits of detection (LOD) and quantification (LOQ) were 1.8μg/mL and 6.3μg/ml, respectively. The recoveries were in the range of 96.71 to 104.61%. Taken together, compared to conventional method, the new method showed good accuracy, less error, and high-throughput ability, and it is applicable in Cordyceps bioproduct. Besides, a simple high-performance liquid chromatography with photo diode array (HPLC-PDA) method for the separation and quantitative determination of nucleosides and nucleobases in cultured C. jiangxiensis has also been developed. The use of mobile phase with ultrapure water and methanol enabled the efficient separation and determination of seven nucleosides and nucleobases within a 12 min.Validation of the method was done with its linearity, precision, and stability, where a good linear correlation (R2>0.9900) for all analytes was obtaied within the test range, the corresponding LOD and LOQ were 0.01-0.30μg/mL and 0.04-0.96μg/mL, respectively, and the relative standard deviations (RSD) for precision and stability were all within 3%. Under the optimized conditions, six nucleosides and nucleobases were detected in cultured C. jiangxiensis, of which uridnine (7802.14μg/g) and adenosine (2705.92μg/g) were principal nucleosides compounds. In short, the developed HPLC-PDA method could be efficiently applied for the simultaneous analysis of nucleosides and nucleobases during fermentation of C. jiangxiensis.
     Polysaccharides, cordycepic acid and nucleosides are some major bioactive compounds of Cordyceps spp., but the most valuable compounds should be attributed to some secondary metabolites possessing different pharmcological effects, which are true sources of new drug discovery. Therefore it is necessary to develop the separation and purification of metabolites from the fermented Cordyceps and their bioactivity evaluation, which is useful pathway to discover new compounds and new functions for the development of high-value-added products. With the bioactivity-oriented separation, over 30 compounds were separated from cultured C. jiangxiensis by repeated liquid column chromatography, preparative thin layer chromatography and recrystallzation. The chemical structures of thirteen compounds were elucidated on the basis of spectroscopic methods including UV, IR, ESIMS, HRESIMS, 1D-NMR (1H-NMR,13C-NMR, and DEPT) and 2D-NMR ('H-'H COSY, HMQC, HMBC, and NOESY). Eighteen compounds were identified as tetracosanoic acid (2),1-monostearin (5), jiangxienone (7), docosanoic acid campesterol-ester (8), hexadecanoic acid ergosterol-ester (9), uridine (14), ergosterol (21),5a-Ergosta-7,22-dien-3β-ol (22), succinic acid (23), uracil(24), adenine (25), adenosine (26), nicotinic acid (27), and 3'-methoxyuridine (28),2'-methoxyadenosine (31),2'-deoxyuridine (32), methyl L-pyroglutamate (33), and dipterocarpol (34), of which compounds 7-9 were of new chemical structure belonging to steroides. Ten known compounds (2,5,22-23,27-28,31-34) were obtained from Cordyceps species for the first time. Jiangxienone, a high oxidation degree compound, showed more significant inhibition capability versus first-line antitumor drug cisplatin for inhibiting tumor cell proliferation. Jiangxienone therefore possesses a great potential as a potential new antitumor drug candidate. These findings contributed to a compound source for new drug discovery in Cordyceps-derived natural compound library.
引文
[1]Zhong JJ, Xiao JH. Secondary metabolites from higher fungi:Discovery, bioactivity, and bioproduction. Adv Biochem Engin/Biotechnol 2009,113:79-151.
    [2]Alexopoulos CJ, Mims CW, Blackwell M. Introductory mycology. (4 edition). John Wiley & Sons Inc.,1996.
    [3]Hawksworth DL, Rossman AY. Where are all the undescribed fungi? Phytopathol 1997, 87:888-891.
    [4]Buenz EJ, Bauer BA, Osmundson TW, et al. The traditional Chinese medicine Cordyceps sinensis and its effects on apoptotic homeostasis. J Ethnopharmacol.2005,96:19-29.
    [5]Xiao JH, Zhong JJ. Secondary metabolites from Cordyceps species and their antitumor activity studies. Recent Patents Biotechnol 2007,1:123-137.
    [6]杨大荣.我国虫草资源的合理利用与保护.梁宗琦,李增志,陈祝安,等.中国虫生真菌研究与应用(第二卷).中国农业科技出版社,1991,p58-66.
    [7]梁宗琦,刘爱英,刘作易.中国真菌志(第23卷)虫草属.北京:科学出版社,2007.
    [8]Paterson RRM. Cordyceps-a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 2008,69:1469-1495.
    [9]清·吴仪洛.本草从新.北京:中医古籍出版社,2001.
    [10]清·赵学敏.本草纲目拾遗·卷五.北京:人民卫生出版社,1983.
    [11]Zhu JS, Halpern GM, Jones K. The scientific rediscovery of a precious ancient Chinese herbal regimen:Cordyceps sinensis Part II. J Altern Complement Med 1998,4:429-457.
    [12]Chiu JH, Ju CH, Wu LH, et al. Cordyceps sinensis increases the expression of major histocompatibility complex class II antigens on human hepatoma cell line HA22T/VGH cells. Am J Chin Med 1998,26:159-170.
    [13]Kim GY, Ko WS, Lee JY, et al. Water extract of Cordyceps militaris enhances maturation of murine bone marrow-derived dendritic cells in vitro. Biol Pharm Bull 2006, 29:354-360.
    [14]Yu KW, Kim KM, Suh HJ. Pharmacological activities of stromata of Cordyceps scarabaecola. Phytother Res 2003,17:244-249.
    [15]Takano F, Yahagi. N, Yahagi R, et al. The liquid culture filtrates of Paecilomyces tenuipes (Peck) Samson (= Isaria japonica Yasuda) and Paecilomyces cicadae (Miquel) Samson (= Isaria sinclairii (Berk.) Llond) regulate Thl and Th2 cytokine response in murine Peyer's patch cells in vitro and ex vivo. Int Immunopharmacol 2005,5:903-916.
    [16]Kim GY, Ko WS, Lee JY, et al. Water extract of Cordyceps militaris enhances maturation of murine bone marrow-derived dendritic cells in vitro. Biol Pharm Bull 2006, 29:354-360.
    [17]Yu R, Song L, Zhao Y, et al. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia 2004,75:465-472.
    [18]Madla S, Methacanon P, Prasitsil M, et al. Characterization of biocompatible fungi-derived polymers that induce IL-8 production. Carbohydr Polym 2005,59:275-280.
    [19]Xiao JH, Liang ZQ, Liu AY, et al. Immunosuppressive activity of polysaccharides from Cordyceps gunnii mycelia in mice in vivo/vitro. J Food Agr Env 2004,2:69-73.
    [20]Wu Y, Sun H, Qin F, et al. Effect of various extracts and a polysaccharide from the edible mycelia of Cordyceps sinensis on cellular and humoral immune response against ovalbumin in mice. Phytother Res 2006,20:646-652.
    [21]俞丽霞,张冰冰,阮叶萍,等.虫草多糖不同组分的免疫活性研究.浙江中医学院学报2004,28:49-50.
    [22]李淑芳,林文琴.古尼拟青霉抗癌作用的实验研究.贵阳医学院学报1996,21:14-16.
    [23]Shin KH, Lim SS, Lee S, et al. Anti-tumour and immuno-stimulating activities of the fruiting bodies of Paecilomyces japonica, a new type of Cordyceps spp. Phytother Res 2003,17:830-833.
    [24]Yoshida J, Takamura S, Yamaguchi N, et al. Antitumor activity of an extract of Cordyceps sinensis (Berk.) Sacc. against murine tumor cell lines. Jpn J Exp Med 1989, 59:157-161.
    [25]Nakamura K, Yamaguchi Y, Kagota S, et al. Inhibitory effect of Cordyceps sinensis on spontaneous liver metastasis of Lewis lung carcinoma and B16 melanoma cells in syngeneic mice. Jpn J Pharmacol 1999,79:335-341.
    [26]Zhang W, Yang J, Chen J, et al. Immunomodulatory and antitumour effects of an exopolysaccharide fraction from cultivated Cordyceps sinensis (Chinese caterpillar fungus) on tumour-bearing mice. Biotechnol Appl Biochem 2005,42:9-15.
    [27]Yoo H S, Shin JW, Cho JH, et al. Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharm Sin 2004,25:657-665.
    [28]Nakamura K, Yoshikawa N, Yamaguchi Y, et al. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A(3) receptor stimulation. Anticancer Res 2006,26:43-47.
    [29]孙艳,官杰,王琪.人工蛹虫草子实体对荷肝癌小鼠的抑瘤作用及提高NK,IL-2活性的实验研究.中国药业2002,11:39-40.
    [30]Zhang Q, Wu J, Hu Z, et al. Induction of HL-60 apoptosis by ethyl acetate extract of Cordyceps sinensis fungal mycelium. Life Sci 2004,75:2911-2919.
    [31]Lee H, Kim YJ, Kim HW, et al. Induction of apoptosis by Cordyceps militaris through activation of Caspase-3 in leukemia HL-60 cells. Biol Pharm Bull 2006,29:670-674.
    [32]Chen YJ, Shiao MS, Lee SS, et al. Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells. Life Sci 1997,60:2349-2359.
    [33]Sun YJ, Ling JY, Lii P, et al. Determination of cordycepin in Cordyceps kyushuensis by capillary electrophoresis and its antitumour activity.Chin Chem Lett 2003,14:724-727.
    [34]Park C, Hong SH, Lee JY, et al. Growth inhibition of U937 leukemia cells by aqueous extract of Cordyceps militaris through induction of apoptosis. Oncol Rep 2005,13: 1211-1216.
    [35]刘凤安,郑效.蚕蛹虫草与冬虫夏草抗喉癌作用对比研究.白求恩医科大学学报1995,21:39-40.
    [36]Lim HW, Kwon YM, Cho SM, et al. Antitumor activity of Cordyceps militaris on human cancer cell line. Korean J Pharmacogn 2004,35:364-367.
    [37]Xiao JH, Chen DX, Fang N, et al. Growth arrest of human gastric adenocarcinoma cells by bioactive compounds of Cordyceps jiangxiensis (CaoMuWang) through induction of apoptosis. J Food Agr Env 2006,4:66-73.
    [38]Wang BJ, Won SJ, Yu ZR, et al. Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem Toxicol 2005,43:543-552.
    [39]吴德丰,郑志雄,张冀,等.冬虫夏草对体外培养的人子宫颈癌细胞的抑制作用.癌症1986,5:337-340.
    [40]Nam KS, Jo YS, Kim YH, et al. Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from Paecilomyces tenuipes. Life Sci 2001,69:229-237.
    [41]Isaka M. and Tanticharoen M. Structures of Cordypyridones A-D, antimalarial N-hydroxy-and N-methoxy-2-pyridones from the insect pathogenic Fungus Cordyceps nipponica. J Org Chem 2001,6:4803-4808.
    [42]Lang G, Blunt JW, Cummings NJ, et al. Paecilosetin, a new bioactive fungal metabolite from a New Zealand isolate of Paecilomyces farinosus. J Nat Prod 2005,68:810-811.
    [43]Jow GM, Chou CJ, Chen BF, et al. Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, Caspase 3 activation:the causative role of calcium. Cancer Lett 2004,216:165-173.
    [44]Calo L, Fornelli F, Ramires R, et al. Cytotoxic effects of the mycotoxin beauvericin to human cell lines of myeloid origin. Pharmacol Res 2004,49:73-77.
    [45]Bok JW, Lermer L, Chilton J, et al. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 1999,51:891-898.
    [46]Kikuchi H, Miyagawa Y, Sahashi Y, et al. Novel trichothecanes, paecilomycine A, B, and C, isolated fromentomopathogenic fungus, Paecilomyces tenuipes. Tetrahedron Lett 2004,45:6225-6228.
    [47]Kittakoop P, Punya J, Kongsaeree P, et al. Bioactive naphthoquinones from Cordyceps unilateralis. Phytochemistry 1999,52:453-457.
    [48]Jaturapat A, Isaka M, Hywel-Jones NL, et al. Bioxanthracenes from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620-Ⅰ. Taxonomy, fermentation, isolation and antimalarial activity. J Antibiot 2001,54,29-35.
    [49]Isaka M, Kongsaeree P, Thebtaranonth Y. Bioxanthracenes from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620-Ⅱ. Structure elucidation. J Antibiot 2001, 54,36-43.
    [50]Lee DH, Park T, Kim HW. Induction of apoptosis by disturbing mitochondrial-membrane potential and cleaving PARP in Jurkat T cells through treatment with acetoxyscirpenol mycotoxins. Biol Pharm Bull 2006,29:648-654.
    [51]Chung EJ, Choi K, Kim HW, et al. Analysis of cell cycle gene expression responding to acetoxyscirpendiol isolated from Paecilomyces tenuipes. Biol Pharm Bull 2003,26: 32-36.
    [52]Song WS, Jun DY, Kim JS, et al. Suppressive effect of ethyl acetate extract of Paecilomyces japonica on cell cycle progression of human acute leukemia Jurkat T cell clone overexpressing Bcl-2. Food Chem 2007,100:99-107.
    [53]Oh GS, Hong KH, Oh H, et al.4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol isolated from the fruiting bodies of Isaria japonica YASUDA induces apoptosis of human leukemia cells (HL-60). Biol Pharm Bull 2001,24:785-789.
    [54]Pae HO, Oh GS, Choi BM, et al. Induction of apoptosis by 4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol from Isaria japonica Yasuda through intracellular reactive oxygen species formation and Caspase-3 activation in human leukemia HL-60 cells. Toxicol Vitro 2003,17:49-57.
    [55]Oh H, Kim T, Oh GS, et al. (3R,6R)-4-methyl-6-(1-methylethyl)-3-phenylmethyl perhydro-1,4-oxazine-2,5-dione:an apoptosis-inducer from the fruiting bodies of Isaria japonica. Planta Med 2002,68:345-348.
    [56]Kim HJ, Jang IJ, Kim YJ, et al.4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol from Isaria japonica mediates apoptosis of rat bladder carcinoma NBT-II cells by decreasing anti-apoptotic Bcl-2 expression and increasing pro-apoptotic bax expression. Am J Chin Med 2004,32:377-387.
    [57]Riese U, Ziegler E, Hamburger M. Militarinone A induces differentiation in PC12 cells via MAP and Akt kinase signal transduction pathways. FEBS Lett 2004,577:455-459.
    [58]Won SY, Park EH. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J Ethnopharmacol 2005,96: 555-561.
    [59]Xu RH, Peng XE, Chen GZ, et al. Effects of Cordyceps sinensis on natural killer activity and colony formation of B16 melanoma. Chin Med J 1992,105:97-101.
    [60]Nakamura K, Konoha K, Yamaguchi Y, et al. Combined effects of Cordyceps sinensis and methotrexate on hematogenic lung metastasis in mice. Recept Chan 2003,9: 329-334.
    [61]Sung GH, Hywel-Jones NL, Sung JM, et al. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 2007,57:5-59.
    [62]Yang J, Zhang W, Shi P, et al. Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice. Pathol Res Pract 2005,201:745-750.
    [63]Kim KM, Kwon YG, Chung HT, et al. Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing NF-kappa B activation. Toxicol Appl Pharm 2003,190:1-8.
    [64]宾文,宋丽艳,于荣敏,等.人工培养蛹虫草多糖的抗炎及免疫作用研究.时珍国医国药2003,14:1-2.
    [65]Cunningham KG, Manson W, Spring FS, et al. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 1950,166:949-952.
    [66]Yamaguchi Y, Kagota S, Nakamura K, et al. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytother Res 2000,14:647-649.
    [67]Yamaguchi Y, Kagota S, Nakamura K, et al. Inhibitory effects of water extracts from fruiting bodies of cultured Cordyceps sinensis on raised serum lipid peroxide levels and aortic cholesterol deposition in atherosclerotic mice. Phytother Res 2000,14:650-652.
    [68]Li SP, Li P, Dong TTX, et al. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomed 2001,8:207-212.
    [69]Li SP, Zhao KJ, Ji ZN, et al. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC 12 cells against hydrogen peroxide-induced injury. Life Sci 2003,73:2503-2513.
    [70]Chen JP, Zhang WY, Lu TT, et al. Morphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. Life Sci 2006,78:2742-2748
    [71]Buenz EJ, Weaver JG, Bauer BA, et al. Cordyceps sinensis extracts do not prevent Fas-receptor and hydrogen peroxide-induced T-cell apoptosis. J Ethnopharmacol 2004, 90:57-62.
    [72]Shin KH, Lim SS, Lee SH, et al. Antioxidant and immunostimulating activities of the fruiting bodies of Paecilomyces japonica, a new type of Cordyceps sp. Ann N Y Acad Sci 2001,928:261-273.
    [73]Sakakura A, Suzuki K, Katsuzaki H, et al.Hanasanagin:a new antioxidative pseudo-di-peptide,3,4-diguanidinobutanoyl-DOPA, fromthe mushroom, Isaria japonica. Tetrahedron Lett 2005,46:9057-9059.
    [74]Jiang YH, Jiang XL, Wang P, et al. In vitro antioxidant activities of water-soluble polysaccharides extracted from Isaria farinose B05. J Food Biochem 2005,29:323-335.
    [75]Kiho T, Hui J, Yamane A, et al. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biol Pharm Bull 1993,16:1291-1293.
    [76]Kiho T, Yamane A, Hui J, et al. Polysaccharides in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol Pharm Bull 1996,19:294-296.
    [77]Kiho T, Ookubo K, Usui S, et al. Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol Pharm Bull 1999,22:966-970.
    [78]Zhao CS, Yin WT, Wang JY, et al. CordyMax Cs-4 improves glucose metabolism and increases insulin sensitivity in normal rats. J Altern Complement Med 2002,8:309-314.
    [79]Balon TW, Jasman AP, Zhu JS. A fermentation product of Cordyceps sinensis increases whole-body insulin sensitivity in rats. J Alternat Complement Med.2002,8:315-323.
    [80]Li SP, Zhang GH, Zeng Q, et al. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomed 2006,13:428-433.
    [81]Choi SB, Park CH, Choi MK, et al. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paeclilomyces tenuipes in 90% pancreatectomized rats. Biosci Biotechnol Biochem 2004,68: 2257-2264.
    [82]Zhang G, Huang Y, Bian Y, et al. Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl Microbiol Biotechnol 2006,72:1152-1156.
    [83]Koh JH, Kim JM, Chang UJ, et al. Hypocholesterolemic effect of hot-water extract from mycelia of Cordyceps sinensis. Biol Pharm Bull 2003,26:84-87.
    [84]Yang BK, Ha JY, Jeong SC, et al. Production of exo-polymers by submerged mycelial culture of Cordyceps militaris and its hypolipidemic effect. J Microbiol Biotechnol 2000, 10:784-788.
    [85]Kim DH, Yang BK, JeongSC, et al. A preliminary study on the hypoglycemic effect of the exopolymers produced by five different medicinal mushrooms. J Microbiol Biotechnol 2001,11:167-171.
    [86]Koh JH, Suh HJ, Ahn TS. Hot-water extract from mycelia of Cordyceps sinensis as a substitute for antibiotic growth promoters. Biotechnol Lett 2003,25:585-590.
    [87]韦会平,肖波,胡开治.蛹虫草药用价值考.中药材2004,27:215-217.
    [88]Rukachaisirikul V, Pramjit S, Pakawatchai C, et al.10-membered macrolides from the insect pathogenic fungus Cordyceps militaris BCC 2816. J Nat Prod 2004,67: 1953-1955.
    [89]Xiao JH, Xiao DM, Sun ZH, et al. Chemical compositions and antimicrobial property of three edible and medicinal Cordyceps species. J Food Agr Env 2009,7:91-100.
    [90]Zhu JS, Halpern GM, Jones K. The scientific rediscovery of an ancient Chinese herbal medicine:Cordyceps sinensis Part I. J Altern Complement Med 1998,4:289-303.
    [91]Hsu CC, Huang YL, Tsai SJ, et al. In vivo and in vitro stimulatory effects of Cordyceps sinensis on testosterone production in mouse Ley dig cells. Life Sci 2003,73:2127-2136
    [92]苏维龙,王奕.北冬虫草子实体对大鼠睾丸功能的影响.上海中医药大学学报2001,15:50-54.
    [93]张士善,张丹参,朱桐君,等.冬虫夏草氨基酸成分的药理分析.药学学报1991,26:326-328.
    [94]陈敬民,李友娣,廖驱,等.蛹虫草的镇静催眠作用.中药药理与临床1997,13:44-45.
    [95]陈祝安,徐珊.细脚拟青霉培养性状和药理作用的初步研究.真菌学报1989,8:214-220.
    [96]陈祝安,刘广玉,胡菽英.蝉花的人工培养及其药理作用研究.真菌学报1993,12:138-144.
    [97]朱振元,梁宗琦,常胜军,等.古尼虫草的生物活性物质Ⅰ.含肽镇痛组分的分离及性质.微生物学报2002,42:732-736.
    [98]王玉华,叶加,李长龄,等.冬虫夏草提取物延缓衰老实验研究.中国中药杂志2004,29:773-776.
    [99]Nikoh N, Fukatsu T. Interkingdom host jumping underground:phylogenetic analysis of entomoparasistic fungi of the genus Cordyceps.Mol Biol Evol 2000,17:629-638.
    [100]梁宗琦.真菌次生代谢产物多样性及其潜在应用价值.生物多样性1999,7:145-150.
    [101]Isaka M, Kittakoop P, Kirtikara K, et al. Bioactive substances from insect pathogenic fungi. Acc Chem Res 2005,38:813-823.
    [102]Ng TB, Wang HX. Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol 2005,57:1509-1519
    [103]Wu Y, Sun C, Pan Y. Structural analysis of a neutral (1→3),(1→4)-β-D-glucan from the mycelia of Cordyceps sinensis. J Nat Prod 2005,68:812-814.
    [104]Wu Y, Ishurd O, Sun C, et al. Structure analysis and antitumor activity of (1→3)-beta-D-glucans (Cordyglucans) from the mycelia of Cordyceps sinensis. Planta Med 2005,71:381-384.
    [105]Wu Y, Sun C, Pan Y. Studies on isolation and structural features of a polysaccharide from the mycelium of an Chinese edible fungus(Cordyceps sinensis). Carbohydr Polym 2006,63:251-256.
    [106]Wu Y, Hu N, Pan Y, et al.Isolation and characterization of a mannoglucan from edible Cordyceps sinensis mycelium. Carbohydr Res 2007,342:870-875.
    [107]Cha SH, Lim JS, Yoon CS, et al. Production of mycelia and exo-biopolymer from molasses by Cordyceps sinensis 16 in submerged culture. Bioresour Technol 2007,98: 165-168.
    [108]Wang BJ, Wei M, Zhang LP. Studies on structure and properties of water soluble polysaccharide from fruiting body of Cordyceps militaris (L.) Link. Chem Res Chin U 2003,19:37-40.
    [109]Yu R, Wang L, Zhang H, et al. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia 2004,75:662-666.
    [110]Yu R, Yang W, Song L, et al. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydr Polym 2007,70:430-436.
    [111]陆榕,孙立崧,王仲孚,等.细脚拟青霉多糖Ⅰ的化学结构.中草药2001,32:856-857.
    [112]Lu R, Miyakoshi T, Tian G, et al. Structural studies of Paecilomyces tenuipes Samson polysaccharide-part-2. Carbohydr Polym 2007,67:343-346.
    [113]Methacanon P, Madla S, Kirtikara K, et al. Structural elucidation of bioactive fungi-derived polymers. Carbohydr Polym 2005,60:199-203.
    [114]Oh JY, Cho EJ, Nam SH, et al. Production of polysaccharide-peptide complexes by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala. Process Biochem 2007,42:352-362.
    [115]Koc Y, Urbano AG, Sweeney EB, et al. Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia 1996,10:1019-1024.
    [116]Sugar AM, McCaffrey RP. Antifungal activity of 3'-deoxyadenosine (cordycepin). Antimicrob Agents Chemother 1998,42:1424-1427.
    [117]Ahn YJ, Park SJ, Lee SG, et al. Cordycepin:selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. J Agr Food Chem 2000, 48; 2744-2748.
    [118]Xu FL, Lee YL, Tsa WY, et al. Effect of cordycepin on Hantaan virus 76-118 infection of primary human embryonic pulmonary fibroblasts-characterization of apoptotic effects. Acta Virologica 2005,49:183-193.
    [119]Kim JR, Yeon SH, Kim HS, et al. Larvicidal activity against Plutella xylostella of cordycepin from the fruiting body of Cordyceps militaris. Pest Manag Sci 2002,58: 713-717.
    [120]Rottenberg ME, Masocha W, Ferella M, et al. Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model. J Infect Dis 2005,192:1658-1665.
    [121]Schmidt K, Giinther W, Stoyanova S, et al. Militarinone A, a neurotrophic pyridone alkaloid from Paecilomyces militaris. Org Lett 2002,4:197-199.
    [122]Schmidt K, Riese U, Li ZZ, et al. Novel tetramic acids and pyridone alkaloids, militarinones B, C, and D, from the insect pathogenic fungus Paecilomyces militaris. J Nat Prod 2003,66:378-383.
    [123]Cheng YX, Schneider B, Riese U,et al. (+)-N-deoxymilitarinone A, a neuritogenic pyridone alkaloid from the insect pathogenic fungus Paecilomyces farinosus. J Nat Prod 2006,69:436-438.
    [124]Cheng YX, Schneider B, Riese U, et al. Farinosones A-C, neurotrophic alkaloidal metabolites from the entomogenous deuteromycete Paecilomyces farinosus. J Nat Prod 2004,67:1854-1858.
    [125]Kuo YC, Lin LC, Don MJ, et al. Cyclodesipeptide and dioxomorpholine derivatives isolated from the insect-body portion of the fungus Cordyceps cicadae. J Chin Med 2002,13:209-219
    [126]Hamill RL, Higgens CE, Boaz HE, et al. The structure of beauvericin:a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett.1969,49:4255-4258.
    [127]Grove JF, Pople M. The insecticidal activity of beauvericin and the enniatin complex. Myocopathol 1980,70:103-105.
    [128]Nilanonta C, Isaka M, Kittakoop P, et al. Precursor-directed biosynthesis of beauvericin analogs by the insect pathogenic fungus Paecilomyces tenuipes BBC 1614. Tetrahedron 2002,58:3355-3360.
    [129]Kouri K, Duchen MR, Lemmens-Gruber R. Effects of beauvericin on the metabolic state and ionic homeostasis of ventricular myocytes of the guinea pig. Chem Res Toxicol 2005,18:1661-1668.
    [130]Ojcius DM, Zychilinsky A, Zheng LM, et al. Ionophore-induced apoptosis:role of DNA fragmentation and calcium flux. Exp Cell Res 1991,197:43-49.
    [131]Kim MK, Seong SY, Seoh JY, et al. Orientia tsutsugamushi inhibits apoptosis of macrophages by retarding intracellular calcium release. Infect Immun 2002,70: 4692-4696.
    [132]姜泓,刘珂,孟舒,等.人工蛹虫草子实体化学成分.药学学报2000,35:663-668.
    [133]马骁驰,黄健,刘丹,等.蛹虫草培养液成分研究(Ⅰ).沈阳药科大学学报2003,20:255-257.
    [134]Jia JM, Ma XC, Wu CF, et al. Cordycedipeptide A, a new cyclodipeptide from the culture liquid of Cordyceps sinensis (Berk.) Sacc. Chem Pharm Bull 2005,53:582-583.
    [135]Krasnoff SB, Reategui RF, Wagenaar MM, et al. Cicadapeptins I and II:new aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda. J Nat Prod 2005,68:50-55.
    [136]Rukachaisirikul V, Chantaruk S, Tansakul C, et al. A cyclopeptide from the insect pathogenic fungus Cordyceps sp. BCC 1788. J Nat Prod 2006,69:305-307
    [137]Kuo YC, Lin CY, Tsai WJ, et al. Growth inhibitors against tumor cells in Cordyceps sinensis other than cordycepin and polysaccharides. Cancer Invest 1994,12:611-615.
    [138]Han HC, Lindequist U, Hyun JW, et al. Apoptosis induction by 4β-acetoxyscirpendiol from Paecilomyces tenuipes in human leukaemia cell lines. Pharmazie 2004,59:42-49.
    [139]Kikuchi H, Miyagawa Y, Sahashi Y, et al. Novel spirocyclic trichothecanes, spirotenuipesine A and B, isolated from entomopathogenic fungus, Paecilomyces tenuipes. J Org Chem 2004,69:352-356.
    [140]Kikuchi H, Miyagawa Y, Nakamura K, et al. A novel carbon skeletal trichothecane, tenuipesine A, isolated from an entomopathogenic fungus, Paecilomyces tenuipes. Org Lett 2004,6:4531-4533.
    [141]Isaka M, Tanticharoen M, Thebtaranonth Y. Cordyanhydrides A and B. two unique anhydrides from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620. Tetrahedron Lett 2000,41:1657-60.
    [142]Fujita T, Inoue K, Yamamoto S, et al. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J Antibiot (Tokyo). 1994,47:208-215.
    [143]Miyake Y, Kozutsumi Y, Nakamura S, et al. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-I/Myriocin. Biochem Biophys Res Commun 1995,211,396-403.
    [144]Fujita T, Hirose R, Yoneta M, et al. Potent immunosuppressants,2-alkyl-2-aminopropane-1,3-diols. J Med Chem 1996,39:4451-4459.
    [145]蒋毅,姚一建.冬虫夏草无性型研究概况.菌物系统2003,22:161-176.
    [146]肖建辉,蒋侬辉,梁宗琦,等.虫草类真菌多糖的研究及应用前景.山地农业生物学报2003,22:70-76.
    [147]肖建辉.虫草属真菌多糖制备及化学结构的研究现状与思考.中草药2008,39:454-460.
    [148]肖建辉.虫草属菌物多糖的生物活性及效应机制.时珍国医国药2008,19:1824-1827.
    [149]程萍,刘若英,刘杰麟.戴氏虫草对人喉鳞癌细胞生长抑制与凋亡诱导作用.陕西医学杂志2007,36:643-644.
    [150]彭克军,刘杰麟.戴氏虫草多糖抗突变活性的研究.中药材2008,31:86-88.
    [151]Xiao JH, Zhong JJ. Inhibitory effect of polysaccharides produced by medicinal macrofungus Cordyceps jiangxiensis on cancer cells via apoptotic pathway and cell cycle arrest. J Food Agr Env 2008,6:61-67.
    [152]Xiao JH, Chen DX, Liu JW, et al. Optimization of submerged culture requirements for the production of mycelial growth and exo-polysaccharide by Cordyceps jiangxiensis JXPJ 0109. J Appl Microbiol 2004,96:1105-1116.
    [153]Kim SW, Hwang HJ, Xu CP, et al. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738. J Appl Microbiol 2003,94,120-126.
    [154]Xiao JH, Chen DX, Xiao Y, et al. Optimization of submerged culture conditions for mycelial polysaccharides production in Cordyceps pruinosa, Process Biochem 2004, 39:2241-2247.
    [155]Zhong S, Pan H, Fan L, et al. Advances in research of polysaccharides in Cordyceps species. Food Technol Biotechnol 2009,47:304-312.
    [156]肖建辉.江西虫草多糖含量的快速检测方法研究.中药材2008,31:689-692.
    [157]胡锡阶,肖建辉,肖瑜,等.3,5-二硝基水杨酸比色法定糖的条件优化.遵义医学院学报2005,28:9-11.
    [158]肖建辉,刘金伟,刘祖林,等.江西虫草液体深层培养条件优化.食用菌学报2004,11:26-31.
    [159]蔡武城,袁厚积.生物物质常用化学分析法.北京:科学出版社,1982.
    [160]Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol 1980,12:214-219.
    [161]Derringer G. A balancing act:optimizing a product's properties. Qual Prog 1994,27: 51-58.
    [162]王仁超,刘光艳,丁俊丽,等.一种基于期望满意度的群决策方法.天津大学学报2000,33:192-196.
    [163]Mao XB, Eksriwong T, Chauvatcharin S, et al. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem 2005,40:1667-1672.
    [164]Lin ES, Sung SC. Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. Int J Food Microbiol 2006,108:182-187.
    [165]Shih IL, Chou BW, Chen CC, et al. Study of mycelial growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa. Bioresour Technol 2008,99:785-793.
    [166]Huang HC, Liu YC. Enhancement of polysaccharide production by optimization of culture conditions in shake flask submerged cultivation of Grifola umbellate. J Chin Ins Chem Eng 2008,39:307-311.
    [167]Cho EJ, Oh JY, Chang HY, et al. Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol 2006,127:129-140.
    [168]Tang YJ, Zhong JJ. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb Technol 2002,31:20-28.
    [169]Lim JM, Kim SW, Hwang HJ, et al. Optimization of medium by othogonal matrix method for submerged mycelial culture and exopolysaccharide production in Collybia maculate. Appl Biochem Biotechnol 2004,119:159-170.
    [170]Fan L, Soccol AT, Pandey A, et al. Effect of nutritional and environmental conditions on the production of exo-polysaccharide of Agaricus brasiliensis by submerged fermentation and its antitumor activity. LWT-Food Sci Technol 2007,40:30-35.
    [171]Hsieh C, Tsai MJ, Hsu TH, et al. Medium optimization for polysaccharide production of Cordyceps sinensis. Appl Biochem Biotechnol 2005,120:145-157.
    [172]Bae JT, Park JP, Song CH, et al. Effect of carbon source on the mycelial growth and exo-biopolymer production by submerged culture of Paecilomyces japonica. J Biosci Bioeng 2001,91:522-524.
    [173]Demain AL. Regulation of secondary metabolism in fungi. Pure Appl Chem 1986,58: 219-226.
    [174]Wu J, Ding ZY, Zhang KC. Improvement of exopolysaccharide production by macro-fungus Auricularia auricula in submerged culture. Enzyme Microb Technol 2006,39:743-749.
    [175]Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 2004,22:189-259.
    [176]Kim SW, Hwang HJ, Xu CP, et al. Influence of nutritional conditions on mycelial growth and exopolysaccharide production in Paecilomyces sinclairii. Lett Appl Microbiol 2002,34:389-393.
    [177]Leung PH, Wu JY. Effects of ammonium feeding on the production of bioactive metabolites (cordycepin and exopolysaccharides) in mycelial culture of a Cordyceps sinensis fungus. J Appl Microbiol 2007,103:1942-1949.
    [178]Campbell BS, McDougall BM, et al. Why do exopolysaccharide yields from the fungus Aureobasidium pullulans fall during batch culture fermentation? Enzyme Microb Technol 2003,33:104-112.
    [179]Fazenda ML, Seviour R, McNei B, et al. Submerged culture fermentation of "higher fungi":the macrofungi. Adv Appl Microbiol 2008,63:33-103.
    [180]Gao H, Liu M, Liu J, et al. Medium optimization for the production of avermectin Bla by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour Technol 2009,100:4012-4016.
    [181]Bayraktar E. Response surface optimization of the separation of DL-tryptophan using an emulsion liquid membrane. Process Biochem 2001,37:169-175.
    [182]Muralidhar RV, Chirumamila RR, Marchant R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem Eng J 2001,9:17-23.
    [183]Kar B, Banerjee R, Bhattacharyya BC. Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique. Process Biochem 2002,37:1395-1401.
    [184]Dutta JR, Dutta PK, Banerjee R. Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochem 2004,39:2193-2198.
    [185]Box GEP, Hunter WG, Hunter JS. Statistics for Experimenters:Design, innovation, and discovery,2nd Edition. John Wiley & Sons, Inc., Hoboken, New Jersey,2005, pp. 1-664.
    [186]Rahulan R, Nampoothiri KM, Szakacs G, et al. Statistical optimization of 1-leucine amino peptidase production from Streptomyces gedanensis IFO 13427 under submerged fermentation using response surface methodology. Biochem Eng J 2009,43: 64-71.
    [187]Bezerra MA, Santelli RE, Oliveira EP, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry.Talanta 2008,76:965-977.
    [188]Kim S W, Xu C P, Hwang H J, Choi JW, Kim CM, Yun JW. Production and characterization of exopolysaccharide from an enthomopathogenic fungus Cordyceps militaris NG3. Biotechnol Prog 2003,19:428-435.
    [189]Kim HO and Yun JW. A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J Appl Microbiol 2005,99:728-738.
    [190]Chardonnet CO, Sams CE, Conway WS. Calcium effect on the mycelial cell walls of Botrytis cinerea. Phytochemistry 1999,52:967-973.
    [191]Fang QH and Zhong JJ. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem 2002,37:769-774.
    [192]Zhong JJ, Fang QH, Tang YJ. Enhanced production of valuable bioactive metabolites in submerged cultures of medicinal mushroom Ganoderma lucidum by manipulation of oxygen supply. J Plant Biotechnol 2002,4:109-115.
    [193]Mao XB, Zhong JJ. Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol Prog 2004,20:1408-1413.
    [194]Tang YJ, Zhong JJ. Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme Microb Technol 2003,32:478-484.
    [195]Fang QH, Tang YJ, Zhong JJ. Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem 2002,37:1375-1379.
    [196]Harrington Jr EC. The desirability function. Industrial Qual Control 1965,21:494-498.
    [197]World Health Organization, General guidelines for methodologies on research and evaluation of traditional medicines,2000, p.1.
    [198]Liang XM, Jin Y, Wang YP, et al. Qualitative and quantitative analysis in quality control of traditional Chinese medicines. J Chromatogr A 2009,216:2033-2044
    [199]Xiao JH, Chen DX, Wan WH, et al. Enhanced simultaneous production of mycelia and intracellular polysaccharide in submerged cultivation of Cordyceps jiangxiensis using desirability functions. Process Biochem 2006,41:1887-1893.
    [200]Association of Official Analytical Chemists (AOAC). Official methods of analysis of AOAC international (16th Edition). Arlington, VA, USA,1995.
    [201]赵选民.试验设计方法.北京:科学出版社,2006.
    [202]李雪芹,包天桐,王雁.比色法测定冬虫夏草中甘露醇的含量.中草药1999,30:19-21.
    [203]中国药典[S],一部.北京:化学工业出版社,2005.
    [204]吕晴,余德顺,雷邦星.被孢霉菌丝体脂肪酸组成的气相色谱-质谱分析.分析测试学报2003,22:22-24.
    [205]GB/T 5009 124-2003食品中氨基酸的测定.
    [506]Qian H, Sheng M. Simultaneous determination of fat-soluble vitamins A, D and E and pro-vitamin D2 in animal feeds by one-step extraction and high-performance liquid chromatography analysis. J Chromatogr A 1998,825:127-133.
    [207]王尊生,顾宇翔,周丽,等.冬虫夏草(Cordyceps sinensis)菌丝体固体发酵粉化学成分的分析.天然产物研究与开发2005,17:331-336.
    [208]Hsu TH, Shiao LH, Hsieh C, et al. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem 2002,78:463-469.
    [209]Chang HL, Chao GR, Chen CC, et al. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chem 2001,74:203-207.
    [210]Kalac P. Chemical composition and nutritional value of European species of wild growing mushrooms:A review. Food Chem 2009,113:9-16.
    [211]Mariotti F, Tome D, Mirand PP. Converting nitrogen into protein-beyond 6.25 and Jones' factors. Crit Rev Food Sci Nut 2008,48:177-184.
    [212]Huang SJ, Tsai SY, Lee YL, et al. Nonvolatile taste components of fruit bodies and mycelia of Cordyceps militaris. Food Sci Technol 2006,39:577-583.
    [213]Daviskas E, Anderson SD, Eberl S, et al. Effect of increasing doses of mannitol on mucus clearance in patients with bronchiectasis. Eur Respir J 2008,31:765-772.
    [214]Daviskas E, Anderson SD, Young IH. Inhaled mannitol changes the sputum properties in asthmatics with mucus hypersecretion. Respirol 2007,12:683-691.
    [215]Fan H, Li SP, Xiang JJ, et al. Qualitative and quantitative determination of nucleosides, bases and their analogues in natural and cultured Cordyceps by pressurized liquid extraction and high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Anal Chim Acta 2006,567:218-228.
    [216]Qian ZM, Wan JB, Zhang QW, et al. Simultaneous determination of nucleobases, nucleosides and saponins in Panax notoginseng using multiple columns high performance liquid chromatography. J Pharm Biomed Anal 2008,48:1361-1367.
    [217]Furuya T, Hirotani M, Matsuzawa M. N6-(2-hydroxyethyl) adenosine, a biologically active compound from cultured mycelia of Cordyceps and Isaria species. Phytochemistry 1983,22:2509-2512.
    [218]Bekar L, Libionka W, Tian GF, et al. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 2008,14:75-80.
    [219]Li SP, Yang FQ, Tsim KWK. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal 2006,41:1571-1584
    [220]Mau JL, Lin HC, Chen CC. Non-volatile components of several medicinal mushrooms. Food Res Int 2001,34:521-526.
    [221]Li C, Li Z, Fan M, et al. The composition of Hirsutella sinensis, anamorph of Cordyceps sinensis. J Food Comp Ana 2006,19:800-805.
    [222]Tinggi U. Selenium:its role as antioxidant in human health. Env Health Prev Med 2008, 13:102-108.
    [223]Bok SH and Demain AL. An improved colorimetric assay for polyols. Anal Biochem 1977,81:18-20.
    [224]Graefe H, Gutschow B, Gehring H, et al Sensitive and specific photometric determination of mannitol in human serum. Clin Chem Lab Med 2003,41:1049-1055
    [225]Better OS, Rubinstein I, Winaver JM, et al. Mannitol therapy revisited (1940-1997). Kidney Int 1997,51:886-894.
    [226]Uenohara H, Imaizumi S, Suzuki J, et al. The protective effect of mannitol, vitamin E and glucocorticoid on ischaemic brain injury:evaluation by chemiluminescence, energy metabolism and water content. Neurol Res 1988,10:73-80.
    [227]Lorenzl S, Koedel U, Pfister HW. Mannitol, but not allopurinol, modulates changes in cerebral blood flow, intracranial pressure, and brain water content during pneumococcal meningitis in the rat.Crit Care Med 1996,24:1874-1880.
    [228]Baysefer A, Erdogan E, Kahraman S, et al. Effect of mannitol in experimental spinal cord injury:an ultrastructural and electrophysiological study. Neurol India 2003, 51:350-354.
    [229]Seyfried DM, HanY, Yang D, et al. Mannitol enhances delivery of marrow stromal cells to the brain after experimental intracerebral hemorrhage. Brain Res 2008,1224:12-19.
    [230]Morley EJ, Zehtabchi S. Mannitol for traumatic brain injury:searching for the evidence. Ann Emerg Med.2008,52:298-300.
    [231]Samarco EC, Parente ES. Automated high pressure liquid chromatographic system for determination of mannitol, sorbitol, and xylitol in chewing gums and confections. J Assoc Off Anal Chem 1982,65:76-78.
    [232]Daniels DH, Warner CR, et al. Gas chromatographic determination of sorbitol, mannitol, and xylitol in chewing gum and sorbitol in mints. J Assoc Off Anal Chem.1982, 65:588-591
    [233]Pospisilova M, Polasek M, Safra J, et al. Determination of mannitol and sorbitol in infusion solutions by capillary zone electrophoresis using on-column complexation with borate and indirect spectrophotometric detection. J Chromatogr A 2007,1143: 58-263.
    [234]Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998, 50:413-492.
    [235]Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 2002,45:4057-4093.
    [236]Rayment SJ, Ralevic V, Barrett DA, et al. A novel mechanism of vasoregulation: ADP-induced relaxation of the porcine isolated coronary artery is mediated via adenosine release. FASEB J 2007,21:577-585
    [237]Yang FQ, Guan J, Li SP. Fast simultaneous determination of 14 nucleosides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography. Talanta 2007,73:269-273
    [238]Huang LF, Liang YZ, Guo FQ, et al. Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militaris by LC/ESI-MS. J Pharm Biomed Anal 2003,33:1155-1162.
    [239]肖建辉,蒋侬辉,梁宗琦,等.食药用真菌多糖的研究进展.生命的化学2002,22:148-151.
    [240]Zhan Y, Dong CH, Yao YJ. Antioxidant activities of aqueous extract from cultivated fruit-bodies of Cordyceps militaris (L.) Link in vitro. J Integrative Plant Biol 2006,48, 1365-1370.
    [241]Dong CH, Yao YJ. In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis. LWT-Food Sci Technol 2008,41: 669-677.
    [242]Yu HM, Wang BS, Huang SC, Duh PD. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J Agr Food Chem 2006,54,3132-3138
    [243]施益民,吕锋洲.自由基与各种疾病.当代医学1989,16:399-407.
    [244]Gulcin I, Elias R, Gepdiremen A, et al. A comparative study on the antioxidant activity of fringe tree (Chionanthus virginicus L.) extracts. Afr J Biotechnol 2007,6:410-418.
    [245]Hattori TS, Komatsu N, Shichijo S, et al. Protein-bound polysaccharide K induced apoptosis of the human Burkitt lymphoma cell line, Namalwa. Biomed Pharmacother 2004,58:226-230.
    [246]Carnero A. Targeting the cell cycle for cancer therapy. Br. J. cancer 2002,87:129-133.
    [247]Li G, Kim DH, Kim TD, et al. Protein-bound polysaccharide from Phellinus linteus induces G2/M phase arrest and apoptosis in SW480 human colon cancer cells. Cancer Lett 2004,216:175-181.
    [248]Fulda S, Debatin KM. Exploiting death receptor signaling pathways for tumor therapy. Biochim Biophy Acta 2004,1705:27-41.
    [249]Hu W, Kavanagh JJ. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 2003,4:721-729.
    [250]McConkey DJ. Biochemical determinants of apoptosis and necrosis. Toxicol Lett 1998, 99:157-168.
    [251]Hengartner MO. The biochemistry of apoptosis. Nature 2000,407:770-776.
    [252]van Engeland M, Nieland LJ, Ramaekers FC, et al. Annexin V-affinity assay:a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998,31:1-9.
    [253]Zhang QX, Wu JY, Hu ZD, et al. Induction of HL-60 apoptosis by ethyl acetate extract of Cordyceps sinensis fungal mycelium. Life Sci 2004,75:2911-2919.
    [254]Lowe SW, Cepero E, Evan GI. Intrinsic tumour suppression. Nature 2004,432: 307-315.
    [255]Nurse P. Ordering S phase and M phase in the cell cycle. Cell 1994,79:547-550.
    [256]Oyaizu M. Studies on products of browning reactions:Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 1986,44: 307-315.
    [257]Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol 2004,44,239-267.
    [258]Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants and aging. Cell 2005, 120:483-495.
    [259]Elmastas M, Isildak O, Turkekul I, et al. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Composit Anal 2007, 20:337-345
    [260]Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci 2004,44:275-295.
    [261]Thompson D, Moldeus P. Cytotoxicity of butylated hydroxyanisole and butylated hydroxytoluene in isolated rat hepatocytes.Biochem Pharmacol 1988,37:2201-2207.
    [262]Witschi HP. Enhanced tumour development by butylated hydroxytoluene (BHT) in the liver, lung and gastro-intestinal tract. Food Chem Toxicol 1986,24:1127-1130.
    [263]Mau JL, Lin HC, Chen CC. Antioxidant properties of several medicinal mushrooms. J Agric. Food Chem.2002,50:6072-6077.
    [364]Cui Y, Kim DS, Park KC. Antioxidant effect of Inonotus obliquus. J Ethnopharmacol 2005,96:79-85.
    [265]Wang BJ, Won SJ, Yu ZR, Su CL. Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem Toxicol 2005,435:43-552.
    [266]Butler MS.The role of natural product chemistry in drug discovery. J Nat Prod 2004, 67:2141-2153.
    [267]Newman DJ and Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007,70:461-477.
    [268]叶阳,李希强,唐春萍.2006年我国天然药物化学研究进展.Chin J Nat Med 2008, 6:70-78.
    [269]Bode HB, Bethe B, Hofs R, et al. Big effects from small changes:possible ways to explore nature's chemical diversity. ChemBioChem 2002,3:619-627.
    [270]Suggitt M, Bibby MC.50 years of preclinical anticancer drug screening:Empirical to target-driven approaches.Clin Cancer Res 2005,11:971-81.
    [271]Berdy J. Bioactive microbial metabolites:a personal view. J Antibiot 2005,58:1-26.
    [272]李作平,郜嵩,郝存书,等.合欢花化学成分的研究.中国中药杂志2000,25:103-104.
    [273]杨峻山,苏亚伦,王玉兰,等.蜜环菌菌丝体化学成分的研究Ⅶ.丙酮提取物中化学成分的分离与鉴定.药学学报1991,26:117-122.
    [274]麻兵继,阮元,刘吉开.人工蛹虫草中核苷类化学成分的研究.中药材2007,8:957-958.
    [275]Takaishi Y, Uda M, Ohashi T, et al. Glycosides of ergosterol derivatives from Hericum erinaceus. Phytochem 1991,30:4117-4120.
    [276]吕子明,姜永涛,吴立军,刘珂.人工蛹虫草子实体化学成分研究.中国中药杂志2008,33:2914-2917.
    [277]Zhan ZJ, Wang Y, Yang SP, et al. Steroids from the fungus Pleurotus ostreatus. Acta Phytotaxonomica Sinica 2003,45:53-756.
    [278]王雪芹,孙隆儒.中药脱皮马勃的化学成分研究.天然产物研究与开发2007,19:809-810.
    [279]杨岚,王满元,赵玉英,等.荚果蕨贯众化学成分研究.药学学报2005,40:252-254.
    [280]张维库,张晓琦,叶文才.对叶大戟地上部分的花学成分.中国药科大学学报2007,38:315-319.
    [281]陈泉,吴丽军,阮丽军.中药淡竹叶的化学成分研究(Ⅱ).沈阳药科大学学报2002,19:257-259.
    [282]Dommisse R, Freyne E, Esmans E, et al.13C-NMR shift increments for 3-substituted pyridines. Hereocycles 1981,16:1893-1897.
    [283]Beare-Rogers J, Dieffenbacher A, Holm JV. Lexicon of lipid nutrition (IUPAC technical report). Pure Appl Chem 2001,73:685-744.
    [284]Barta CA, Sachs-Barrable K, Feng F, et al. Effects of monoglycerides on p-glycoprotein: modulation of the activity and expression in caco-2 cell monolayers. Mol Pharm 2008, 5:863-875.
    [285]Yazawa Y, Yokota M, Sugiyama K. Antitumor promoting effect of an active component of Polyporus, ergosterol and related compounds on rat urinary bladder carcinogenesis in a short-term test with concanavalin A. Biol Pharm Bull 2000,11: 1298-1302.
    [286]Takaku T, Kimura Y, Okuda H. Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. J Nutrition 2001,131:1409-1413.
    [287]Tunaru S, Kero J, Schaub A, et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med 2003,9:352-355.
    [288]Zhang Y, Schmidt RJ, Foxworthy P, et al. Niacin mediates lipolysis in adipose tissue through its G-protein coupled receptor HM74A. Biochem Biophys Res Commun.2005, 334:729-732.
    [289]Garg A, MBBS, Grundy SM. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA 1990,264:723-726.
    [290]Carlezon WA, Mague SD, Parow AM, et al. Antidepressant-like effects of uridine and omega-3 fatty acids are potentiated by combined treatment in rats. Biol Psychiatry 2005, 57:343-350.
    [291]Sugimachi K, Maehara Y, Ogawa M, et al. Dose intensity of uracil and tegafur in postoperative chemotherapy for patients with poorly differentiated gastric cancer. Cancer Chemother Pharmacol 1997,40:233-238.
    [292]Hasko G, Linden J, Cronstein B, et al. Adenosine receptors:therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008,7:759-770.
    [293]徐任生,陈仲良.中草药有效成分提取与分离.上海:上海科学技术出版社,1983,p191-198.
    [294]田景奎,吴丽敏,王爱武,等.猫爪草化学成分的研究Ⅰ.中国药学杂志2004,39:661-662.
    [295]Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protocols 2006,1:1112-1116.
    [296]Papazisis KT, Geromichalos GD, Dimitriadis KA, et al. Optimization of the sulforhodamine B colorimetric assay. J Immunol Methods 1997,208:151-158.
    [297]肖建辉,陈代雄,刘金伟,等.江西虫草发酵液脱色及其多糖提取分离的优化工艺.微生物学通报2006,33:24-30.
    [298]谢红旗,周春山.香菇多糖的脱色工艺研究.离子交换与吸附2007,23:158-165.
    [299]Robins MJ, Naik SR, Lee ASK. Nucleic acid related compounds.12. Facile and high yield stannous chloride catalyzed monomethylation of the cis glycol system of nucleosides by diazomethane. J Org Chem 1974,39:1891-1899.
    [300]Cramer H, Pfleiderer W. Nucleosides. Part LXI. A simple procedure for the monomethylation of protected and unprotected ribonucleosides in the 2'-O-and 3'-O-position using diazomethane and the catalyst stannous chloride. Helvetica Chimica Acta 1996,79:2114-2136.
    [301]劳彦斌,蒋亭,李军,等.柄海鞘Styela clava次生代谢产物的化学研究.中国海洋药物2001,20:12-15.
    [302]李想,姚燕华,孙光芝,等.红树植物内生真菌Penicillium sp.的化学成分,天然产物研究与开发2007,19:804-806.
    [303]邹峥嵘,易杨华,姚新生,等.海地瓜化学成分研究.中国天然药物2004,2:348-350.
    [304]程永现,周俊,腾荣伟,等.短瓣花中的含氮化合物.云南植物研究2001,23:527-530.
    [305]杨翀,梁光义,钟幻思,等.德务淫羊藿的化学成分研究.应用与环境生物学报2006,12:34-35.
    [306]Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem-Biol Interact 2006,160:1-40.
    [307]Yamada T, Kageyama K, Joh Y, et al. Naturally ocurring 2'-O-methylpurine nucleosides with hypotensive properties. Cell Mol Life Sci 1998,54:125-128.
    [308]Martinez-Montero S, Fernandez S, Rodriguez-Perez T, et al. Improved synthesis and isolation of 2'-O-methyladenosine:effective and scalable enzymatic separation of 2'/3'-O-methyladenosine regioisomers. Eur J Org Chem 2009,19:3265-3271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700