用户名: 密码: 验证码:
复杂生物神经网络的建模及其动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
英国生物学家Hodgkin和Huxley于1952年建立的著名长枪乌贼巨大轴突非线性动力学微分方程,即Hodgkin-Huxley(H-H)方程,成功的表述了神经放电的电化学机制。该模型可用来描述神经膜中所发生的非线性现象如自激振荡、混沌及多重稳定性等问题,为人们探索神经元的兴奋性提供了基本框架。关于成千上万的神经元之间是如何相互连接、如何协调有序放电的问题,在理论研究和实验探索中都是一个很重要的课题。近几年来,复杂网络理论的发展为探索这一问题提供了一种很好的新方法。本论文将统计方法、复杂网络理论、非线性系统理论等理论和方法应用到生物神经网络的研究中,建立了三种复杂的人工生物神经网络模型并讨论了它们的动力学行为。研究结果表明这些模型表现出了一定的特征,与真实生物神经网络的某些特性存在一定的相似性。我们的研究工作对于进一步深入认识神经网络的兴奋、发放电节律、同步等有一定的参考价值。
     本文的主要内容和创新之处可概述如下:
     (1)关于生物神经网络的一致共振及最优系统的研究
     网络的集群行为是一个热点研究问题。本文讨论了生物神经网络中的长程连接(long-range connection)和本地连接(local connection)在网络中的相互作用。我们采用侧抑制机制,建立了一个全局耦合的侧抑制生物神经网络模型。并用数值模拟的方法研究了这种模型在侧抑制机制下的尖峰行为。研究发现,当连接强度A和抑制比μ达到最佳大小值时,系统的发放序列最有规律。但是在噪声强度较弱时,没有发现最佳的连接强度A和最佳抑制比μ。另外,我们还研究了在不同的连接强度A和抑制比μ条件下的一致共振现象和系统大小共振现象。通过研究发现,当耦合强度较小时,抑制比μ对一致共振和系统大小共振几乎没有什么影响。随着耦合强度逐渐增大,抑制比μ对一致共振和系统大小共振的影响也将越来越大。
     (2)关于变权小世界生物神经网络的兴奋、优化特性及同步问题研究
     目前对生物神经网络模型的研究,往往都是无权模型或者连接权值为一个固定不变的常量,而实际生物神经元之间的连接权值是随着时间不断变化的。本论文提出了一个变权的小世界生物神经网络模型,并进一步数值研究了这种模型在受外界刺激下的兴奋统计特性,得出了与真实脑神经系统受外界刺激所表现出的类似结果。最有意义的结果是:在同样的网络结构、网络参数及外部刺激信号的条件下,学习系数b存在一个最优值b*,使生物神经网络的兴奋度在b=b*时达到最大。在此基础上,我们又进一步深入研究了该模型的权值变化对同步的影响。通过数值模拟结果我们发现,网络权值的学习系数同样存在一个最优值,使得网络发放电出现尖峰同步现象。另外,我们还考虑了网络连接概率和外加刺激电流的影响,我们发现外加刺激和加边概率对网络同步的影响非常小。
     (3)关于外界刺激引起的小世界生物神经网络同步现象的研究
     同步在理论和实际应用中都具有很重要的价值,因此,生物神经系统中的同步现象受到越来越多的关注。本文的研究发现不同的外界刺激频率可以使生物神经网络产生同步现象,网络节点耦合强度也可以对同步产生影响,而两者所产生的同步现象的原因是不相同的。
Hodgkin and Huxley who are the biologist of Britain put forward the notability nonlinear dynamical equation of giant axon of Loligo, namely Hodgkin-Huxley(H-H)equation, and described rightly the electrochemistry mechanism of nerve discharging in 1952. This model can be used to describing nonlinear phenomenon appearing in neurilemma, such as the problem of self-oscillation, chaos, and multi-stability etc. It also provides the basic frame to study the excitement of neuron. How do thousands upon thousands neurons couple with each other to fire is an important issue both theoretically and experimentally. Recently, the development of complex networks theory provide another measure to research that problem. In this dissertation, we applied statistical method, nonlinear system theory to the complex biological neural networks, constructed three artificial neural networks models, and then studied their dynamic properties. The studies show that these neural models exhibit some characteristic, which have some extent comparability with the real biological neural networks. Our study might shed some light on studying the excitement, the discharge rhythm, synchronization of neural networks.
     The main contents and originalities in this dissertation can be summarized as follows:
     (1) The study on coherence resonance and optimal system size in biological neural networks. The network of collective dynamical behaviors have beening the hot topics for the study. In this dissertation, we studied the reciprocal relationship between long-range connection and local connection in the biological neural network. We construct a globally coupled biological neural network model with side-inhibit mechanism, and numerically investigate its coherence resonance. We have considered side-inhibitory mechanism in a globally coupled H-H neurons model, and then studied the spike coherence behavior. We find that the collective behavior of the system is the most regular when the connection strength A and ratioμhave an optimal value, but the optimal island does not exist if the noise strength is small. The CR and size resonance have also been investigated at the different connection strength A and different ratioμ. The ratioμhas little effect on R when the coupling strength A is small. As the coupling strength increases, the influence ofμbecome more distinguishable.
     (2) The study on excitement, optimality properties and synchronization in small-world biological neural networks with time-varying weights
     Recently, the biological neural network models are unweighted models or the connection weights are just a constant independent time. But, the connection weights of real-world biological neural network are updated dependent on time. In this dissertation, according to biological neural networks have small-world property and updating connections weights with time, we propose a new model of small-world biological neural networks with time-varying weights. Then we numerically study excitement statistical properties of this model under the external stimulus, and get some results which is consistent with real-world biological neural network properties. The significance results show that there is optimal learning rat value b* with the same condition of structure of networks, parameters employed and external stimulating, which make the excitement strength of biological neural networks reach the biggest. On the other hand, we study the effect of updated weights on synchronization in this model. We find there exist an optimal synchronization state when the coupling connection weights of neurons are adjusted reasonably by changing the learning rate. The larger external stimulus will make it easier to tame the synchronization and the connection-rewiring probability which possessed the small-world networks structure just has little effect on the synchronization.
     (3) The study on synchronization induced by external stimulus in biological neural network
     The synchronization has very importance both in theory and in practical applications. So, the synchronization of biological neural system has attracted increasing attentions. In this dissertation, the results shown that different frequency of external stimulus can induce synchronous activities in neural network. We also found that the coupling strength of network have effect on the synchronization. But the reason that induced this phenomenon is different.
引文
[1] 罗晓曙. 人工神经网络理论[M]. 桂林:广西师范大学出版社,2005: 4.
    [2] 李珊珊. 复杂脑功能网络研究[D]. 大连:大连理工大学,2006.
    [3] M. A. Athid. The Handbook of Brain Theory and Neural Networks(second edition)[M]. London: the MIT Pres, 2002.
    [4] 冯又层. 神经网络中的混沌行为研究及其应用[D]. 武汉:华中师范大学,2005.
    [5] 王瑞敏.神经元传输函数和网络噪音对联想记忆反馈网络动力学特性的影响[D].兰州:兰州大学,2006.
    [6] 袁五届. 复杂网络与复杂生物神经网络的建模及其动力学特性研究[D].桂林:广西师范大学,2007.
    [7] 周小荣. 小世界生物神经网络的随机响应和同步性能研究[D].桂林:广西师范大学, 2007.
    [8] W. S. MCulloch, W. Pitts. A Logical Calulus of the Ideas Immanent in Nervous Activity[J]. Bulletin of Marhematical Biophysics,1943,5:115-133.
    [9] D. O. Hebb.The Organization of Behavior[M]. New York:Wiley,1949.
    [10] A. L. Hodgkin, A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. Journal of Physiology, 1952, 117: 500- 544.
    [11] J. C. Eccles. Cholinergic and Inhibitory Synapses in A Pat hway from Motoraxon Collaterals to Motorneurones[J]. Journal of Physiology, 1954 , 126: 524.
    [12] J. J. Hopfied. Neural Network and Physical systems with Emergent collective computational Abilities[C], Proceedings of the National Academy of Science of the USA79, 1982:2554- 2558.
    [13] L. X. Wang. Fuzzy system are universal approximators[C]. Proceedings of Conference on Fuzzy Systems, San Diego, 1992:1163 – 1170.
    [14] 廖晓昕.细胞神经网络的数学理论(Ⅰ )[J].中国科学(A辑),1994,24(9): 902-910;廖晓昕.细胞神经网络的数学理论(Ⅱ ) [J].中国科学(A辑), 24(10):1037-1046.
    [15] 陈明.神经网络模型[M].大连:大连理工大学出版社,1996.
    [16] 焦李成. 神经网络的应用与实现(M).西安:西安电子科技大学出版社,1995.
    [17] 林克椿.生物物理学[M].武汉:华中师范大学出版社(第一版),1999:73-77
    [18] 董军,胡上序.混沌神经网络研究进展与展望[J].信息与控制,1997,26(5): 360-368.
    [19] 胡守仁,余少波,戴葵.神经网络导论[M].长沙:国防科技大学出版社,1992.
    [20] 姚国正,汪云九.神经网络的集合运算[J].信息与控制,1989,18(2):31-40.
    [21] 吕国蔚主编.医学神经生物学[M].北京:高等教育出版社,2000.
    [22] 徐科.神经生物学纲要[M].北京:辞学出版社,2000:50-53.
    [23] F. Ratty. Analysis of models for external stimulation of axons[J]. IEEE Trans. Biomed. Eng., 1986, 33 (10): 974-977.
    [24] C. M. Zierhofer. Analysis of a linear model for electrical stimulation of axons-critical remarks on the ‘Activating function concept’[J]. IEEE Trans. Biomed. Eng., 2001,48(2):173-183.
    [25] C. J. Thompson, D. C. Bardos, Y. S. Yang, K. H. Joyner. Nonlinear Cable Models for Cells Exposed toElectric Fields I. General Theory and Space-Clamped Solutions[J]. Chaos Solitons &Fractals, 1999 (11):1825-1842.
    [26] S. Sato, S. Doi. Response Characteristics of the BVP Neuron Model to Periodic Pulse Inputs[J]. Mathematical Biosciences, 1992, 112:24-259.
    [27] R. Genesio, M. Nitti, A. Torcini. Analysis and Simulation of Waves in Reaction-Diffusion Systems[C]. Proceedings of the 37th IEEE Conference on Decision&Control Tampa, Florida USA, 1999:2059-2064.
    [28] K. Aihara. Periodic and nonperiodic responses of a periodically forced Hodgkin-Huxley Oscillator[J]. Theor. Biol.,1984,109:249.
    [29] A. Babloyantz, J. M. Salazar, C. Nicolis. Evidence of chaotic dynamics of brain activity during the sleep cycle[J]. Phys. Lett. A, 1985,111:152.
    [30]丁丽娟.数值计算方法[M].北京:北京理工大学出版社,1997:204-214.
    [31] R. Albert, A. –L. Barabási. Statistical mechanics of complex networks[J]. Rev. Mod. Phys., 2002, 74:47-97.
    [32] S. N. Dorogovtsev, J. F. F. Mendes. Evolution of networks[J]. Adv. Phys., 2002, 51:1079- 1187.
    [33] D. J. Watts, S. H. Strogatz. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440- 442.
    [34] J. Bond, U. S. R. Murty. Graph Theory with Applications[M]. London and Basingstoke: MacMillan Press LTD, 1976.
    [35] J. M. Xu. Topological Structure and Analysis of Interconnection Network[M]. London: Kluwer Academic Publishers, 2001.
    [36] P. Erdos, A. Renyi, On random graphs[J]. Publications Mathematics, 1959, 6: 290-297.
    [37] P. Erdos, A. Renyi, On the evolution of random graphs[J]. Pub. Math. lnst. Hung. Acad. Sci,1960, 5:6-l7.
    [38] P. Erdos, A. Renyi, On the strength of connectedness of a random graph[J]. Acta Math. Sci.Hungary, 1961, 12: 261-267.
    [39] A. L. Barabási, R. Albert. Emergence of Scaling in Random Networks[J]. Science, 1999, 286: 509-512.
    [40] A. L. Barabási, R. Albert and H. Jeong. Mean-field theory for scale-free random networks [J]. Phys. A, 272: 173-187.
    [41] 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M].北京:清华大学出版社, 2006:3.
    [42] D. J. Watts. The ‘new’ science of networks[J]. Annual Review of Sociology, 2004, 30: 243-270.
    [43] 赵明. 复杂网络上动力系统同步现象的研究[D].合肥: 中国科学技术大学,2007.
    [44] M. E. J. Newman, D. J. Watts. Scaling and percolation in the small-world network model[J]. Phys. Rev. E, 1999, 60: 7332-7342.
    [45] M. E. J. Newman. The structure and function of networks[J]. Computer Physics Communications, 2002, 147, 40–45.
    [46] M. Barthelemy, L.A.N. Amaral, Erratum: Small-world networks: Evidence for a crossover picture[J]. Phys. Rev. Lett., 1999, 82: 5180.
    [47] A. Barrat, M. Weigt, On the properties of small-world network models [J]. Eur. Phy..J. B, 2000, 13: 547-560.
    [48] 赵静,赫荣乔,李东风.神经科学与百年诺贝尔奖[J].生物物理学报,2002,18:141-145.
    [49] 黄河. 突触噪声作用下神经元细胞膜离子通道的温度效应[D]. 武汉:华中师范大学,2005.
    [50] H. Hasegawa. Stochastic resonance of ensemble neurons for transient spike trains: Wavelet analysis[J]. Phys. Rev. E, 2002, 66: 021902.
    [51] J. G. White, E. Southgate, J. N. Thompson, S. Brenner. The structure of the nervous system of the nematode C. elegans[J]. Phil. Trans. of the Royal Society of London. 1986, 314:1-340.
    [52] T. B. Achacoso, W. S. Yamamoto. AY’s Neruoamnatomy of C.Elegans for Coumputation [M], Boca Raton Florida: CRC Press, 1992.
    [53] O. Sporns, J. D. Zwi. The small world of the cerebral cortex[J]. Neuroinformatics, 2004,2: 145–162.
    [54] L. F. Lago-Fernández, R. Huerta, F. Corbacho and J. A. Sigüenza. Fast Response and Temporal Coherent Oscillations in Small-World Networks[J]. Phys. Rev. Lett., 2000, 84: 2758-2761.
    [55] M. Barahona, L. M. Pecora. Synchronization in small-world systems[J]. Phys. Rev. Lett., 2002, 89: 054101.
    [56] S. H. Strogatz. Exploring complex networks[J]. Nature, 2001, 410: 268-276.
    [57] C. G. Li, G. R. Chen. Local stability and Hopf bifurcation in delayed small-world networks [J], Chaos, Solitons&Fractals,Vol.20,No.2,pp.353-361,2004.
    [58] W. J. Yuan, X. S. Luo, B. H. Wang, W. X. Wang, J. Q. Fang and P. Q. Jiang. Excitation properties of the biological neurons with side-inhibition mechanism in small-world networks[J]. Chin. Phys. Lett., 2006, 23 (11): 3115-3118.
    [59] W. J. Yuan, X. S. Luo and P. Q. Jiang. Study under AC Stimulation on excitement properties of weighted small-world biological neural networks with side-restrain mechanism[J]. Commun. Theor. Phys., 2007, 47 (2): 369-373.
    [60] Y. Wang, D.T. W. Chik. Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons[J]. Phys. Rev. E, 2000, 61: 740-746.
    [61] Y. Yu, W. Wang. Resonance-enhanced signal detection and transduction in the Hodgkin- Huxley neuronal systems[J]. Phys. Rev. E, 2001, 63: 021907.
    [62] H. Hasegawa. Synchronization in small-world networks of spiking neurons: Duffusive versus sigmoid coupling[J]. Phys. Rev. E, 2005, 72: 056139.
    [63] 周小荣,罗晓曙,蒋品群,袁五届. 小世界神经网络的二次超谐波随机共振[J]. 物理学报, 2007,56(10):5679-05.
    [64] W. J. Yuan, X. S. Luo, R. H. Yang. Stochastic resonance in neural systems with small-world connections[J]. Chin. Phys. Lett., 2007, 24(3): 835-838.
    [65] M. S. Wang, Z. H. Hou. Synchronization and coherence resonance in chaotic neural networks[J]. Chinese Physics, 2006, 15: 2553-2557.
    [66] M. S.Wang, Z. H. Hou. Optimal network size for Hodgkin-Huxley neurons[J]. Phys. Lett. A, 2005, 334: 93-97.
    [67] H. Hasegawa. Dynamical mean-field approximation to small-world networks of spiking neurons: From local to global and/or from regular to random couplings[J]. Phys. Rev. E, 2004, 70: 066107.
    [68] O. Kwon, H. Moon. Coherence resonance in small-world networks of excitable cells[J]. Phys. Lett. A, 2002, 298: 319-324.
    [69] R. Benzi, A. Sutera, A. Vulpiani. The mechanism of stochastic resonance[J]. J. Phys. A, 1981, 14(11): 453- 457.
    [70] G. Hu, T. Ditzinger, C. Z. Ning, H. Haken. Stochastic resonance without external periodic force[J]. Phys. Rev. Lett.,1993,71:807.
    [71] Y. Q. Wang, T. W. C. David, Z. D. Wang. Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons[J]. Physical Review E, 2000, 61: 740-746.
    [72] Y. J. Jiang, S. Zhong, H. W. Xin. Experimental observation of internal signal stochastic resonance in the Belousov–Zhabotinsky reaction[J]. J. Phys. Chem. A, 2000, 104:8521– 8523.
    [73] B. Lindner, L. Schimansky-Geier. Transmission of Noise Coded versus Additive Signals through a Neuronal Ensemble[J]. Phys. Rev. Lett., 2001, 86: 2934-2937.
    [74] J. M. Casado. Noise-induced coherence in an excitable system[J]. Phys. Lett. A, 1997, 235: 489-492.
    [75] S. Gerhard, H. G. Peter. Intrinsic coherence resonance in excitable membrane patches[J]. Mathematical Biosciences (2006), doi: 10.1016/j.mbs. 2006. 08. 024.
    [76] 汪茂胜. 耦合动力系统中若干复杂性和非线性问题的研究[D]. 合肥:中国科学技术大学,2007.
    [77] K. Kaneko. Lyapunov Analysis and Information Flow in Coupled Map Lattices[J]. Physica, 1986, 23D: 436-447.
    [78] D. Hansel, H. Sompolinsky. Synchronization and Computation in a Chaotic Neural Network[J]. Phys. Rev. Lett., 1992,68:718-721.
    [79] Z. Gao, B. B. Hu, G. Hu. Stochastic resonance of small-world networks[J]. Phys. Rev. E, 2001, 65: 016209.
    [80] S. A. Ellias, Grossberg S. Pattern formation, contrast control, and oscillations in the short- term memory of shunting on-center off-surround networks[J]. Biol. Cyber., 1975, 20: 69-98.
    [81] C. Blakemore, R. Carpente, M. Georgeso. Lateral inhibition between orientation detectors in human visual system[J]. Nature, 1970, 228:37-39.
    [82] A. Arieli, D. Shooham, R. Hildesheim, A. Grinvald. Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex[J]. J. Neurophysiol, 1995, 73: 2072-2093.
    [83] C. Zhou, J. Kurths, B. Hu. Array-Enhanced Coherence Resonance: Nontrivial Effects of Heterogeneity and Spatial Independence of Noise[J]. Phys. Rev. Lett.,2001, 87:098101.
    [84] W. R. Softkey, C. Koch. The highly irregular firing of cortical cells is inconsistent with temporalintegration of random EPSPs[J]. J. Neurosci.,1993, 13:334–350.
    [85] H. Y. Zheng, X. S. Luo. Optimal system size and Coherence resonance in biological neural networks[J]. submitted.
    [86] W.Y. Jin, J.X. Xu, Y. Wu, L. Hong. An alternating periodic-chaotic ISI sequence of H–H neuron under external sinusoidal stimulus[J]. Chinese Physics, 2004,13: 335–340.
    [87] 谢勇,徐健学,康艳梅,胡三觉,段玉斌.可兴奋性细胞混沌放电区间的识别机理[J].物理学报, 2003,52 (5): 1112-1220.
    [88] S. Luccioli, T. Kreuz, A. Torcini. Dynamical response of the Hodgkin-Huxley model in the high-input regime[J]. Physical Review E, 2006,73:041902.
    [89] Y. Xie, J. X. Xu, Y. M. Kang, S. J. Hu, Y. B. Duan. Characteristics of critical amplitude of a sinusoidal stimulus in a model neuron[J]. Chinese Physics, 2004, 13:1396-1401.
    [90] Z. Q. Yang, Q. S. Lu. Bursting and spiking due to additional direct and stochastic currents in neuron models[J]. Chinese Physics, 2006,15:0518-0525.
    [91] X. Shi, Q. S. Lu. Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons[J]. Chinese Physics, 2005,14(01):77-85.
    [92] C. G. Li, G. R. Chen. Stability of a dynamical neural network model with small-world connection[J]. Physical Review E, 2003,68,052901.
    [93] W. C. Abraham, M. Bear. Metaplasticity: the plasticity of synaptic plasticity[J]. TINS, 1996, 19: 126-130.
    [94] W. C. Abraham, W. Tate. Metaplasticity: a new vista across the field of synaptic plasticity[J]. Prog. Neurobiol.,1997,53:303-323.
    [95] L. F. Abbott. Decoding neural firing and modeling neural network[J]. Quart. Rev. Biophy., 1994, 27:291- 331.
    [96] E. Oja. A simplified neuron model as a principal component analyzer[J]. J.Math. Biol.,1982,15(3):267- 273.
    [97] Y. G. Yu, W. Wang, J. F. Wang. Resonance-enhanced signal detection and transduction in the Hodgkin- Huxley neuronal systems[J]. Physical Review E, 2001,63: 021907.
    [98] X. F. Wang, G. R. Chen. Synchronization in scale-free dynamical networks: robustness and fragility[J]. IEEE Transactions on Circuits and Systems-Ⅰ , 2002, 49: 54-62.
    [99] Y. Munakata, J. Pfaffly. Hebbian learning and development[J]. Developmental Science, 2004,7(2):141-148.
    [100]C. G. Li, X. F. Liao, J. B. Yu. Generating chaos by Oja’s rule[J]. Neurocomputing, 2003, 55: 731-738.
    [101]http://www.jgchina.com/ednns/ednnsbk/director.htm
    [102]W. H. Shen, B. Wu, Z. J. Zhang, Y. Dou, Z. R. Rao, Y. R. Chen, S. M. Duan. Activity- Induced Rapid Synaptic Maturation Mediated by Presynaptic Cdc42 Signaling[J]. Neuron, 2006, 50: 401-414.
    [103]S. H. Strogartz,I. Stewart. Coupled Oscillators and Biological Synchronization[J]. Scientific American,1993, 269(6): 68-75.
    [104]Z. Neda,E. Ravasz, Y. Brechet, T. Vicsek, A.-L. Barabási. Self-organizing processes: The sound of many hands clapping[J]. Narure, 2000,403:849-850.
    [105]L. Glass. Synchronization and rhythmic processes in physiology[J]. Nature, 2001, 410:277 -284.
    [106]N. F. Rulkov, M. M. Sushchik, L. S. Tsimrring, H. D. I. Abarbanel. synchronization of chaos in directionally coupled chaotic systems[J]. Phys. Rev. E,1995,51:980-994.
    [107]M. G. Rosenblum, A. S. Pikovsky and J. Kurths. Phase synchronization of chaotic oscillators[J]. Phys. Rev. Lett., 1996, 76,1804-1808.
    [108]C. S. Zhou, J. Kurths. Noise-induced synchronization and coherence resonance of a Hodgkin-Huxley model of thermally sensitive neurons[J]. Chaos, 2003,13:401-109.
    [109]W. Gerstner, J. L. van Hemmen, J. D. Cowan. What matters in neuronal locking[J]. Neural Comput, 1996,8:1653-1676.
    [110]A. K. Kreiter, W. Singer. in Brain Theory: Biological Basis and Computational Theory of Vision[M]. Amsterdam:Elsevier,1996.
    [111]W. Singer, C. M. Gray. Visual Feature Integration and the Temporal Correlation Hypothesis[J]. Annu. Rev. Neurosci., 1995,18:555.
    [112]R. Llinas, U. Ribary. Coherent 40-Hz Oscillation Characterizes Dream State in Humans[J]. Sci. USA , 1993, 90:2078.
    [113]M. Steriade, D. A. McCormick, T. J. Sejnowski. Thalamocortical oscillations in the sleeping and arousal brain[J]. Science, 1993,262:679.
    [114]M. A. Whittington, R. D. Traub, J. G. R. Jeffreys. Metabotropic receptor activation drive synchronized 40 Hz oscillations in networks of inhibitory neurons[J]. Nature,1995,373:612.
    [115]X. J. Wang, G. Buzsáki. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model[J]. Journal of Neuroscience, 1996,16:6402.
    [116]C. Soto-Trevi?o, K. A. Thoroughman, E. Marder, L. F. Abbott. Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks[J]. Nature Neuroscience, 2001,4:297-303.
    [117]X. L. Fang, H. J. Yu, Z. L. Jiang. Chaotic synchronization of nearest-neighbor diffusive coupling Hindmarsh-Rose neural networks in noisy environment[J]. doi:10.1016/j.chaos.2007.07.010.
    [118]G. B. Li, J. F. Feng. Stimulus-evoked synchronization in neuronal models[J]. Neurocomputing, 2004,58(60):203-208.
    [119]T. W. C. David, Z. D. Wang. Postinhibitory rebound delay and weak synchronization in Hodgkin-Huxley neuronal networks[J]. Phys. Rev. E, 2003, 68:031907.
    [120]Bucolo M, Fortuna L, Rosa ML. Network self-organization through “small-worlds” topologies. Chaos, Solitons & Fractals 2002;14:1059-1064.
    [121]Perc M. Effects of small-world connectivity on noise-induced temporal and spatial order in neural media.Chaos, Solitons & Fractals 2007;31:280-291.
    [122]K. Klemm, S. Bornholdt, H. G. Schuster. Beyond Hebb: XOR and Biological Learning[J]. Phys. Rev. Lett., 2000,84(13): 3013-3016.
    [123]M. Tsukada. A computational model of learning and memory[J]. International Congress Series, 2004, 1269: 11-20.
    [124]J. Wang, L. Q. Chen, X. Y. Fei. Bifurcation control of the Hodgkin–Huxley equations[J]. Chaos, Solitons & Fractals, 2007,33: 217-224.
    [125]G. Schmid, I. Goychuk. Channel noise and synchronization unexcitable membranes[J]. Phys. A, 2003, 325: 165-175.
    [126]M. Naoki, A. Kazuyuki. Global and local synchrony of coupled neurons in small-world networks[J]. Biological Cybernetics, 2004, 90: 302-309.
    [127]T. W. C. David, Y. Q. Wang, Z. D. Wang. Stochastic resonance in a Hodgkin-Huxley neuron networks in the absence of external noise[J]. Physical Review E, 2001,64:021913.
    [128]P. Khashayar, M. Denis. Noise induced synchronization in a neuronal oscillator[J]. Physica D, 2004, 192: 123-137.
    [129]M. C. José. Synchronization of two Hodgkin–Huxley neurons due to internal noise[J]. Physics Letters A, 2003, 310: 400–406.
    [130]J. M. Casado. Synchronization of two Hodgkin-Huxley neurons due to internal noise[J]. Phys. Lett. A, 2003, 310: 400-406.
    [131]J. F. Feng, B. David, G. B. Li. Synchronization due to common pulsed input in Stein’s model[J] , Physical Review E, 2000, 61: 2987-2995.
    [132]G. Buzsaki, C. Geisler, D. A. Henze, X. J. Wang. Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons[J]. Trends in Neurosciences, 2004, 27: 186 –193.
    [133]J. L. Van Hemmen, E. Domany, K. Schulten. Models of Neural Networks II: Temporal Aspects of Coding and Information Processing in Biological Systems[M]. New York: Springer-Verlag, 1994:1-347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700