用户名: 密码: 验证码:
高表达β2糖蛋白Ⅰ在乙型肝炎病毒入侵肝细胞初始环节中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(HBV)感染是全球主要的公共健康问题,超过20亿人感染HBV,有3.5-4亿人为慢性感染,每年50-100万人死于乙肝相关性终末期肝病。我国属于HBV高流行区,HBsAg检出率为10%,有9,300万慢性HBV感染者,每年约35万人死于乙肝相关性肝硬化和肝细胞癌。目前针对HBV感染的防治,主要依赖于婴儿期乙肝疫苗的预防接种和感染者抑制病毒复制。然而,阻止HBV入侵肝细胞和诱导肝细胞增殖则是更有效的治疗方案。迄今为止,HBV入侵肝细胞的分子机制仍不能明确。
     目前,普遍认为HBV入侵肝细胞是由病毒包膜蛋白HBsAg调节的。HBsAg蛋白包括大、中、小三种形式,其中,表面抗原大蛋白(LHBs)由前S1、前S2和S区编码蛋白组成,中蛋白(MHBs)由前S2和S区编码蛋白组成,小蛋白(SHBs)由S区编码蛋白组成。大蛋白前S1区被认为是HBV入侵肝细胞的关键部位,可以与HBV受体结合。近年来,已发现很多HBV结合伴侣,可能是HBV入侵肝细胞途径中的相关蛋白或者在肝细胞膜上的受体,主要有:β2糖蛋白I(beta2-GPI)、膜联蛋白V、膜联蛋白II (annexin II, ANX2)、去唾液酸糖蛋白受体(ASGPR)、纤维连接蛋白(Fibronectin)、糖胺聚糖(GAG)、鳞状细胞癌抗原(SCCA)、羟肽酶D等等。最近研究认为,钠离子牛磺胆酸共转运多肽(NTCP)是人类乙型和丁型肝炎病毒的功能性受体。HBV的宿主特异性和嗜肝性与肝细胞表面特异性受体有关,深入探索HBV究竟通过哪种途径如何入侵肝细胞至关重要。
     β2糖蛋白I是血浆中含量丰富的糖蛋白之一,主要由肝细胞合成,与HBsAg具有高亲和结合的特性。近年来,关于beta2-GPI的研究主要集中于作为自身抗原或共因子,参与抗磷脂综合征等自身免疫性疾病血栓事件的发生。但有趣的是,beta2-GPI是个易变的分子,它的构象和功能随着与其结合的分子或者复合物的变化而改变。Beta2-GPI有五个功能区组成,类似于补体调控蛋白,第五功能区结构特殊,带有高度正电荷区。电子显微镜观察显示,健康人血浆中beta2-GPI以非致病的环状形式存在,即第一功能区和第五功能区结合。当阴离子结构与第五功能区结合,beta2-GPI由闭合的环状开放呈“S”型,以利于与其他分子结合,表现多样的生物学活性。已有研究发现,HBsAg与beta2-GPI第五功能区结合,beta2-GPI的糖基不能改变其与HBsAg的亲和能力,在HBV病毒复制活跃期,HBsAg与beta2-GPI结合能力增强,还鉴定出beta2-GPI与肝癌细胞SMMC-7721细胞膜上annexin II特异性结合。我们推测:以beta2-GPI为中介,通过HBV-beta2-GPI-ANX2路径入侵肝细胞,成为乙肝病毒亲嗜肝细胞的可能途径之一。
     本研究首先以L02、SMMC-7721、HepG2、HepG2.2.15、293T、CHO细胞为研究对象,采用western blot方法检测不同细胞中beta2-GPI的表达,其中:肝癌细胞SMMC-7721用于前期实验;HepG2.2.15由HepG2衍生而来,为HBVDNA转染HepG2的稳转细胞系,能持续、稳定表达HBV成熟病毒颗粒和HBsAg、HBeAg;L02为永化化胎儿正常肝脏细胞,作为正常对照;人胚肾细胞HEK-293T和中国仓鼠卵巢癌细胞CHO-K1具有较高转染效率,293T细胞还多用于病毒包装的研究。结果表明,HepG2.2.15细胞中beta2-GPI表达明显高于L02、SMMC-7721和HepG2细胞,而293T和CHO细胞中表达很少。通过qRT-PCR方法检测同源细胞系HepG2和HepG2.2.15中beta2-GPI mRNA水平,发现HepG2.2.15细胞中beta2-GPI mRNA水平也明显升高。接下来,选取L02、HepG2、HepG2.2.15和293T细胞为研究对象,将不同浓度梯度HBsAg或(和)beta2-GPI蛋白(0-800ng mL-1)与细胞共孵育,ELISA检测发现beta2-GPI能增强HBsAg与不同细胞表面的结合,尤其是与L02和293T细胞,但无beta2-GPI浓度依赖性。已知beta2-GPI能与细胞膜上annexin II结合,我们认为HBsAg与不同细胞表面结合能力的差异也可能与annexin II有关。进一步通过westernblot法检测不同细胞中annexin II的表达,发现HepG2.2.15细胞中annexin II含量明显低于L02、SMMC-7721、HepG2和293T细胞,CHO细胞中有少量表达。
     进一步研究HBV和HBsAg与beta2-GPI的相互作用,将HBV和HBsAg表达载体分别与beta2-GPI质粒共转染293T细胞,发现HBV和LHBsAg直接增强beta2-GPI表达,MHBsAg和SHBsAg对beta2-GPI表达无影响,还发现beta2-GPI能抑制HBsAg分泌。此外,将HBV表达载体转染HepG2细胞中,HBV能降低annexin II表达。采用细胞免疫标记技术,通过共聚焦显微镜观察发现,HepG2.2.15细胞中beta2-GPI分别与HBsAg和annexin II共定位于细胞质,annexin II与HBsAg也共定位于细胞质;HepG2细胞中,beta2-GPI和NTCP共定位于细胞膜,beta2-GPI和annexin II共定位于细胞质中。
     综上研究,HBV使beta2-GPI表达上调,高表达beta2-GPI促进HBsAg与细胞表面结合,有利于病毒与NTCP受体结合,beta2-GPI与annexin II结合可能促进病毒与细胞表面结合和膜融合的发生。此结论为深入探索HBV入侵肝细胞的分子机制开辟了新思路和新方向。
Human hepatitis B virus (HBV) infection is a global public health problem.Approximately2billion people are infected with HBV, and among them3.5-4million are chronic HBV carriers. Hepatitis B causes about6.5million deaths ofHBV-related cirrhosis and hepatocellular carcinoma annually. In China, HBV infection is ahighly endemic. The seroepideminological survey on HBV infection showed that HBsAgcarrier rate was10%in the overall population. Accordingly, there were an estimated93million HBV carriers, and35million die of cirrhosis and hepatocellular carcinoma each year.Current therapies include immune protection and sustained suppression of viral replication.However, inhibition of virus entry and the induction of hepatocyte proliferation are attractivetherapeutic strategies. Up to now, the early stages of HBV infection (i.e., attachment,receptor binding, and fusion) are not completely understood.
     Cellular entry of HBV is mediated by viral envelope proteins that aredesignated large (LHBs), middle (MHBs), and small (SHBs). The LHBsencompasses the PreS1domain, the PreS2domain and the S domain; the MHBsencompasses the PreS2and S domain and the SHBs consists of the S domain. Thepre-S1domain of the LHBs envelope protein is a primary determinant of binding toone or more receptors. Several proteins have been reported as viral receptors thatinteract with HBV surface proteins, including beta2-glycoprotein I (beta2-GPI),annexin V, annexin II (ANX2), asialoglycoprotein receptor (ASGPR), fibronectin,glycosaminoglycan (GAG), squamous cell carcinoma antige (SCCA),carboxypeptidase D and others; but no protein has been confirmed to support viralentry. Recently, it has been proposed that sodium taurocholate co-transportingpolypeptide (NTCP) is a functional receptor for human HBV and hepatitis D virusentry. Although the hepatotropism of HBV and its host specificity are believed to be associated with specific receptor binding, it remains unclear which pathway orpathways are essential for HBV entry.
     It has been shown that beta2-GPI, a human plasmatic protein primarilysynthesized in the liver, can bind to recombinant hepatitis B surface antigen(rHBsAg). However, beta2-GPI is known to act as a major autoantigen inantiphospholipid syndrome (APS), an autoantibody-mediated thrombotic disorder.Interestingly, beta2-GPI is a flexible molecule, and its conformation and functionalactivity depend on interactions with its surroundings. It consists of5homologousdomains (domains I-V), all of which are complement control protein repeats. Inplasma, beta2-GPI remains in the nonpathogenic circular form, with domains V and Iconnected. The protein opens into an S-shaped configuration when interacting withanionic surfaces via domain V. It was observed that glycosylation of beta2-GPI didnot change its high-affinity binding to rHBsAg, and rHBsAg and anionicphospholipids shared the same binding region in the fifth domain of beta2-GPI.Furthermore, the binding activity of beta2-GPI to HBsAg was higher in the serum ofpatients in the active virus replication phase. In addition, annexin II was reported tobe a possible receptor for beta2-GPI on the membrane of SMMC-7721hepatomacells, assisting in bridging HBV entry. Altogether, it can be concluded that beta2-GPImight be crucial for the initial stages of HBV infection.
     In this study, several cell lines were used to clarify the purpose of ourexperiment. Human hepatoma SMMC-7721cell line was used in our previous study.HepG2.2.15is a HBV-producing cell line, derived from human hepatoma cell lineHepG2. L02is an immortal human hepatic cell line. Human embryonickidney cell line, HEK-293T, has high transfection efficiency. Chinese HamsterOvary (CHO) cells represent a hugely popular research tool in the molecular biologycommunity. L02,293T and CHO cells were used as control in our study. Firstly,western blot and qRT-PCR analyses revealed that beta2-GPI expression wasupregulated in HepG2.2.15cells at both the mRNA and the protein level and wasalmost non-existent in293T and CHO cells. When rHBsAg (200ng mL-1) was pre-incubated with beta2-GPI (0-800ng mL-1) before contact with cells, ELISAanalyses demonstrated that beta2-GPI enhanced the ability of HBsAg to bind to cellsurfaces, and there was differential adhesion to L02, HepG2, HepG2.2.15, and293Tcells. However, there was no dose-dependent response for beta2-GPI. Thedifferences in the binding abilities of these cells might be attributable to differentexpression levels of annexin II. Then, western blot was performed to detect theexpression of annexin II in L02, SMMC-7721, HepG2, HepG2.2.15,293T and CHOcells. The result showed that annexin II was expressed at lower levels in HepG2.2.15cells compared to L02, HepG2, and SMMC-7721cells.
     Additionally, western blot and ELISA were then performed to assess the effectsof HBV and the HBsAg domain on beta2-GPI expression in co-transfected293Tcells, and determine the effects of HBV on annexin II expression in transfectedHepG2cells. This study revealed that HBV and the large HBV envelope proteinincreased beta2-GPI expression, and the middle and the small surface protein had noeffect on beta2-GPI expression. And beta2-GPI can inhibit the secretion of HBsAg inHBV life cycle. In addition, HBV can decrease annexin II expression in transfectedHepG2cells. Further investigation indicated that beta2-GPI colocalized with HBsAgin the cytosol of HepG2.2.15cells, with sodium taurocholate co-transportingpolypeptide (NTCP) on the cell membrane in NTCP-complemented HepG2cells,and with annexin II in the cytosol of HepG2and HepG2.2.15cells. And annexin IIcolocalized with HBsAg in the cytosol of HepG2.2.15cells.
     In conclusion, our findings demonstrated that high expression of beta2-GPIenhances HBsAg binding to cell surfaces, thus contributing to virus particle transfer to theNTCP receptor and interaction with annexin II for viral binding and membrane fusion. Theyprovide new insights into the route of human HBV entry into hepatocytes.
引文
[1] Averna M, Paravizzini G, Marino G, et al. Liver is not the unique site ofsynthesis of beta2-glycoprotein I (apolipoprotein H): evidence for an intestinallocalization. International journal of clinical&laboratory research1997;27:207-212.
    [2] Bouma B, de Groot PG, van den Elsen JM, et al. Adhesion mechanism of humanbeta(2)-glycoprotein I to phospholipids based on its crystal structure. EMBO J1999;18:5166-5174.
    [3] Steinkasserer A, Estaller C, Weiss EH, Sim RB, AJ D. Complete nucleotide anddeduced amino acid sequence of human beta2-glycoprotein I. Biochem J1991;277:387-391.
    [4] Okkels H, Rasmussen TE, Sanghera DK, Kamboh MI, T K. Structure of thehuman beta2-glycoprotein I (apolipoprotein H) gene. Eur J Biochem1999;259:435.
    [5] Kamboh MI, Ferrell RE, B S. Genetic studies of human apolipoproteins. IV.Structural heterogeneity of apolipoprotein H (beta2-glycoprotein I). Am J HumGenet1988;42:452-457.
    [6] Kamboh MI, Sanghera DK, Mehdi H, et al. Single nucleotide polymorphisms inthe coding region of the apolipoprotein H (beta2-glycoprotein I) gene and theircorrelation with the protein polymorphism, anti-beta2glycoprotein I antibodiesand cardiolipin binding: description of novel haplotypes and their evolution.Annals of human genetics2004;68:285-299.
    [7] S S-S, B R. Beta2-glycoprotein I and its clinical significance: from genesequence to protein levels. Autoimmunity reviews2007;6:547-552.
    [8] Yasuda S, Atsumi T, Matsuura E, et al. Significance of valine/leucine247polymorphism of beta2-glycoprotein I in antiphospholipid syndrome: increasedreactivity of anti-beta2-glycoprotein I autoantibodies to the valine247beta2-glycoprotein I variant. Arthritis and rheumatism2005;52:212-218.
    [9] Hirose N, Williams R, Alberts AR, et al. A role for the polymorphism at position247of the beta2-glycoprotein I gene in the generation of anti-beta2-glycoproteinI antibodies in the antiphospholipid syndrome. Arthritis Rheum1999;42:1655-1661.
    [10] Camilleri RS, Mackie IJ, Humphries SE, Machin SJ, H. C. Lack of associationof b2-glycoprotein I polymorphisms Val247Leu and Trp316Ser withantiphospholipid antibodies in patients with thrombosis and pregnancycomplications. Br J Haematol2003;120:1066-1072.
    [11] Sanghera DK, Wagenknecht DR, McIntyre JA, MI K. Identification of structuralmutations in the fifth domain of apolipoprotein H (beta2-glycoprotein I) whichaffect phospholipid binding. Hum Mol Genet1997;6:311-316.
    [12] Wang HH, AN C. Cloning and characterization of the human beta2-glycoproteinI (beta2-GPI) gene promoter: roles of the atypical TATA box and hepatic nuclearfactor-1alpha in regulating beta2-GPI promoter activity. Biochem J2004;380:455-463.
    [13] I S, G D, S T, E L, F V. APOH,an acute phase protein,a performing tool forultra-sensitive detection and isolation of microorganisms from different origins.InTech2011:21-42.
    [14] M A, G P, G M, et al. Beta-2-glycoprotein I is growth regulated and plays a roleas survival factor for hepatocytes. The international journal of biochemistry&cell biology2004;36:1297-1305.
    [15] Lozier J, Takaha, shi N, FW P. Complete amino acid sequence of human plasmabeta2-glycoprotein I. Proc Natl Acad Sci U S A1984;81:3640-3644.
    [16] Schwarzenbacher R, Zeth K, Diederichs K, et al. Crystal structure of humanbeta2-glycoprotein I: implications for phospholipid binding and theantiphospholipid syndrome. EMBO J1999;18:6228-6239.
    [17] Hammel M, Kriechbaum M, Gries A, Kostner GM, Laggner P, R. P. SolutionStructure of Human and Bovine β2-Glycoprotein I Revealed by Small-angleX-ray Scattering. J Mol Biol2002;321:85-97.
    [18] C A, PG dG, M M, et al. beta(2)-glycoprotein I: a novel component of innateimmunity. Blood2011;117:6939-6947.
    [19] Mehdi H, Manzi S, Desai P, et al. A functional polymorphism at thetranscriptional initiation site in beta2-glycoprotein I (apolipoprotein H)associated with reduced gene expression and lower plasma levels ofbeta2-glycoprotein I. European Journal of Biochemistry2003;270:230-238.
    [20] Yasuda S, Tsutsumi A, Chiba H, et al. Beta(2)-glycoprotein I deficiencyprevalence, genetic background and effects on plasma lipoprotein metabolismand hemostasis. Atherosclerosis2000;152:337-346.
    [21] Sanghera DK, Kristensen T, Hamman RF, MI K. Molecular basis of theapolipoprotein H (beta2-glycoprotein I) protein polymorphism. Hum Genet1997;100:57-62.
    [22] Averna M, Paravizzini G, Marino G, et al. Beta-2-glycoprotein I is growthregulated and plays a role as survival factor for hepatocytes. Int J Biochem CellBiol2004;36:1297-1305.
    [23] MS L, LC S, KL K, C H, E B, JE H. Comprehensive evaluation ofapolipoprotein H gene (APOH) variation identifies novel associations withmeasures of lipid metabolism in GENOA. Journal of lipid research2008;49:2648-2656.
    [24] Agar C, Van Os GM, M rgelin M, et al. Beta2-glycoprotein I can exist in2conformations: implications for our understanding of the antiphospholipidsyndrome. Blood2010;116:1336-1343.
    [25] McNeil HP, Simpson RJ, Chesterman CN, SA K. Anti-phospholipid antibodiesare directed against a complex antigen that includes a lipid-binding inhibitor ofcoagulation: beta2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A1990;87:4120-4124.
    [26] Reddel SW, Wang YX, Sheng YH, SA K. Epitope Studies withAnti-β2-glycoprotein I Antibodies from Autoantibody and Immunized Sources.J Autoimmun2000;15:91-96.
    [27] Albert LJ, RD I. Molecular mimicry and autoimmunity. N Engl J Med1999;341:2068-2074.
    [28] A A, V P, RA F, BC F, B F. beta(2)-Glycoprotein-1autoantibodies from patientswith antiphospholipid syndrome are sufficient to potentiate arterial thrombusformation in a mouse model. Blood2011;117:3453-3459.
    [29] Raschi E, Testoni C, Bosisio D, et al. Role of the MyD88transduction signalingpathway in endothelial activation by antiphospholipid antibodies. Blood2003;101:3495-3500.
    [30] N S, S D-G, G R, et al. The role of TLR2in the inflammatory activation ofmouse fibroblasts by human antiphospholipid antibodies. Blood2007;109:1507-1514.
    [31] M S, A L, A C, et al. Anti-beta2-glycoprotein I antibodies induce monocyterelease of tumor necrosis factor alpha and tissue factor by signal transductionpathways involving lipid rafts. Arthritis and rheumatism2007;56:2687-2697.
    [32] P R, CW F, W R, N M, G G. Neutrophil activation by the tissue factor/FactorVIIa/PAR2axis mediates fetal death in a mouse model of antiphospholipidsyndrome. The Journal of clinical investigation2008;118:3453-3461.
    [33] Di Simone N, Marana R, Castellani R, et al. Decreased expression ofheparin-binding epidermal growth factor-like growth factor as a newly identifiedpathogenic mechanism of antiphospholipid-mediated defective placentation.Arthritis and rheumatism2010;62:1504-1512.
    [34] BC L, RH D, WL T, PJ L, J A, PG dG. Dimers of beta2-glycoprotein I increaseplatelet deposition to collagen via interaction with phospholipids and theapolipoprotein E receptor2'. The Journal of biological chemistry2003;278:33831-33838.
    [35] Romay-Penabad Z, Montiel-Manzano MG, Shilagard T, et al. Annexin A2isinvolved in antiphospholipid antibody-mediated pathogenic effects in vitro andin vivo. Blood2009;114:3074-3083.
    [36] Shi T, Giannakopoulos B, Yan X, et al. Anti-beta2-glycoprotein I antibodies incomplex with beta2-glycoprotein I can activate platelets in a dysregulatedmanner via glycoprotein Ib-IX-V. Arthritis and rheumatism2006;54:2558-2567.
    [37] Urbanus RT, Pennings MT, Derksen RH, PG. dG. Platelet activation by dimericbeta2-glycoprotein I requires signaling via both glycoprotein Ibalpha andapolipoprotein E receptor2'. Journal of thrombosis and haemostasis: JTH2008;6:1405-1412.
    [38] Ioannou Y, Zhang JY, Passam FH, et al. Naturally occurring free thiolswithin2-glycoprotein I in vivo: nitrosylation, redox modification byendothelial cells, and regulation of oxidative stress-induced cell injury. Blood2010;116:1961-1970.
    [39] Passam FH, Rahgozar S, Qi M, et al. Beta2glycoprotein I is a substrate ofthiol oxidoreductases. Blood2010;116:1995-1997.
    [40] Bouma B, de Groot PG, van den Elsen JM, et al. Adhesion mechanism ofhuman beta(2)-glycoprotein I to phospholipids based on its crystal structure.EMBO J1999;18:5166-5174.
    [41] PE M, AD S, MJ D. Increased levels of serum protein oxidation and correlationwith disease activity in systemic lupus erythematosus. Arthritis and rheumatism2005;52:2069-2079.
    [42] Buttari B, Profumo E, Mattei V, et al. Oxidized beta2-glycoprotein I induceshuman dendritic cell maturation and promotes a T helper type1response. Blood2005;106:3880-3887.
    [43] E M, LR L. Autoimmune-mediated atherothrombosis. Lupus2008;17:879-888.
    [44] Matsuura E, Kobayashi K, Tabuchi M, LR. L. Oxidative modification oflow-density lipoprotein and immune regulation of atherosclerosis. Progress inlipid research2006;45:466-486.
    [45] E M, GR H, MA K. Oxidation of LDL and its clinical implication.Autoimmunity reviews2008;7:558-566.
    [46] Kobayashi K, Matsuura E, Liu Q, et al. A specific ligand forbeta(2)-glycoprotein I mediates autoantibody-dependent uptake of oxidized lowdensity lipoprotein by macrophages. J Lipid Res2001;42:697-709.
    [47] Kobayashi K, Kishi M, Atsumi T, et al. Circulating oxidized LDL formscomplexes with beta2-glycoprotein I: implication as an atherogenic autoantigen.Journal of lipid research2003;44:716-726.
    [48] LR L, M S-P, C P-S, BL H, E M, I G-DLT. Oxidized low-density lipoprotein andβ2-glycoprotein I in patients with systemic lupus erythematosus and increasedcarotid intima-media thickness: implications in autoimmune-mediatedatherosclerosis. Lupus2006;15:80-86.
    [49] E M, LR L, Y S, PR A. β2-glycoprotein I and oxidative inflammation in earlyatherogenesis: a progression from innate to adaptive immunity? Autoimmunityreviews2012;12:241-249.
    [50] Miyakis S GB, Krilis SA. Beta2glycoprotein I--function in health and disease.Thrombosis research2004;114:335-346.
    [51] Ieko M, Ichikawa K, Triplett DA, et al. β2-glycoprotein I is necessary to inhibitprotein C activity by monoclonal anticardiolipin antibodies. Arthritis&Rheumatism2001;42:167-174.
    [52] Ohkura N, Hagihara Y, Yoshimura T, Goto Y, H K. Plasmin can reduce thefunction of human beta2glycoprotein I by cleaving domain V into a nickedform. Blood1998;91:4173-4179.
    [53] Shi T, Iverson GM, Qi JC, et al.2-Glycoprotein I binds factor XI and inhibitsits activation by thrombin and factor XIIa: Loss of inhibition byclipped2-glycoprotein I. Proceedings of the National Academy of Sciences2004;101:3939-3944.
    [54] Yasuda S, Atsumi T, Ieko M, T. K. Beta2-glycoprotein I, anti-beta2-glycoproteinI, and fibrinolysis. Thrombosis research2004;114:461-465.
    [55] JJJ H, PJ L, B dL, RHWM D, R F, PG dG. Beta2-glycoprotein I inhibits vonWillebrand factor dependent platelet adhesion and aggregation. Blood2007;110:1483-1491.
    [56] PG dG, JC M. Beta(2)-Glycoprotein I: evolution, structure and function. Journalof thrombosis and haemostasis: JTH2011;9:1275-1284.
    [57] M N, S W, M M, et al. The antibacterial activity of peptides derived from humanbeta-2glycoprotein I is inhibited by protein H and M1protein fromStreptococcus pyogenes. Molecular microbiology2008;67:482-492.
    [58] E A, V R, A S, M M, L B, A S. Antimicrobial activities of heparin-bindingpeptides. Eur J Biochem2004;271:1219-1226.
    [59] Horbach DA, van Oort E, Lisman T, Meijers JC, Derksen RH, PG dG.Beta2-glycoprotein I is proteolytically cleaved in vivo upon activation offibrinolysis. Thromb Haemost1999;81:87-95.
    [60] van der Poll T, SM. O. Host-pathogen interactions in sepsis. Lancet Infect Dis2008;8:32-43.
    [61] Neurath AR, N S. The putative cell receptors for hepatitis B virus (HBV),annexin V, and apolipoprotein H, bind to lipid components of HBV. Virology1994;204:475-477.
    [62] Stefas I, Rucheton M, D'Angeac AD, et al. Hepatitis B virus Dane particles bindto human plasma apolipoprotein H. Hepatology2001;33:207-217.
    [63] H M, A N, MI K. Recombinant hepatitis B surface antigen and anionicphospholipids share a binding region in the fifth domain of beta2-glycoprotein I(apolipoprotein H). Biochimica et biophysica acta2008;1782:163-168.
    [64] Mehdi H, Kaplan MJ, Anlar FY, et al. Hepatitis B virus surface antigen binds toapolipoprotein H. Journal of virology1994;68:2415-2424.
    [65] PJ G, YF P, XD L, et al. Studies on specific interaction of beta-2-glycoprotein Iwith HBsAg. World journal of gastroenterology: WJG2003;9:2114-2116.
    [66] Stefas E, Rucheton M, Graafland H, et al. Human plasmatic apolipoprotein Hbinds human immunodeficiency virus type1and type2proteins. AIDS ResHum Retroviruses1997;13:97-104.
    [67] C A, M K, M H, et al. Highly sensitive detection of the group A Rotavirus usingApolipoprotein H-coated ELISA plates compared to quantitative real-time PCR.Virol J2011;8:63.
    [68] D S, JC P, P C. Antiphospholipid antibodies, antiphospholipid syndrome andinfections. Autoimmunity reviews2008;7:272-277.
    [69] Balasubramanian K, Chandra J, AJ S. Immune clearance of phosphatidylserine-expressing cells by phagocytes. The role of beta2-glycoprotein I in macrophagerecognition. The Journal of biological chemistry1997;272:31113-31117.
    [70] Balasubramanian K, AJ S. Characterization of phosphatidylserine-dependentbeta2-glycoprotein I macrophage interactions. Implications for apoptotic cellclearance by phagocytes. J Biol Chem1998;273:29272-29277.
    [71] Arzumanyan A, Reis HM, MA. F. Pathogenic mechanisms in HBV-andHCV-associated hepatocellular carcinoma. Nature reviews Cancer2013;13:123-135.
    [72]Kourtis AP BM, Hu DJ, Jamieson DJ. HIV-HBV coinfection--a global challenge.The New England journal of medicine2012;366:1749-1752.
    [73] Ganem D, AM P. Hepatitis B virus infection--natural history and clinicalconsequences. The New England journal of medicine2004;350:1118-1129.
    [74] Seeger C, WS M. Hepatitis B Virus Biology. Microbiol Mol Biol Rev2000;64:51-68.
    [75] Schadler S, E. H. HBV life cycle: entry and morphogenesis. Viruses2009;1:185-209.
    [76] D G, S U. Viral and cellular determinants involved in hepadnaviral entry. Worldjournal of gastroenterology: WJG2007;13:22-38.
    [77] V B. Hepatitis B virus morphogenesis. World journal of gastroenterology: WJG2007;13:65-73.
    [78] Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, WH G.Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol1984;52:396-402.
    [79] Bruss V, Hagelstein J, Gerhardt E, PR G. Myristylation of the large surfaceprotein is required for hepatitis B virus in vitro infectivity. Virology1996;218:396-399.
    [80] Gripon P, Le Seyec J, Rumin S, C G-G. Myristylation of the hepatitis B viruslarge surface protein is essential for viral infectivity. Virology1995;213:292-299.
    [81] Gripon P, Rumin S, Urban S, et al. Infection of a human hepatoma cell line byhepatitis B virus. Proceedings of the National Academy of Sciences of theUnited States of America2002;99:15655-15660.
    [82] Glebe D, Urban S, Knoop EV, et al. Mapping of the Hepatitis B VirusAttachment Site by Use of Infection-Inhibiting preS1Lipopeptides and TupaiaHepatocytes. Gastroenterology2005;129:234-245.
    [83] Gripon P, Cannie I, S U. Efficient inhibition of hepatitis B virus infection byacylated peptides derived from the large viral surface protein. Journal ofvirology2005;79:1613-1622.
    [84] J P, M D, W M, et al. Prevention of hepatitis B virus infection in vivo by entryinhibitors derived from the large envelope protein. Nature biotechnology2008;26:335-341.
    [85] Treichel U, Meyer zum Büschenfelde KH, Stockert RJ, Poralla T, G G.Hemifusion activity of a chimeric influenza virus hemagglutinin with a putativefusion peptide from hepatitis B virus. Virus Res2000;68:35-49.
    [86] Owada T, Matsubayashi K, Sakata H, et al. Interaction between desialylatedhepatitis B virus and asialoglycoprotein receptor on hepatocytes may beindispensable for viral binding and entry. Journal of viral hepatitis2006;13:11-18.
    [87] Mehdi H, Yang X, ME P. An altered form of apolipoprotein H binds hepatitis Bvirus surface antigen most efficiently. Virology1996;217:58-66.
    [88] PJ G, YF P, XC W, LK Q, Y S, HY Y. A possible receptor for β2glycoproteinⅠon the membrane of hepatoma cell line smmc7721. Chin Med J (Engl)2003;116:4.
    [89] PJ G, Y S, YH G, YW L, Y T. The receptor for β2GPⅠon membrane ofhepatocellular carcinoma cell line SMMC-7721is annexin II. World journal ofgastroenterology: WJG2007;13:3364-3368.
    [90]何川,高普均,荆雪,吴扬. β2糖蛋白I与乙型肝炎表面抗原的结合作用.世界华人消化杂志2011;19:887-891.
    [91] De Falco S, Ruvoletto MG, Verdoliva A, et al. Cloning and expression of a novelhepatitis B virus-binding protein from HepG2cells. The Journal of biologicalchemistry2001;276:36613-36623.
    [92] H Y, G Z, G X, et al. Sodium taurocholate cotransporting polypeptide is afunctional receptor for human hepatitis B and D virus. eLife2012;1:e00049.
    [93] Sobotta D, Sominskaya I, Jansons J, et al. Mapping of immunodominant B-cellepitopes and the human serum albumin-binding site in natural hepatitis B virussurface antigen of defined genosubtype. J Gen Virol2000;81:369-378.
    [94] Greco G, Pal S, Pasqualini R, LM S. Matrix fibronectin increases HIV stabilityand infectivity. J Immunol2002;168:5722-5729.
    [95] J Y, X D, Y Z, X B, M Z, S W. Fibronectin is essential for hepatitis B viruspropagation in vitro: may be a potential cellular target? Biochemical andbiophysical research communications2006;344:757-764.
    [96] Grubman MJ, B B. Foot-and-Mouth Disease. Clin Microbiol Rev2004;17:465-493.
    [97] Budkowska A, Bedossa P, Groh F, Louise A, J P. Fibronectin of human liversinusoids binds hepatitis B virus: identification by an anti-idiotypic antibodybearing the internal image of the pre-S2domain. J Virol1995;69:840-848.
    [98] J Y, F W, L T, et al. Fibronectin and asialoglyprotein receptor mediate hepatitisB surface antigen binding to the cell surface. Archives of virology2010;155:881-888.
    [99] Hertogs K, Leenders WP, Depla E, et al. Endonexin II, present on human liverplasma membranes, is a specific binding protein of small hepatitis B virus (HBV)envelope protein. Virology1993;197:549-557.
    [100] De Meyer S, Depla E, Maertens G, Soumillion A, SH Y. Characterization ofsmall hepatitis B surface antigen epitopes involved in binding to humanannexin V. J Viral Hepat1999;6:277-285.
    [101] Hertogs K, Depla E, Crabbé T, et al. Spontaneous development ofanti-hepatitis B virus envelope (anti-idiotypic) antibodies in animalsimmunized with human liver endonexin II or with the F(ab')2fragment ofanti-human liver endonexin II immunoglobulin G: evidence for areceptor-ligand-like relationship between small hepatitis B surface antigen andendonexin II. J Virol1994;68:1516-1521.
    [102] Gong ZJ, De Meyer S, van Pelt J, et al. Transfection of a rat hepatoma cell linewith a construct expressing human liver annexin V confers susceptibility tohepatitis B virus infection. Hepatology1999;29:576-584.
    [103]李卉,胡康洪.利用肝癌细胞系研究HBV的最新进展.中华实验和临床感染病杂志2010;4:65-70.
    [104] Marsh M, A H. Virus entry: open sesame. Cell2006;124:729-740.
    [105] A S, P G, S U. Fine mapping of pre-S sequence requirements for hepatitis Bvirus large envelope protein-mediated receptor interaction. Journal of virology2010;84:1989-2000.
    [106] Ma K, Simantov R, Zhang JC, Silverstein R, Hajjar KA, KR M. High affinitybinding of beta2-glycoprotein I to human endothelial cells is mediated byannexin II. The Journal of biological chemistry2000;275:15541-15548.
    [107] H Z, Y Y, G X, et al. Annexin A2mediates anti-β2GPI/β2GPI-induced tissuefactor expression on monocytes. International Journal of Molecular Medicine2009;24:189-198.
    [108] Raynor CM, Wright JF, Waisman DM, EL P. Annexin II enhancescytomegalovirus binding and fusion to phospholipid membranes. Biochemistry1999;38:5089-5095.
    [109] CE C. The annexins and exocytosis. Science1992;258:924-931.
    [110] Emans N, Gorvel JP, Walter C, et al. Annexin II is a major component offusogenic endosomal vesicles. Journal of cell biology1993;120:1357-1369.
    [111] Wright JF KA, Pryzdial EL, Wasi S. Host cellular annexin II is associated withcytomegalovirus particles isolated from cultured human fibroblasts. Journal ofvirology1995;69:4784-4791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700