用户名: 密码: 验证码:
双层规划理论在电力系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电力系统以区域电网互联以及区域间大功率能量交换为代表,电力系统输电能力对于整个系统的安全可靠性有着很大的影响。尤其是在电力市场环境下,系统运行不确定性增大,电能交易瞬息万变,支路过负荷、节点电压越限等故障更有可能发生。这就提出了如何准确、高效地评估电网输电能力的问题。可用输电能力(Available Transfer Capability,ATC)是衡量输电网输电能力的物理量,它是在现有的输电合同基础之上,实际输电网络保留输电能力的尺度。众多工程人员和研究学者对ATC的评估方法做了大量研究,但是对于如何合理地处理众多的不确定因素,如何计算输电可靠性裕度(Transmission Reliability Margin,TRM)等这些问题都没有很好地解决。本文针对这些问题,补充、提出了一些方法和见解,具体研究成果如下:
     1、针对ATC评估的是“乐观”情况下电网输电能力,提出了“保守”情况下的电网输电能力-至少传输容量的概念。
     2、提出基于主从决策的TRM双层优化模型,给出了TRM计算的解析方法,两次一维搜索的算法减小了TRM求解的难度,提高了计算速度。
     3、提出考虑静态电压稳定约束的至少传输容量评估模型,针对模型特点提出的BiGA算法具有较强的鲁棒性。
     随着电力负荷的增加,电力供需不平衡性增大,区域间的交换容量越来越大,电网不堪重负。改变网络的结构和设备是解决上述问题的根本办法,但这需要大量的投资。另外一个有效的办法是充分利用现有网络,定量分析分布式电源可能给电网带来的影响,在保证安全稳定前提下,尽可能多地接入分布式电源。这样,既有利于缓解地区电力紧张状况、充分利用能源,也可以减小区域电网间的交换功率容量,有利于电网稳定运行。分布式电源大多通过配电网接入系统,这使得原有的辐射形配电网单向电源馈电潮流特性发生了根本性变化,一系列包括电压调整、无功平衡、继电保护在内的问题都将影响系统运行。无功电压控制装置是配电网中最主要的设备之一,本文重点研究了分布式电源的接入对这些设备的影响,以及考虑这些影响后,分布式电源的接入容量问题。具体研究成果如下:
     1、分布式电源的启停受到人为以及自然因素影响,具有一定随机性。当分布式电源容量较大时,其启停可能会造成配电网无功电压控制设备(如变压器,电容器组等)非正常运行。文中,深入讨论了分布式电源启停对无功电压控制设备的影响,并给出了计算最大准入容量的模型。
     2、分析了简单振荡以及VQC调节振荡条件,讨论了分布式电源的接入对振荡产生的影响及出现调节振荡的可能,进而得出了考虑振荡约束的准入功率极限模型。
     3、分析了分布式电源通过单点接入系统与多点接入系统时准入功率计算的区别,提出了分布式电源多点接入的至少准入容量概念,并给出了计算模型和算法。
The transmission transfer ability has great influence on power system reliability and safety, represented by the interconnected transmission networks and power interchange between areas. This is even more severe with the increase of uncertainty in power market and instantaneous variation in electricity exchange process. It tends to have over-loaded branches and over-voltages. This brings forward the problem of how to evaluate the transmission transfer ability accurately and efficiently. Available Transfer Capability (ATC), based on the electricity contract under power market, is a physical quantity to evaluate the transfer ability of transmission networks. Many studies have been done on the methodology of ATC evaluation, however, how to consider the uncertainty appropriately still remains unsolved, such as the problem of calculating the Transmission Reliability Margin (TRM). This paper focuses on the problems mentioned above and brings forward original ideas and methodology. The majior contributions are summarized as follows:
     1. Enhanced the concept of min-max transfer capacity, which is the conservative transfer ability against the optimistic transfer ability that ATC evaluates.
     2. Constructed a TRM model of bi-level optimization based on leader-follower decision-making model, and an analytic method of computing TRM is proposed. A bi-section search algorithm simplifies and speeds up the calculation.
     3. Proposed the min-max transfer capability model considering steady voltage stability. The BiGA algorithm used in this model is shown to be robust.
     With the increase of electric loads in power system and the growing unbalance between power demand and supply, the amount of power that should be transferred over the interconnected transmission network becomes greater. Therefor, power grid tends to be over-loaded. To enhance the structure and equipments of the transmission network is the ultimate way to solve this problem. However, it requires the large amount of investment. Another effective method is, under the condition of maintaining power system safety and stability, to utilize distributed generators as more as possible based on the existed network. This helps to ease the tensity of power supply in regional systems, make fully use of resources and lower the amount of power transferred between areas. Distributed generators are usually connected via distribution network, which makes revolutionary change of the radial structure of distributed network. A series of problems, such as voltage regulation, reactive power balance and relay protection, will have effect on power system operation. Voltage/var control equipment is a major device in distribution network. This work studies the influence of the interconnection of distributed generator on these devices and the allowable penetration level considering these influences. The major achievements are summarized as follows:
     1. The distributed generators unit commitment has a certain degree of randomness, as influenced by natural causes or man-made impact. With considerably large capacities of distributed generators, the shutting-down or starting up of distributed generators may cause the voltage/var control device working abnormally. This paper discusses the influence and proposes a model for evaluating the maximum allowable penetration level.
     2. Analyses the condition of simple oscillation and VQC oscillation regulation, discusses the influences on the oscillation with the interconnection of distributed generators, indicates that the interconnection of distributed generators may cause the regulation of voltage/var control device to oscillate, and presents a model of allowable penetration level calculation considering tap changer oscillations.
     3. Investigates the difference between the allowable penetration level of single-bus and multi-bus injection. Proposes the concept of the min-max allowable penetration level, along with its mathematic model and algorithm.
引文
[1]韩丰.电网建设:发展思路与区域布局[J].中国电力企业管理,2006年第9期:84-86
    [2]杨勇.电网发展五要点[J].中国电力企业管理,2006年第9期:87-88
    [3]李国庆,王成山,余贻鑫.大型互联电力系统区域间功率交换能力研究综述[J].中国电机工程学报,2001,21(4):20-25
    [4]陈炳贻.新世纪小型发电装置的开发.研究燃气涡轮实验与研究[J],2001,55(4):57-60
    [5]莫颖涛,吴为麟.分布式发电的研究方向[J].热力发电,2006第5期:71-72
    [6]Bard J F.Practical Bilevel Optimization:Algorithms and Applications[M].Kluwer Academic Publishers,1998.
    [7]C.Audet,P.Hansen,B.Jaumard,et al.Links Between Linear Bilevel and Mixed 0-1 Programming Problems[J].Journal of Optimization Theory and Applications,1997,93(2):273-300.
    [8]J.Brachen,J.McGill.Mathematical programs with optimization problems in the constraints.Operations Research,1973,21:37-44
    [9]H.Stackelberg.The Theory of The Market Economy[M].Oxford University Press,New York,Oxford,1952.
    [10]J.Bard.Optimality conditions for the bilevel programming problem[J].Naval Research Logistics Quarterly,1984,31:13-26.
    [11]P.Clarke,A.Westerberg.A note on the optimality conditions for the bilevel programming problem[J].Naval Research Logistics,1988,35:413-418.
    [12]S.Dempe.A necessary and a sufficient optimality condition for bilevel programming problems[J].Optimization,1992,25:341-354.
    [13]Y.Ishizuka.Optimality conditions for quasi-differentiable programs with applications to two-level optimization.SIAM Journal on Control and Optimization,1988,26:1388-1398.
    [14]J.Outrata.Necessary optimality conditions for Stackelberg problems[J].Journal of Optimization Theory and Applications,1993,76:305-320.
    [15]Z. Bi. P. Calamai, A. Conn. An exact penalty function approach for the linear bilevel programming problem. Technical Report #167-0-310789, University of Waterloo, Department of Systems Design Engineering, 1989.
    [16]G. Savard, J. Gauvin. The steepest descent direction for the nolinear bilevel programming problem[J]. Operations Research Letters, 1994, 15: 275-282.
    [17]L. Vicent, P. Calamai. Geometry and local optimality conditions for bilevel programs with quadratic strictly convex lower levels[J]. Minimax and Applications, 1995: 141-151.
    [18]R. Jeroslow. The polynomial hierarchy and a simple model for competitive analysis[J]. Mathematical Programming, 1985, 32: 146-164.
    [19] J. Bard. Some properties of the bilevel programming problem[J]. Journal of Optimization Theory and Applications, 1991, 68: 371-378.
    [20] O. Ben-Ayed, C.Blair. Computational difficulties of bilevel linear programming[J]. Operations Research, 1990, 38: 556-560.
    [21] P. Hansen, B. Jaumard, G Savard. New branch-and-bound rules for linear bilevel programming[J]. SIAM Journal on Scientific and Statistical Computing, 1992, 13:1194-1217.
    [22] W. Candler, R. Townsley. A linear two-level programming problem[J]. Computers and Operations Research, 1982, 9: 59-76.
    [23] J. Bard. An investigation of the linear three level programming problem[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1984,14: 711-717.
    [24] W. Bialas, M. Karwan. Two-level linear programming[J]. Management Science,1984, 30: 1004-1020.
    [25] J. Bard, J. Moore. A branch and bound algorithm for the bilevel programming problem[J]. SIAM Journal on Scientific and Statistical Coomputing, 1990, 11:281-292.
    [26] J. Bard, J. Falk. An explicit solution to the multi-level programming problem[J].Computers and Operations Research, 1982, 9: 77-100.
    [27] J. Fortuny-Amat, B. McCarl. A representation and economic interpretation of a two-level programming problem[J]. Journal of the Operational Research Society,1981,32:783-792.
    
    [28] F. Al-Khayyal, R. Horst, P. Pardalos. Global optimization of concave functions subject to quadratic constraints: an application in nonlinear bilevel programming[J]. Annals of Operations Research, 1992, 34: 125-147.
    [29] J. Bard. Convex two-level optimization[J]. Mathematical Programming, 1988, 40:15-27.
    [30] T. Edmunds, J. Bard. Algorithms for nonlinear bilevel mathematical programming[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21:83-89.
    [31] P. Hansen, B. Jaumard, G. Savard. New branch-and-bound rules for linear bilevel programming[J]. SI AM Journal on Scientific and Statistical Computing, 1992, 13:1194-1217.
    [32] T. Edmunds, J. Bard. An algorithm for the mixed-integer nonlinear bilevel programming problem[J]. Annals of Operations Research, 1992, 34: 149-162.
    [33] W. Bialas, M. Karwan, J. Show. A parametric complementary pivot approach for two-level linear programming. Technical Report 80-2, State University of New York at Buffalo, Opperations Research Program, 1980.
    [34] J. Judice, A. Faustino. The solution of the linear bilevel programming problem by using the linear complementarity problem[J]. Investigation Operacional, 1988, 8:77-95.
    [35] J. J u dice, A. Faustino. A sequential LCP method for bilevel linear programming[J]. Annals of Operations Research, 1992, 34: 89-106.
    [36] J. Judice, A. Faustino. The linear-quadratic bilevel programming problem[J].INFOR, 1994,32:87-98.
    [37] D. White, G. Anandalingam. A penalty function approach for solving bi-level linear programs[J]. Journal of Global Optimization, 1993, 3: 397-419.
    [38]L. M. Alexis, Francisco D. Galiana. Unit commitment with dual variable constraints[J]. IEEE Transactions on Power Systems, 2004, 19(1): 330-338.
    [39]D. Das. Reactive power compensation for radial distribution networks using genetic algorithm[J]. Electrical Power and Energy Systems, 2002, 24: 573-581.
    [40] Santiago Grijalva, Peter W. Sauer. Reactive power considerations in ATC computation[J]. Decision Support Systems, 2001, 30: 327-340.
    [41] Arijit Bhowmik, Arindam Maitra, S. Mark Halpin, et al. Determination of allowable penetration levels of distributed generation resources based on harmonic limit considerations[J]. IEEE Transactions on Power delivery, 2003, 18(2):619-624.
    [42]Gan D,Luo X,Bourcier D V,Thomas R J.Min-max Transfer Capability of A Transmission Interface[J].International Journal of Electrical Power and Energy Systems,2003,25(5):347-353.
    [43]黄伟,黄民翔,赵学顺等.基于主从递阶决策模型的TRM评估[J].电力系统自动化,2006,30(4):17-21.
    [44]黄伟,黄民翔,甘德强.考虑电压稳定的电网至少传输容量评估[J].电力系统自动化,2006,30(22):25-27.
    [45]J.R.Gomes,O.R.Saavedra.A Cauchy-based evolution strategy for solving the reactive power dispatch problem[J].Electrical Power and Energy Systems,2002,24:277-283.
    [46]Youman Deng,Xiaojun Ren,Changcheng Zhao,et al.A Heuristic and algorithmic combined approach for reactive power optimization with time-varying load demand in distribution systems[J].IEEE Transactions on Power Systems,2002,17(4):1068-1072.
    [47]Ruey-Hsun Liang,Chen-Kuo Cheng.Dispatch of main transformer ULTC and capacitors in a distribution system[J].IEEE Transactions on Power Delivery,2001,16(4):625-630.
    [48]王函韵,胡骅,朱卫东等.信息不确定性对电网无功优化的影响[J].中国电机工程学报,2005,25(13):24-28.
    [49]黄昌泽,刘明波.不确定性无功优化问题的双层规划解法[C].电力系统及其自动化专业第二十一届学术年会论文集,2006:578-581.
    [50]王淑芬,万仲平,樊恒等.基于二层规划的无功优化模型及其混合算法[J].电网技术.,2005,29(9):22-25
    [51]Weber J D,Overbye T J.A Two-level Optimization Problem for Analysis of Market Bidding Strategies[C].Proceedings of IEEE Power Engineering Society Summer Meeting,Vol 2,Edmonton(Alta,Canada):1999,682-687
    [52]马豫超,侯志俭,蒋传文等.基于粒子群算法求解电力市场发电商最优供给函数模型[J].电力系统自动化,2006,30(2):45-50.
    [53]胡骅,吴汕,夏翔等.考虑电压调整约束的多个分布式电源准入功率计算[J].中国电机工程学报,2006,26(19):13-17.
    [54]江南,龚建荣,甘德强.考虑谐波影响的分布式电源准入功率计算[J].电力系统自动化.2007.31(3):19-23.
    [55]章杜锡,徐祥,海杨莉等.分布式电源刘配网过电压的影响[J].电力系统自动化,录用.
    [56]夏翔,黄伟,徐祥海等.考虑小水电启停策略的准入容量计算[J].电力系统自动化,2006,30(22):48-52.
    [57]黄伟,熊军,徐祥海等.考虑配网电压调节的分布式电源准入功率极限计算[J].电力系统自动化,录用.
    [58]王锡凡.现代电力系统分析.科学出版社,2003.
    [59]汪峰,白晓民.基于最优潮流方法的传输容量计算[J].中国电机工程学报,2002.22(11):35-40.
    [60]Available Transfer Capability Definitions and Determination.North American Electric Reliability Council,June,1996.http://www.nerc.com/~filez/atcwg.html
    [61]王成山,李国庆,余贻鑫等.电力系统区域间功率交换能力的研究(一):连续型方法的基本理论及应用[J].电力系统自动化,1999,3(3).
    [62]王成山,李国庆,余贻鑫等.电力系统区域间功率交换能力的研究(二):最大交换功率的模型与算法[J].电力系统自动化,1999,4(4).
    [63]刘皓明,严正,倪以信等.快速计算电网可输电能力的交流灵敏度方法[J].电力系统自动化,2003,27(19):11-15.
    [64]Gravener M H,Nwankpa C.Available transfer capability and first order sensitivity[J].IEEE Trans on Power Systems,1999,14(2):512-518.
    [65]Shaaban M,Ni Y,Wu F F.Transfet capability computations in deregulated power systems[C].Proceedings of the 33rd Annual Hawaii International Conference on System Sciences,4-7 Jan.2000,pp:114-118.
    [66]A.M.Leite da Silva,J.G.C.Costa,L.A.F.Manso,et al.Evaluation of transfer capabilities of transmission systems in competitive environments[J].Electrical Power and Energy Systems,2004,26:257-263.
    [67]A.M.Leite da Silva,J.G.C.Costa,L.A.F.Manso,et al.Transmission Capacity:Availability,Maximum Transfer and Reliability[J].IEEE Transactions on Power Systems,2002,17(3):843-849.
    [68]樊纪超,余贻鑫.考虑暂态稳定约束的临界割集功率传输极限和发电经济调度[J].电力系统自动化,2003,27(17):4-7.
    [69]肖颖,宋永华,孙元章.基于混合随机算泫的可用输电能力计算[J].电力系统自动化,2002,26(13).25-31.
    [70]Ying Xiao,Song Y H.Available Transfer Capability(ATC) Evaluation by Stochastic Programming[J].IEEE Power Engineering Review,2000,20(9):50-52.
    [71]Feng Xia,A.P.Sakis Meliopoulos.A Methodology for Probabilistic Simultaneous Transfer Capability Analysis[J].IEEE Trans.On Power Systems,1996,11(3):1269-1278.
    [72]Mello J C O,Mello A C G,Granville S.Simultaneous Transfer Capability Assessment by Combining Interior Point Methods and Monte-Carlo Simulation[J].IEEE Trans on Power Systems,1997,12(2):736-742.
    [73]崔雅莉,别朝红,王锡凡.输电系统可用输电能力的概率模型及计算[J].电力系统自动化,2003,27(14):36-40.
    [74]王梅义,吴竞昌,蒙定中.大电网系统技术.北京,中国电力出版社,1991.
    [75]CIGRE TF38.02.10,Modeling of Voltage Collapse including Dynamic Phenomena,Electra,No.147,Apr.1993,pp.71-77.
    [76]王成山,王兴刚.考虑静态电压稳定约束并计及负荷和发电机出力不确定性因素的概率最大输电能力快速计算[J].中国电机工程学报,2006,26(16):46-51.
    [77]Liu C C,Wu F F.Steady-state voltage stability regions of power systems[J].System and control LETT.1985.6(1):23-31.
    [78]Yixin Yu.Security region of bulk power system[C].PowerCon 2002.2002International Conference on Power System Technology Proceedings,Kunming,China,2002.
    [79]王成山,王兴刚,张沛.考虑静态电压稳定约束并计及设备故障概率的TTC 快速计算[J].中国电机工程学报,2006,26(19):7-12.
    [80]潘雄,徐国禹.基于最优潮流并计及静态电压稳定性约束的区域间可用输电能力计算[J].中国电机工程学报,2004,24(12):86-91.
    [81]王成山,李慧聪,魏炜等.考虑电压稳定性约束的输电能力综合计算电力自动化设备,2004,24(10):9-13
    [82]何季民.分布式电源技术展望[J].东方电气评论,2003,17(1):9-14.
    [83]Ackermann T,Andersson G,Soder L.Electricity Market Regulations and Their Impact on Distributed Generation[C].IEEE International Conference on Electric Utility Deregulation and Restructuring and Poer Technologies,April 2000:608-613.
    [84]Dugan R C,Price S K.Issues for Distributed Generation in the USA[C].IEEE Power Engineering Society Winter Meeting,Jan,2002,vol 1:121-126.
    [85]Philipson L.Distributed and Dispersed Generation:Addressing the Spectrum of Consumer Needs[C].IEEE Power Engineering Society Summer Meeting,July 2000,vol 3:1663-1665.
    [86]Kabouris J,Koronides A,Maissis A.Wind Power Integration into Electricity Networks in Greece[C].The 10~(th) IEEE MELECON 2000,Electrotechnical Conference,Mediterranean,May 2000,vol 3:117-1160
    [87]中华人民共和国可再生能源法,中华人民共和国第十届全国人民代表大会常务委员会第十四次会议于2005年2月28日通过。
    [88]吴汕,梅天华,龚建荣等.分布式发电引起的电压波动和闪变[J].能源与环境,2006年第4期:54-58
    [89]Ake Larsson.Flicker Emission of Wind Turbines During Continuous Operation [J].IEEE Transactions on Energy Conversion,2002,17(1):114-118
    [90]Saad-Saoud Z,Jenkins N.Models for predicting flicker induced by large wind turbines[J],IEEE Transactions on Energy Conversion,1999,14(3):743-748
    [91]P.Barker.Over voltage considerations in applying distributed resources on power systems[J].IEEE 2002.vol.1:109-114.
    [92]C.L.Wagner,W.E.Feero,W.G.Gish,R.H.Jones,Relay performance in DSG islands[J].IEEE Trans.On Power Delivery,vol.4,no.1,January 1989,pp.122-131
    [93]R.C.Dugan,D.T.Ritzy.Electric distribution system protection problems associated with the interconnection of small,dispersed generation devices[J].IEEE Trans.On Power Apparatus and Systems,vol.103,no.6,June 1984,pp.1121-1127
    [94]W.B.Gish,W.E.Feero,S.Greuel,Ferroresonance and loading relationships for DSG Installations[J].IEEE Transactions On Power Delivery,vol.2,no.3,1987,pp.953-959.
    [95]W.B.Gish,Small induction generators and synchronous generator constants for DSG isolation studies[J],IEEE Transactions On Power Delivery,vol.1,April 1986,pp.231-239.
    [96] W.E. Feero, W.B. Gish. Over voltage caused by DSG operation: synchronous and induction generators[J]. IEEE Trans. On Power Delivery, January 1985, vol. 1,pp.258-264.
    [97]Mohand A. Ouhrouche, Xuan D. Do, Quang M. LC, et al. EMTP based simulation of a self-excited induction generator after its disconnection from the grid[J]. IEEE Transactions on Energy Conversion, March 1998, Vol. 13,No. 1, pp.7-14.
    [98]R.M. Gnativ, J.V. Milanovic. Qualitative and quantitative analysis of voltage sags in networks with significant penetration of embedded generation[J]. European Transactions on Electric Power, 2005,vol. 15, pp. 77-93.
    [99]Collins.E.R, Jiang. J. The role of a synchronous distributed generator on voltage sags[C].11~(th) International Conference on Harmonics and Quality of Power, 2004,pp:637-641.
    [100] Hui Wan Li, K.K. Wong, K.P. An multi-agent approach to protection relay coordination with distributed generators in industrial power distribution system[C]. Industry Applications Conference,2005,vol 2, pp:830-836.
    [101] Hatziadoniu, C.J. Nikolov, E.N. Pourboghrat, F. Power conditioner control and protection for distributed generators and storage[J]. IEEE Transactions on Power Systems, 2003,18(1):83-90.
    [102] Baran, M. El-Markabi. I. Adaptive over current protection for distribution feeders with distributed generators[C]. Power Systems Conference and Exposition,2004, vol2,pp:715-719
    [103] Kumara, J.R, Atputharajah. A, Ekanayake. J. B. Over current protection coordination of distribution networks with fault current limiters[C]. IEEE PES General Meeting, 2006, pp:18-22
    [104] Tales M. de Britto, Diego R.M, Marco A.M, et al. Distributed Generation Impacts on the Coordination of Protection Systems in Distribution Networks[C].IEEE/PES Transmission and Distribution Conference and Expositon, Latin America, 8-11 Nov 2004,pp:623-628.
    [105] A. Woyte, K. De Brabandere, D. Van Dommelen, et al. International harmonization of grid connection guidelines: adequate requirements for the prevention of unintentional islanding[J]. Progress in Photovoltaics: Research and Applications, vol. 11, 2003, pp. 407-424.
    [106]Vachtsevanos G,Kang H.Simulation studies on islanded behavior of grid-connected photovoltaic systems[J].IEEE Transactions on Energy Conversion,1989,4(2):177-183.
    [107]Cullen N,Thornycroft J,Collinson A.Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks.Report IEA-PVPS T5-08:2002.
    [108]Ropp ME,Begovic M,Rohatgi A.Prevention of islanding in grid-connected photovoltaic systems[J].Progress in Photovoltaics:Research and Applications 1999:7(1):39-59.
    [109]H.Kirkham,R.Das.Effects of Voltage Control in Utility Interactive Disperse Storage and Generation Systems[J].IEEE Transactions on Power Apparatus and Systems,vol PAS-103,no 8,1984,pp:2277-2282.
    [110]J.H.Choi,J.C.Kim.Advanced voltage regulation method at the power distribution systems interconnected with dispersed storage and generation systems[J].IEEE Transactions on Power Delivery,vol.15,no.2,April 2000,pp.691-696.
    [111]J.H.Choi,J.C.Kim.The online voltage control of ULTC transformer for distribution voltage regulation[J].International Journal of Electrical Power and Energy Systems,2001,23(1),pp:91-98.
    [112]Chedid.R,Niels LeWhite,M.Ilic.A Comparative Analysis of Dynamic Models for Performance Calculation of Grid-Connected Wind Turbine Generators[J].Wind Engineering,1993,vol 17,no 4.
    [113]Cardell.J,Ilic.M.Maintaining Stability with Distributed Generation in A Restructured Industry[C].IEEE PES General Meeting,2004,vol 2,pp:2142-2149.
    [114]Okada K,Asano H,et al.Reliability-based Impact Analysis of Independent Power Producers for Power System Operations Under Deregulation[C].Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering Piscataway(NJ):1999,pp:1325-1330.
    [115]胡骅,虞海泓,赵良等.电力市场环境下的输电网扩展规划[J].继电器,2006,34(6):39-43.
    [116]王志群,朱守真,周双喜等.分布式发电接入位置和注入容量限制的研究[J].电力系统及其自动化学报.2005,17(1):53-58.
    [117]申洪,梁军,戴慧珠.基于电力系统暂态稳定分析的风电场穿透功率极限计算[J].电网技术,2002,26(8):8-11.
    [118]雷业洲,王伟胜,印永华等.一种静态安全约束下确定电力系统风电准入功率极限的优化方法[J].中国电机工程学报,2001,21(6):25-28.
    [119]雷业洲,王伟胜,印永华等.基于机会约束规划的风电穿透功率极限计算[J].中国电机工程学报,2002,22(5):32-35.
    [120]G.Carpinelli,G.Celli,F.Pilo,et al.Distributed Generation Siting and sizing under uncertainty[J],IEEE Porto Power Tech Proceedings,2001,vol4:7
    [121]J.G.Slootweg,W.L.Kling.Impacts of Distributed Generation on Power System Transient Stability[C].IEEE Power Engineering Society Summer Meeting.2002,vol2:862-867.
    [122]Freitas.W,Vieira J.C..M,Morelato,A,et al.Influence of Excitation System Control Modes on The Allowable Penetration Level of Distributed Synchronous Generators[J].IEEE Transactions on Energy Conversion.2005,20(2):474-480.
    [123]B.Corniere,L.Martin,S.Vitet,et al.Assessment of the congestion cost and the risk curtailment associated with available transfer capability(ATC)[C],Proceedings of IEEE PES,Winter Meeting January 23-27(2000),pp.891-897.
    [124]Melo A C G,Pereira M V F,Leite da Silva A M.Frequency and duration calculations in composite generation and transmission reliability evaluation[J].IEEE Trans on Power Systems,1992,7(2):469-476.
    [125]Leite da Silva A M,Manso L A F,Mello J C O,et al.Pseudo-chronological simulation for composite reliability analysis with time varying loads[J].IEEE Trans on Power Systems,2000,15(1):73-80.
    [126]Su C L,Lu C N.Two-point estimate method for quantifying transfer capability uncertainty[J].IEEE Trans on Power Systems,2005,20(2):573-579.
    [127]Greene S,Dobson I,Alvarado F L.Sensitivity of Transfer Capability Margins With a Fast Formula[J].IEEE Trans on Power Systems,2002,17(1):34-40.
    [128]李响,郭志忠.基于N-1原则的输电断面传送功率能力分析[J].电力系统自动化,2004,28(9):28-30.
    [129]Luo X,Patton A D,Singh C.Real power transfer capability calculations using multi-layer feed-forward neural networks[J].IEEE Trans on Power Systems,2000,15(2):903-908.
    [130]Audomvongseree K,Yokoyama A.Consideration of an appropriate TTC by probabilistic approach[J].IEEE Trans on Power Systems,2004,19(1):375-383.
    [131]Yuan Li,Venkatasubramanian V.Coordination of transmission path transfers[J].IEEE Trans on Power Systems,2004,19(3):1607-1615.
    [132]Jane J.Ye.Necessary Conditions for Belevel Dynamic Optimization[C].Proceedings of the 33rd Conference on Decision and Control.1994,507-512.
    [133]Chenggen Shi,Jie Lu,Guangquan Zhang.An Extended Kuhn-Tucker Approach for Linear Bilevel Programming[J].Applied Mathematics and Computation.162(2005):51-63.
    [134]Chenggen Shi,Jie Lu,Guangquan Zhang.An Extended Kth-best Approach for Linear Bilevel Programming[J].Applied Mathematics and Computation.164(2005):843-855.
    [135]G.Savard,J.Zowe.The Steepest Descent Direction for the Nonlinear Bilevel Programming Problem[J].Operations Research Letters.1994,Vol.15:121-152.
    [136]Manoel Campelo,Susana Scheimberg.A Note on a Modified Simplex Approach for Solving Bilevel Linear Programming Problems[J].European Journal of Operational Research.126(2000):454-458.
    [137]Thomas A,Edmunds,Jonathan F.Bard.Algorithms for Nonlinear Bilevel Mathematical Programs[J].IEEE Trans.On Systems,man,and cybernetics.1991,21(1):83-89.
    [138]G.Anandalingam,D.J.White.A solution method for the linear stackelbeg problem using penalty functions[J].IEEE Transactions on Automatic Control,1990,35(10):1170-1173.
    [139]Crisan O,Liu M.Voltage Collapse Prediction Using An Improved Sensitivity Approach[J].Electric Power System Research,1994,28(3):181-190.
    [140]M.M.Begovic,A.G.Phadke.Dynamic Simulation of Voltage Collapse[J].IEEE Trans.on PWRS,Vol.5,No.4,Nov.1990,pp.1529-1534.
    [141]赵晋泉,张伯明.连续潮流及其在电力系统静态稳定分析中的应用[J].电力系统自动化,2005,29(11):91-97.
    [142]CIGRE TF38.02.10,Modeling of Voltage Collapse including Dynamic Phenomena.Electra,No.147,Apr.1993,pp.71-77.
    [143]王成山,王兴刚.考虑静态电压稳定约束并计及负荷和发电机处理不确定性因素的概率最大输电能力快速计算,中国电机工程学报,2006,26(16).
    [144]刘明波,杨勇.计及静态电压稳定约束的无功优化规划.电力系统自动化,2005,29(5):21-25.
    [145]R.Jean-Jumeau,H.D.Chiang.Parameterizations of the Load-Flow Equations for Eliminating Ill-Conditioning Load Flow Solutions[J].IEEE Transactions on PWRS,Vol.8,No.3,Aug.1993,pp.1004-1012.
    [146]T.V.Cutsem.A Method to Compute Reactive Power Margin with Respect to Voltage Collapse[J].IEEE Transactions on PWRS,Vol.6,No.1,Feb.1991,pp.145-156.
    [147]C.J.Parker,I.F.Morrison,D.Sutanto.Application of an Optimization Method for Determining the Reactive Margin from Voltage Collapse in Reactive Power Planning[J].IEEE Transactions on PWRS,Vol.11,No.3,Aug.1996,pp.1473-1481.
    [148]G.D.Irisarri,X.R.Wang,et al.Maximum Loadability of Power Systems Using Interior Point Non-Linear Optimization method[J].IEEE Transactions on PWRS,Vol.12,No.1,Feb.1997,pp.162-172.
    [149]耿光飞,杨仁刚.基于定向变异遗传算法的地区电网无功功率优化[J].电网技术,2004,28(10):42-44.
    [150]Gan D,Thomas RJ,Zimmerman R D.Stability-constrained Optimal Power Flow[J].IEEE Trans.on Power Systems,2000,15(2):535-540.
    [151]J.Zhang,I.Dobson,F.L.Alvarado.Quantifying Transmission Reliability Margin[J].Electrical Power and Energy Systems.26(2004):697-702.
    [152]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化.2001,25(12):53-56.
    [153]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [154]Philip P.Barker,Robert W.de Mello.Determining the Impact of Distributed Generation on Power Systems:Part 1-Radial distribution Systems[C].IEEE Power Engineering Society Summer Meeting.2000,vol3:1645-1656.
    [155] Naka. S, Genji. T, Fukuyama. Y. Practical Equipment Models for Fast Distribution Power Flow Considering Interconnection of Distributed Generators[C]. IEEE Power Engineering Society Summer Meeting. 2001, vol2:1007-1012.
    [156] Oomori. T, Genji. T, Yura. T, et al. Fast Optimal Setting for Voltage Control Equipment Considering Interconnection of Distributed Generators[C].Transmission and Distribution Conference and Exhibition: Asia Pacific. IEEE/PES.2002, vol2: 1145-1150.
    [157] Salman S.K., Jiang. F., Rogers W.J.S.. The Effect Of Private Generators Ohf The Voltage Control Of 11 KV Network And On The Operation Of Certain Protective Relays[C]. IEEE/NTUA Athens Power Tech Conference. 1993, vol2:591-595.
    [158] S K Salman, I M Rida. ANN-based AVC Relay for Voltage Control of Distribution Network With and Without Embedded Generation[C]. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. 2000,263-267.
    [159] T. E. Kim, J. E. Kim. A Method for Determining the Introduction Limit of Distributed Generation System in Distribution System[C]. IEEE Power Engineering Society Summer Meeting. 200l,vol1:456-461.
    [160] A. Agustoni, M. Brenna, R. Faranda, et al. Constraints for The Interconnection of Distributed Generation in Radial Distribution Systems[C]. 10th International Conference on Harmonics and Quality of Power, 2002, vol1:310-315.
    [161] Girgis. A, Brahma. S. Effect of Distributed Generation on Protective Device Coordination in Distribution System[C]. LESCOPE'01 Large Engineering Systems Conference on Power Engineering, 2001:115-119.
    [162] Yamamoto. F, Kitamura. A, Fujita. N, et al. A Study on Optimal Locations and Sizes of Active Filters as An Additional Function of Distributed Generation Systems[C], IEEE SMC'99 Conference Proceedings Systems, Man, and Cybernetics, 1999,vol6 :515-520.
    [163] 庄侃沁,李兴源.变电站电压无功控制策略和实验方式[J].电力系统自动化,2001,25(15):47-50.
    [164]赵登福,刘昱,夏道止.考虑开关动作次数约束的配电网无功电压控制方法的研究[J].西安交通大学学报,2003,37(8):783-786.
    [165]T.E.Kim,J.E.Kim.Considerations for the feasible operating range of distributed generation interconnected to power distribution systemiC],in Proceedings of IEEE PES Summer Meeting,July 2002.
    [166]Vu.K.T,C.C.Liu.Shrinking Stability Regions and Voltage Collapse in Power Systems[J].IEEE Trans on Circuits and Systems 1:Regular Papers.1992,39(4):271-289.
    [167]T.E.Kim,J.E.Kim.Voltage Regulation Coordination of Distributed Generation System in Distribution System[C].IEEE PES Summer Meeting.Vancouver,British Columbia,Canada,15-17 July 2001,vol1:480-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700